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 Differentiability and Density Continuity

 1 Introduction

 The density topology [10,11] on R consists of all measurable subsets A of
 R such that, for every x £ A, x is a density point of A. It is a completely
 regular refinement of the natural topology. A function /: R - ► R is density
 continuous if and only if it is continuous as a selfmap of R equipped with the
 density topology. The class of density continuous functions was investigated
 by Ostaszewski [7,8]. Bijections of the real line whose inverses are density
 continuous were studied by Bruckner [1] and Niewiarowski [6]. Ostaszewski
 [9] considered the class as a semigroup with composition as the operation.
 Ciesielski and Larson [2] showed that real-analytic functions are density
 continuous, and that the class of density continuous functions is not a
 linear space. Furthermore, there exist C°° functions which are not density
 continuous. Ciesielski, Larson, and Ostaszewski [4] proved that a typical
 continuous function is nowhere density continuous, and the class of sets of
 points of discontinuity of density continuous functions is that of nowhere
 dense F„ subsets of R.

 Throughout this paper we are concerned with the relationship between
 density continuity and differentiability. In the process, we discuss the fact
 that any closed set can be made into the zero set of a C00 density continuous
 function, and we show that there is a nowhere approximately differentiable
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 density continuous and continuous function. This example answers a prob-
 lem posed by Ostaszewski [9].

 The following theorem will be used several times in the sequel. It is a
 restatement of a theorem due to Ciesielski and Larson [2, Theorem 1].

 Theorem 1 If a function f is convex in a neighborhood of x, then f is
 density continuous at x.

 The following notation will be used:

 R - the set of real numbers;

 N - the set of natural numbers, N = {1,2, 3...};

 I A I - the Lebesgue measure of a measurable set AcR;

 Ac - the complement of a set A,

 d(A,x), d(A,x), d+(A,x), d~(A,x), d(A,x) - the upper, lower, right-
 hand, left-hand, and ordinary (respectively) densities of a set AcR
 at a point x € R;

 C°° - the set of all smooth (i.e., infinitely many times different i able) func-
 tions / : R- >R;

 dist(x, F ) - the distance of an x € R from a set F C R;

 supp(/) = {i6 R :f(x) ± 0}; and

 f(k'x) - the fc'th derivative of / at x. In particular, ß°'x) = f(x).

 2 The zero-set of a density continuous func-
 tion

 Ciesielski and Larson [3] were able to show that the complements of level
 sets for the density continuous functions do not form a subbase for the
 density topology (i.e., the density topology is not generated; see also the
 discussion of this problem in [9]). This implies, that the structure of level
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 sets, and the zero sets in particular, of density continuous functions, is not
 very rich. However, we were able to prove that closed sets are the zero sets
 of density continuous, continuous functions with certain differentiability
 properties.

 Theorem 2 Given a closed set F, there is a function f G C°° which is
 density continuous such that F - supp(/)c.

 In order to prove this theorem, we need two lemmas. The first has
 already been shown by Ciesielski, Larson and Ostaszewski [4, Lemma 1].

 Lemma 1 Suppose that In and Jn are sequences of intervals such that
 In C Jn and In has the same center as Jn for all n G N. If

 Zx= [J In
 {n:x£Jn}

 and

 ¿2 'In'/'Jn' < OO,
 neN

 then d(Zx,x ) = 0 for all x G R.

 Lemma 2 Suppose that f is a function which is convex upward on R and
 increasing on [0, oo), with /(0) = 0. If ho > 0, 0 < p < and H C (0, ho)
 is a measurable set such that

 I H fi (0, /i)| > hp > 0, V7i € (0, h0), (1)

 then

 I r'H) n (0,01 > tp > 0, Vi e (o ,/"1(/i0)).

