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 Separate and Joint Continuity II.

 This is a continuation of my article [ Pt ] . Here, we pose some

 important open problems pertaining to separate versus joint conti-

 nuity of functions defined on products of certain "nice" topological

 spaces .

 In what follows let X, Y and Z be spaces and let a function

 f:XxY-»Z be given. For every fixed x e X, the function fx :Y-*Z

 defined by fx (y) = f(x,y), where y e Y, is called an x-óect ion of.

 Ļ. An y-section of f is defined similarly. We say that a function

 f:XxY-»Z is òepajt<xtel'fi continuous if f is continuous with respect to

 each variable while the other variable is fixed, i.e. if all of its

 x- sections fx and y- sections fy are continuous. Given a function
 n

 fr^n^ XA -* Z; we shall denote that f is separately continuous by
 n

 fr^II^ X£ E- » Z. Throughout this paper all the considered spaces are
 assumed to be Hausdorff.

 §1. W. Sierpiński [Si] proved that if X « Y « E. then every sepa-

 ately continuous function f:XxY£- is uniquely determined by its

 values at the points of a dense subset D of the domain.

 Presented at Real Analysis Session of the 845th meeting of the
 American Mathematical Society, held at the University of Kansas,
 Lawrence, October 29, 1988.
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 This result is valid if the domain space is, roughly speaking,

 either:

 a) both X and Y are metric and either X or Y is Baire [see Mc] , or

 b) if X is Baire and Y is second countable (see [GN] and [Co]).

 Remark 1. It will be interesting to know "the size" (in various

 senses) and Borei class of the set D, in general case.

 Remark 2 . The "almost-continuity" condition for a function to be

 "uniquely determined by its values at the point of a dense subset D

 of the domain" also seems to be worthwhile of some deeper analysis,

 see for example [Ne] .

 Problem 1. %has*actestiļ£e K' ¿y òvuch. that hiejip ¿n&k i theorem hold¿, 1/

 being, compact .

 §2. R. Kershner [Ke] showed that the set D(f) of discontinuity

 points of any separately continuous function f:]RnG->]R has the

 dimension at most n-2. As we know, if X is separable metric, then

 ind X - Ind X - dim X, where ind, Ind and dim stand for the small

 inductive dimension, the large inductive dimension and the covering

 dimens ion , respect ive ly .

 Problem 2 . Zet u¿> atóame that 3T1 , 2?2 , . . . , 3?n a/te "nice" nojvrnat ¿pace¿
 n

 and let f.: G- ► 3R . Nbu¿>t Snd D (.f.) < n-2 (ojt dim 5)<¿> < n-2)?

 Sn past icutajt, i¿> thiź> tjuje if. % Ł ' A c w compact ?
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 Remark 3. It is worthwile to know that there have been studies of

 "the size" (in various senses) of D(f) for a separately continuous

 function f: In fact, G. C. Young, W. H. Young [YY] (see

 also [Pt] p. 296) showed that D(f) may be large in sense of cardi-

 nality - may be uncountable in evejtp rectangle contained in the

 unit square. T. Tolstoff [To] constructed a function f:H2€-

 whose D(f) has a positive Lebesgue measure (!) being large in mea-

 sure» theoretical sense.

 §3. Following [SR] a space X is called Namioka if for any compact

 space Y and any metric Z:

 (*) every separately continuous function f:X x Y G- >Z

 there is a dense set AcXs.t. AxYcC(f),

 where C(f) stands for the set of points of (joint)

 continuity of f.

 Remark 4. It has been shown [Ch] that a metric space Z in this

 definition can be replaced by the unit interval. However, an

 interesting question is how far can we go in relaxing the condition

 upon the range space Z (see an analogical problem for Blumberg

 spaces (compare §7), ([PS] and [BP])).

 Remark 5. One cannot expect Z to be "too large" for if [Ch] p. 459

 shown that even in the case when X - Y - [-1,1] (closed interval

 with Euclidean topology), there is a compact space Z namely Z -

 C([-l,l]2, [-1,1]) equipped with the pointwise convergence topology,
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 so that (*) fails.

 The following problem constitutes essentially Problem 944 I

 recorded in the New Scottisi^ Book (Wroclaw, Poland) in 1978.

 Problem 3 . *Let X be /Vom ¿oka , 1/ be compact and let H be any. òecond

 countable, oj* more, gjenejtallp, a òpcuce having. o-di&j-o int baòe .

 Hoe ¿y (* ) hold?

 Since it has been shown ([SR]) that all completely regular

 Namioka spaces are Baire and, obviously, in Baire spaces residual

 sets coincide with sets containing dense G$ subsets, we can replace

 the condition "dense G$ set A" in (*) by "residual set A" (for

 completely regular X's).

 §4. R. Kershner [Ke] characterized the set D(f) of discontinuity

 points of f: R2G->R, namely

 Let S c R2 . Then S is D(f) of a certain function f: ~R2 G- > R

 iff S is an Fa contained in the product of two sets of first

 category.

 This result has been generalized to compact metric spaces, see

 [BN].

 Problem 4. %hajiGJctej*i&e D(£) £oji £unct ion& Xx ļ/E->3R9 a/hejie X

 and y a/te compact ¿ paceö .

 §5. It has been shown [SR] that all metric Baire spaces or sepa-

 rable Baire spaces are Namioka.
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 Problem 5 . What iò> a natural cla¿¿> oĻ ò> poce ¿y contain ing. all metric

 and all ¿epasujüble ¿>paceò> òmch that /Vamioka and Ba íjvò öpajceö coincide?

 §6. In his remarkable paper [Na] I. Namioka asked (Remarks 1.3(b)

 p. 520) whether every - what we call now - Namioka space is Baire.

