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 THE SEMI-BOREL CLASSIFICATION OF THE EXTREME

 PATH DERIVATIVES

 ABSTRACT . The goal of this paper is to investigate of the

 seni-Borei and Baire classification of the multifunction of

 all path derived numbers of a semi-Borel and Baire function

 of the class cL . Consequently the classification of the

 extreme path derivatives is given. The results hold in the

 setting of ordinary * qualitative and approximate path

 differentiation* and the proofs are based on a classifica-

 tion of the collection of paths which is considered as a

 multifunction of the semi-Borel class có .

 1 .INTRODUCTION. In recent years various generalizations

 of the notion of the derivative have been studied. A devel-

 opment of an approach to differentiation which includes

 a number of known generalized derivatives was introduced in

 the excellent paper C33. Namely a collection E = £E(x)sx€R}
 is a system of paths if each set E(x) has x as a point of

 accumulation. For such a system E the extreme E-der ivatives

 of f at a point x ares

 f*(x> = lim sup_, (f <x> -f (y> > / <x-y>
 E y- »x»yeE(x)

 f'<x> = lim inf _ . Cf <x)-f (y))/<x-y) .
 -E y- »x»y€E _ (x) .

 A number of familiar derivatives (for example ordinary»

 approximate» preponderant» congruent» qualitative» one-sided
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 derivatives) can be expressed as path derivatives along a

 system of paths of an appropriate types C33.

 The behavior of a path derivative is very closely linked

 to the geometry of the system E as can be seen from paper

 C33 where many proofs are based on a system of paths satis-

 fying some of the intersection conditions that provide infor-

 mation related to the "thickness" of the paths. For example»

 for a system of paths E satisfying the external intersection

 condition» any E-derivative is in Baire class 1 C3»Corollary

 6.33. But there are cases» such as in the study of extreme

 approximate derivatives» where the path system of differ-

 entiation is not convenient. Namely» if f' is the ap-
 ap

 proximate upper derivative of a function f» then there is a

 system of paths E such that f* = f' . But nothing can be
 ap E

 said about intersection conditions for E . A similar situ-

 ation arises in the setting of qualitative extreme deriva-

 tives. Oving to these facts» the idea of path differen-

 tiation will be generalized in our paper by Definition 2.1.

 This generalization was motivated by a very useful notion

 involving the concept of systems of sets (called simple

 systems) associated with each point C9D»but the localness of

 the systems of sets is not convenient for classifying gen-

 eralized derivatives. Definition 2.1 allows considerable

 flexibility for the systems of sets as well as the system of

 paths.

 Another motivation for our concept came from paper C13 by

 Alikhani-Koopaei . His method of considering E as a multi-

 function seems to be a convenient tool for investigating

 various problems connected with path derivatives. The main

 result of CID says that the extreme path derivatives of a
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 continuous function relative to a continuous system of paths

 are in Baire class 2. One of the Major goals of the present

 paper is to replace continuity by a generalized notion of

 continuity of E (see Theorems 3.9» 3.10 below) as well as

 some weaker assumptions on the graph of E (Theorems 3-3?

 3.9» 4.4» 4.7» Corollaries 3.4» 3.6» 3.7» 4.5» 4.6).

 Another aim is to study measurability of the extreme path

 derivatives even further and to investigate the Lebesgue and

 Baire measurabil ity as well as the semi-Borel classification
 of the multifunction of all path derived numbers. The well-

 known results of Professor HiWk (CM.C73, seo also C21.CM,
 tea) concern only the se.i-Borel classification of Pini and

 approxi.ate unilateral extre.e derivatives.

 The paper I« divided into five sections. In § 2 «e
 introduce a generalized path differentiation of functions
 and the classification of derivation syste.s is given. The
 ..in le..a of 52 has a purel* topological character and its
 consequences for ordinar«, qualitative and approxi.ate
 differentiation dre given in «3,4. In the final section we
 deal with the properties of E-pr imitives.

 2. Basic def initionsi»_notation_and_prel iminary_results

 As was «entioned in $ 1, the concept of path differen-
 tiation is not effective in the setting of so.e generalized
 derivatives. In order to obtain a convenient toll for inves-
 tigating the se.i-Borel classification of the «ultlfunction
 of all path derived numbers» we introduce the following gen-
 eralized idea of differentiation which unites the notion of
 path system and the concept of system of sets.
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 pEFINXTI0N_2_- 1 (see also C51) . Let (R»(M,(R*> V* > be the
 real line with the ordinary topology and the extended real

 line with the topology of the two-point compactif ication of

 R» respectively. Let 3" be a topology on R. A quadruple t -

 (R»T»E»P) is called a derivation system (briefly DS) where E
 R R

 is a multif unction from R into 2 R r 0 ^ É* C 2 R * 0 £ íř .