 Proof. Choose t G (0, /_1(/i0))- Let h = f(t). There is a nonnegative,
 nonincreasing function g on (0, h) such that

 f~l(k) = I g(l)dl for each/; G (0, h).
 Jo

 Denote

 u(s) = sup{fc € (0, h): g(k) > 5}.
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 Assume (1). Then

 ir>(ion«M)i = ļmoh)Sm

 = / (rmdr)di
 JHn(o,h) 'J o /
 /•s(°+) f

 = / /•s(°+) / f dl dr
 Jo JHn(o,v(T))

 rs(o+)
 > p I v(r)dr

 Jo
 ,h

 = p g(t)dt = pt.
 JO

 This proves Lemma 2, so we move on to the proof of the theorem.
 Without loss of generality, we may assume that F C (0,1) and that

 (0, 1 )'F has an infinite number of components denoted by In = ( an , bn), n 6
 N.

 '

 For each n, let cn = (an +bn)/2 and choose an en E (0, |Jn|4-n). In each
 In choose fn E C°° such that supp(/n) = In, ffl(an) = fļk'bn) = 0 for all
 k > 0, fn is convex upward on (an,cn - en ) and (cn + £„, bn), /„ is convex
 downward on (cn - £„,cn + sn) and

 SUP ll/^lloo < 1 /n. (2)
 0 <fc<n

 Define

 f(x ) = S fn{x). (3)
 n> 1

 Using (2), (3) and the disjointness of the In we see that /'fc' converges
 uniformly for all k > 0. This implies that / G C°° . It is also clear that
 supp(/) = Fc.

 To show that / is density continuous, we note Theorem 1 implies / is
 density continuous on each In, right density continuous at each an and left
 density continuous at each bn.

 Choose any x 6 F ' {an : n > 0}, let p G (0, 1) and let H be a density
 neighborhood of 0. There exists an ho > 0 such that whenever 0 < h < ho,
 then I H fi (0,/i)| > hp. From the choice of x, there is a 6 > 0 such that
 whenever n 6 S = {n : In fi (x, x + 6) ^ 0}, then ||/n||oo < ho-
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 From Lemma 2 it is clear that for all n G S,

 |/-1(tf)n((an,cn-£n)U(cn+£nA))| > /)|((an,cn-£n)U(c„+£n,6n))|. (4)

 Lemma 1 and the choice of en shows that

 d ^ (J (cn £n, Cn £n)) = 0* (^)
 Since F C /-1(íř), we see from (4) and (5) that

 d+(f~1(H),x)>p.

 The arbitrarity of p and x shows that / is right density continuous every-
 where. A similar argument establishes left density continuity.

 The proof is the theorem is finished. Note that a part of the above proof
 can be also used to show the following corollary.

 Corollary 1 Let F be a closed subset of R. Then the function f(x) =
 dist(x,F ) is density continuous.

 Theorem 3 Let F be a closed subset of R which is of measure zero. There
 exists a density continuous function f such that supp(/) = F and f is not
 approximately differentiable at any point of F, while being differentiable
 elsewhere.

 Proof. If the complement of F has finitely many components then F
 is finite and the result is trivial. Therefore, without loss of generality, we
 may assume that F (I (0, 1) and that (0, 1) ' F has an infinite number of
 components, denoted by In = (an, bn), n G N.

 Let F' be the set of all accumulation points of F. We also define

 G = (0,1)'F= UKA),
 n€N

 Cn = (@n ~t~ ^n)/2, Tl Ç N,

 = Cn (Cn ®n)/2, Tl G N,

 K = °n + ( bn - Cn)/ 2, n G N,
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 G' = U «X),
 ne N

 and

 C = {cn : n G N}.

 Note that every point of F is a density point of G, and

 2(G',x)>i

 for every x G F.

 Put g(x ) = 0, if x G F. To define g on G we will proceed by induction.
 Let mo = 0. The induction step is as follows. For i G N, let V¿ be

 a finite class of closed intervals, not necessarily disjoint, of positive length
 not exceeding i~ 2 such that

 771 1

 *"cUViC[0,l]'U(önA).
 71=1

 In addition to the above we will also require that for every J G V¡, n G N
 either J D ( an,bn ) = 0 or (an, bn) C J ■

 As F is of measure zero, we can find mt+1 > m, such that for every
 J e Vi

 ™»+l i

 Jn (J(OnA) >5|J|. ^ (6) n-1 ^

 Inequality (6) implies that

 77l, + i -, 771, + 1

 Jn U «X) = ; Jn y (a„K)
 n=ml+l n=mt+l

 i 1 ļ

 = J Jn U (o» A) > (7)
 71=1

 for every J G V¿.