 The negative answer was provided by M. Talagrand [T 2] see §7. In

 the same article the following spectacular problem was posed:

 Problem 6 . (M. Talagrand) "tet 3T be ïïaiste, ļļ lye compact and let

 ¿:Kx3/e-> J*. %((.) J é ?

 Remark 6 . If one assumes additionally in Problem 6 that Y is / ij*ò>t

 countable , then the positive answer has been shown in [LP2] even

 for a larger class of functions f:X x Y -> R namely, it is enough

 that all x- sections fx are continuous (with the exception, possibly,

 of a first category set), and all its y-sections fy are quasi-contin-

 uous (s inverse image of every open set in the range is contained

 between an open set and its closure in the domain space; such func-

 tions, as shown by S. Marcus, do not have to be Lebesgue measurable!)

 compare also [PW] .

 §7. Let us recall that a topological space X is called ^lumbejtgX)

 if for every function f: X -> JR. there is a dense subset D of X such

 that f restricted to D is continuous (on D) . It is known [BG] that

 for metric spaces:

 L) In 1922 H. Blumberg showed that H has the mentioned property.
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 X is Blumberg iff X is Baire (iff X is Namioka, see [SR]).

 H. E. White, Jr. [Wh] proved that there is a Baire space that

 is not Blumberg. M. Talagrand [T2] has showed that there is an a-

 favorable space (hence Baire) which is not Namioka.

 If X or Y is a metrizable space then every f: Xx Y 6-> R is the

 pointwise limit of a sequence of continuous functions^) , we shall

 write then f e Bj (X x Y) . Consequently, if the pointwise compact

 subsets of C(X) are metrizable, then every f: Xx Y 6-> R belong to

 Bj(X x Y), Y being compact^) . Very recently G. Vera [Ve] extended

 these results . Following him we will say that a topological space

 X is Mcrstan space (see [Mo]) if every f: X x YG->R is in Bx (X x Y) ,

 Y being any compact space.

 In view of §6, and the just presented material we have:

 Problem 7. What are the relationships in the class of Baire spaces

 between Namioka, Blumberg, Moran, Sierpiński spaces (defined in

 Problem 1> and spaces X for which Talagrand' s problem has a positive

 solution.

 Remark 7. The question whether every Baire Moran space is Namioka

 was posed in by G . Vera [Ve] and has been answered, in positive, by

 him in his recent article "Vector-valued first Baire class

 functions" .

 L) See [Ru] , compare [En] and further discussion in [Pt] p. 299.

 2) It happens, for example, if X is the support of some Borei
 measure and has a dense a-compact subset [Ru] .
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 §8. It is known ([CT], [ B2 ] ) that if Y is second countable, and M

 is metric, then:

 (**) for every separately continuous function

 f: XxY E- >M there exists a residual set

 A C X such that A x Y c C(f) .

 (i) Be aware of the fact, that if Y is / ij*ò>t countable (even metric

 complete) and M - H, then (**) does not have to be true even in

 the case if X is the closed unit interval [0,1]! - [Bl] see [Pt] ,

 Ex. 6.14 p. 313.

 (ii) Also, if the space Y is assumed only to have a countable

 netiûoj*k^) , which implies that Y is hereditarily Lindelöf and

 hereditarily separable, then again (**) does not have to hold,

 (see [Tl] , Remark (b) , p. 241, see also [LP1] , comments follow-

 ing Example 1, p. 288); see also [Pt] , Ex. 6.13 p. 311.

 Following [LP1] we say that a space Y is co-Nam ¿okož) if for every

 Namioka space X condition (*) of §3 holds.

 1)A family ft - INb}s£S of subsets of a space X is called a
 network if for every x £ X and for every neighborhood U of x, there
 is s0 £ S, such that x £ NSq C U.

 2>Thls term has been used independently by G. Debs in a
 different sense, namely to denote these Y's, such that for any
 Baire space X (*) holds. The class of Debs' co -Namioka spaces,
 denoted usually by N*, contains all Çprsòn- compact spaces. Re-
 cently, R. Deville [De] showed that N* contains all the compacts
 [0,r) (T-an ordinal), and all scattered compact K's such that
 k(^) - ft, where ft is the first uncountable ordinal. He asked also
 whether N* contain all scattered compact spaces.
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 Well, by the definition, compact spaces are co-Namioka. We

 have shown [LP1] Theorem, p. 289, that k^- spaces are co-Namioka rei

 (LC) , LC denotes the class of locally compact spaces, that is; if X

 is any locally compact space, Y is a k^- space, then (*) of §3 is

 true .

 Further, every locally compact a-compact space is co-Namioka.

 It easily follows from [CT] and [B2] that all second countable

 spaces are co-Namioka.

 The space Y of (i) serves as an example of a complete metric,

 locally compact space which is not co-Namioka.

 Likewise, Y of (ii) illustrates that not all hereditarily

 Lindelöf and hereditarily separable spaces must be co-Namioka.

 Problem 8 . %hajiactej*Lj-e co- Namioka ¿pace¿.

 §9. Although as yet the class of Namioka spaces has not been

 characterized (internally), there is a need for the determination

 of permanence properties of Namioka spaces . Some invariants have

 already been discovered in [HJT] , however the following problem is

 still open.

 Problem 9 . (R. Hansell [HI]) BĻ 3C í¿> c loòed-hes*editajtLlp Jkxisie and

 Nam ¿ok<x, Lò> ei nonempty ctoòed òub^pcuce oĻ X Nom Loka? Are de nòe

 òuh&pcjce ¿> o£ Nom Loka ò>paceò> Nom Loka? DU hat other permanence

 prope rt Le ¿ Nom Loka ¿pac e have ?
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