 DEFINITI0N2.2. Let ¡r = (R»r»E»ř> be a DS and let f:R- »R
 *

 be a function. A point zeR is called an ^-derived number
 *

 of f at point xeR if» for any 6 € Í? with zeG and for any

 U € 3" with xeUf there exists a set A 6 if such that ACUoE(x>'

 •fx} and (f (x> -f (y) ) / (x-y) €G whenever y € A'. The set of all

 ¿'-derived numbers of f at a point x will be denoted by
 R*

 D(frřfX>. Define D. sR - >2 by D .(x) = D(f rtrx). If
 f r F ire

 D(f»??x> 0» then the extreme !f -derivatives of f at the

 point x ares

 fĻ (x) = sup D(f»í%x) (the upper extreme l' -der ivative) *

 f ' (x) = inf D(fr?rx) (the lower extreme ř-der ivative) .

 If D(f is a one point setr then that point is called

 the ř -derivative of f at x and it is denoted by f^ (x> . Note
 that D(f f^tx) is ť?*- closed.

 We introduce a classification of derivation systems

 within which various generalized derivatives can be ex-

 pressed.

 5§EIŅIII9£L?*5- A derivation system Žf = (R»T",E»ř) will be
 said to be

 -ordinary DS if T- V and if = 2R'{0}?

 -essential DS if if = {asa is of the T"-second category^?
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 -qualitative DS if T - U and {AïA is of the (^-second

 category] 5

 -approximate DS if 3" « S5 where S5 is the density topology

 and 2R'{0J ?
 -congruent DS if E(x) B E(Q) + x for all x é R»

 -Baire DS if E(x)'{x] is of the T-second category at x and
 E (x) has the T-Baire property for all x € R»

 -left (right)-sided DS if E(x> C (-» »xl (E(x)CCx»^)) for
 all x è R?

 -unilateral DS if t is left or right-sided.

 Ue shall also classify the extreme ? -der ivatives and f-
 derivatives according to the definitions above. E.g.» f¿» is
 called the ordinary (qualitative* approximate...) upper
 extreme fr -derivative of f if t is an ordinary (qualitative»

 approximate...) DS.
 -+ + -- -

 The approximate extreme derivatives fap» £ap» fQp' Lap
 - + *♦* - ,

 (qualitative extreme derivatives f » fq» fq» £q> are Just ,

 the approximate (qualitative) extreme P -der ivatives» where

 E(x) = Cx » ) » E (x) = (-oo»x3 respectively. The Dini deriva-

 tives D+f» D+f » D~f» D f correspond to the ordinary extreme

 ř-der ivatives where E (x) =Cx» ) » E (x) = (-<*> »x3 respectively.

 The following notation and some facts about multifunc-
 tions will be needed below.

 The set of all positive integers is denoted by N. If a =
 ±00 and if r e R» let a±r « a. Let f*R >R be a function»
 Psr - > 2^ be a multifunction» f be a topology on R» UCRxR»
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 T C R» n e N» 0 = fr C 2R» 0 Ļ % .

 We set:

 fo<(x»y>) = (f <x> -f <y) ) / <x-y) * (xry) e RxR* x f y.

 F~<T) = {x € R: F(x)OT f 0}.

 F+(T) = {x € R: R (x) C t}.

 6r(F) = { (xty) € RxRs y e F (x) j (graph of F).

 P(F) = {x€Rs xéF(x)] (set of fixed points of F).
 -1 *

 A(F»f»n»a»b> = Gr(F)Of ( (a-l/n »b+1/n) ) where arb € R » a<b.
 o

 % (T) = {xéR: for all lie T with xíU> there is a set V4 É?

 such that V CUriT' |x]j.

 Ue define the multifonctions F+» F_» F^» í?,j.(F) :R - >2 as

 follows:

 F+(x) = F(x)0 Cx» oo ) t F_(x) = F (x) O (-co »xD »

 F (x) =U = {yeR: (x»y)eu}» J £,<F> <x> = £> (F(x>> for all U x J T T

 X 6 R.

 Note that F (T) = R'F+ (R'T) and if a single valued func-
 tion fsR- >R is given» then under the natural interpreta-

 + - -1
 tion of f (x) as a one point set we have f (T)=f (T>=f (T) .