 For n = m¡ + 1, . . . , mt+' define g(cn) = i~l , and let g be linear in the
 corresponding intervals [an,cn], [cn, bn]. This completes the definition of g.

 We will show now that g is not approximately differentiate at any point
 of F.
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 If X G F ' F' then a: is an isolated point of F and as such equals an = bm
 for some n, m G N. Clearly the right-hand derivative of g at x is positive,
 while the left-hand derivative is negative, so that g is not approximately
 differentiable at x.

 If a: G F ', then for every ! 6 N there exists a J G V, such that x G J.
 For every z e J H LC+iK, KJ

 g(z)-g(x) _ g(z) > 'i~^_ 1 .
 z - x 'z - x' ~ i~2 2

 This, combined with (7) implies that g is not approximately differentiable
 at x.

 An argument analogous to the one of Theorem 2 shows that g is density
 continuous. However, it is not differentiable at any of the points c„, n G N.
 We will modify g to obtain a function possessing all the desired properties.

 Choose a sequence of intervals Kn centered at cn, such that

 'Kn'/(bn-an) <2~n

 and modify g on each Kn to be differentiable on ( an,bn ) and convex down-
 ward on Kn. In light of Theorem 1 and Lemma 1, this will not change its
 density continuity. Call the modified function /. Since the modification
 took place on a set of density 0 at every point of F, f has all the desired
 properties.

 3 A nowhere approximately differentiable
 continuous density continuous function

 Theorem 4 There exists a continuous, density continuous function which
 is nowhere approximately differentiable.

 Proof. Let I = [0, 1]. Malý [5] constructs a density continuous function
 /:/-»•/ such that there exists a set A of measure zero with 'f(A)' = 1.
 The function f is actually the x-coordinate of a Peano area-filling curve.
 We will recall Maly's construction and show that the function / is nowhere
 approximately differentiable.
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 First, let g: [0, 9] -* [0, 3] be defined as follows: #(0) = 0, g( 1) = 1, 5(2) =
 0,9(3) = 1,0(4) = 2,9(5) = 1,5(6) = 2,5(7) = 3,5(8) = 2,5(9) = 3, and
 let 5 be linear in each interval of the form [¿, i + 1], where 0 < i < 8. Define

 /.(*) = 59 fa) ■

 For every n G N, k G N, 0 < k < 9n, 0 < t < 9~n let

 fn+1 (9^ + ť) = fn (9^) + zg (r+lt) (fn ) - Z» (9^)) •
 Malý [5] shows that the sequence {fn}ne N converges uniformly to a contin-
 uous, density continuous function /:/-►/.

 It remains to show that / is approximately differentiate nowhere.
 To do this, we note the following facts, which axe obvious from the

 construction.

 (a) fn is linear on each interval of the form [j9~n, (j + l)9_n].

 (b) /n([j9~n,(j + l)9"n]) = [k3~n,(k + l)3"n] for all j with 0 < j < 9n
 and some k with 0 < k < 3n.

 Choose X G [0,1] and n G N. There is a j, 0 < j < 9n, such that
 X G J = [j9~n,(j + l)9-n]. Let f(x) G [a,ß' = [A:3-n,(A;+ l)3-n]. Assume
 that fn is increasing on J and f(x) < |(ct + /?) (the other cases are handled
 similarly). Consider the interval

 K= [(¿ + Í)8-",0' + 1)9"" •
 If y G K then

 /(y) G [(fc + 1) 3-, (k + 1)3-'
 and

 m - /w > (* + 1) 3~" - (* + 0 3'" = 12H = v.
 y - x ~ (j + 1) 9_n - j9~n 9_n 6

 This implies

 9" Le(x,x + 9-°):M^>.M >1.
 { y-x 6 J 3
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 In general, for the above, and other cases of the behavior of / on J,

 9» |{ļ, 6 (* - 9"», » + 9-) : I f(l)| > |3"}| > ¿
 for all n. It follows from that / is not approximately differentiable at x.

 The authors would like to express their gratitude for the valuable com-
 ments of the anonymous referees.
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