 Ue state as a lenna the «tain result of this section which

 is the essence of §§ 3»4.

 LEMMA 2.4. Let (Rf^EfP) be a DS in which É? has the

 following property: If {A »...»A ]• is a finite collection of 1 V'

 subsets of R such that A £ ť r then A £ ť far some n €
 n = l n n
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 {ir . . . rk} . If fsR - »Rr a?b € R r a<br then

 D" f »ř (Carbi) = n=l H r<?n.{F±,r T A(E»f r f »ř n=l T A(E»f r rn rarb)

 PROOF. Let xeR be an arbitrary point. Then ^({y eE(x)'

 {x}s (f (x)-f (y) ) / (x-y) € (a-l/n» b+l/n>j ) = ťf^ífys (xry) €

 f-1(a-l/nrb+l/n>)n6r(E>]) = íf <(f _1 ( <a-l/n»b+l/n> ) O
 o J r o

 Gr (E)) > = if (A(Erf mrarb) ) = ř_(F T /r_ „ v(x) ) . It is X T X T A (Erf /r_ „ m ra? b)

 clear that if ^ (x> O Carbi # 0» then for any n éN we have:

 X € řr< { y e E (x) '{xj s fQ((x»y>) € (a-l/nrb+l/n)})
 Íf<»-(F ~ (x) ) .
 ~ A(Erfmrarb)

 co

 Let xe O P<fr_ T <FA,„ „ ^>>- Suppose D„ . (x> O Carbi = n=l T A(Erfmrarb) „ f r ļf .

 That Means for any z € Carbi there are 6(z) € $ t U^íxJe T

 with z € G(z) and xcU^(x)» such that the set {y e E(x)'{x}:
 f ((xry)) 6 G(z)}nu (x) does not contain any set from if
 o z

 * r
 Since Carbi is (y -compact» the open covering {G(z):zć

 Carbi} of Carbi has a finit subcovering {G(z^) r . . . rG(z^)J .
 Let U. = U (x> and G. « G(z.) for i=lr...»k. Put U(x)=U. H
 i z. i i x

 i

 ...OU. Then Ss= Ą (fy Ł € E(x)'{xļ: 1 f ( (xry) ) € G Pt U (x) ) k i=l Ł 1 o xJ

 does not contain any set fro« ť . Since G„r...rG covers
 In

 Carblrthere is an neN such that (a-l/n rb+l/n) C G. U ...uG, • 1 k

 Then S= {yeE(x)'{x]s f ( (xry) ) € G u . . . U G } C' U (x) D{ y é O 1 K

 E(x)'{xî Ł -> s f ((xry)) € (a-l/nrb+l/n)] H U(x> =s S . That Ł -> o o

 «eans S does not contain any set fron £ . Hence x 4- S )
 o J o
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 and we obtain a contradiction to the assumption that x
 belongs to

 oo

 n=l H, P< É? T (F _ . >). n=l T A(E»f _ ?n»a>b) .

 In connection with Lentia 2.4 a natural question arises in

 this setting: what information about Ft T and ff implies that

 P(tf^(F)> is a set of the Borei class oL. (Lebesque measurable)?
 For certain special cases this problem will be solved in the

 next two sections.

 This section is concluded with two trivial lemmas which

 will be needed below.

 LEMMA_2.5. Let fsR - > R be a function. For a£R let

 { (x»y) s f (x) -ax>f <y) -ay } »

 T = f<x»y)s f (x)-ax<f <y)-ay I .
 a J

 Then

 <a) = Uq { x: f (x) -ax>r} x{y s f(y)-ay<rj r
 (b> T = LJ {xs f (x>-ax<r| xfys f(y)-ay>rj

 a r€Q

 where Q = {rs r is a rational number ] .

 p
 LEMMA 2.6. Let fsR- ? R» E»R- >2 . For any atb é R» a<b» we

 have

 (a) f"1 ( (a» co ) ) O Gr (E ) = S r>6r<E >»
 o a

 (b) f_1((-eo»a))nGr (E ) = T OGrŒ >?
 o a

 (c) f-1(<a»oo))nGr(E ) » T HGrtE )»
 o + Q *

 (d) f"1 ( (-oo »a) ) r' Gr (E ) = S H Gr (E > »
 o + a ▼

 (e) f_1C(a»b))nGr(E ) - S OT.OGrŒ )?
 o - ao "
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 <f> f * < (o»b> ) OGr (E ) - S^rvT 06r(E ) o + b a +

 where S f T are as in Lemma 2.5.
 a a

 The trivial proofs are omitted.

 3. The class if ication_of_Df ^
 for the ordinary and_qual itative_der ivation_systems

 In this section we will investigate the semi-Borel

 and Baire classification and Borei» Lebesgue and Baire

 measurabil ity of the multifunction of all ordinary and

 qualitative l' -der i ved numbers.

 DEFINITION 3.1. Let & C 2R» (L f 0- A multifunction

 p.R_».2R is lower (upper) semi- (L -measurable (briefly F € CL

 (F e <ł+>> if F+<<a, °o liii (F+<t-~»a)>e 0. ) for oil oí R.

 tet % denote the fo.ila of oll «et. of the Borei odditive

 clos. oC . A .ultif unction F:R-*2R i» o lower (upper) se.i-

 Borel Multifunction of clo.s * i if F e flļ (F fi * • f

 o Boire Multifunction of clos, et- » ifFÊÛfc.^Ûfc-^i

 Borei (Lebe.gue* Boire) «eosuroble lf F (6)« fir <F ^

 F ~<G>« « > for oil 0 e à where ' X ' 0 is the fo"lly °f

 „11 Borei. Lebe.gue» Boire .et. re.pectively. B« tClUO.) we

 denote the ..olle.t <r-odditive ( o-.ultiplicative> fo.il«

 generated by 0. . tet ctt = { A C R! R'ft 6 û } .

 In order to achieve our goal. we .u.t investigate the
 structure of the «et of fixed point, of £r(FA(E,f ,n.a.b>
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 (see Lemma 2.4) for T - C • The following lemma shows that

 this is possible when A(E»f»n»a»b) is of suitable type.

 Lemma 3^.2. Let Cb c 2 be a (r-additive and multiplicative

 family? t ?CŪ ? ScRxR» S e <T( (L k2R) . Let 0 £ € C 2R» (f Ą- 0
 oo

 have the following property: if ^ A € c? » then there is an
 n = l n

 n such that A € if . Then P< ťf ,<F_>>e ¿U .
 n (/ S

 PROOF. Let A » [ u <x» y) : x+l/n >y >x-l/n} . Then x£P< £<fl(F_> )

 if and only if for all n £ N there is A(n)€ Žř such that

 A(n>CS o (x-l/n r x+l/n) ' {x] = F <x) O <x-l/n t x+l/n ) ' {x} =
 X O

 F0 . <x)'fx] L J . snA . L J
 n

 If T C RxRf define ť<FT> = {xeRs there is A€ £ r Ac
 Ì 0°

 F <x)'{xU. ^ Ì That means P( ^,(F_>) s = n~l Q Ç <F ft ) . We shall i ^ v s n~l o ft
 n

 show that ) € Ci . It is easy to verify that for any
 n

 sequence It I °° „ t T C RxR» the equality t F ,°o, _ ) = >- nJ n = l „ n kJ _ T
 oo n = l n
 ^ £ (F_ ) holds. Since C7c d and d is a <r-additive and
 n = l T

 n

 Multiplicative family r the set S OA can be expressed as the
 n

 union of a sequence of sets R xS where R € Cu » SiC2R. That
 n n n n

 means É? <Fe A > = Ö ' (F . .). Since ř <F . .) = fxćR: L SnA A i=l i . x i . „i L n R xS R xS
 n n n n

 there is A e if » ACF . . <x)'{x} L « S1'{x]i L JJ » £<F . . )=Rl if _ i . _ i . L n L JJ _i . „i . n _ R xS _ R xS
 n n n n

 x e R1 and there is A€ {? such that ACSl'fx} J and Ž? <F . .) = n n J _ i . _i
 _ R xS

 0 otherwise. Hence )č CL • n n
 n
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 THEOREM 3.3. Let CL be a <r-additive and Multiplicative

 family» & c Cb r fsR - »R. Let t- (R»^»E»fr) be a DS in which

 Gr(E> e r(dx2 ) and É? has the property of Lenna 3.2.

 (a) If f £ OL (f € (L > and t is left-sided» then

 (D. ) and fJ € c/SCL <f' €c >6(L >-
 f Ff C ~č

 (b) If ffeû, (f € CL ) and t is right-sided» then €

 •ł* y *** y *ł*

 (Df p € c/SCL •ł* > «nd f^CcíCL y ifp y €. c/SQ, >•

 + - - r *
 <c) If f € Û, O ¿6 »then D„ fa<Ca»b3)e 0<L r for any a»b e R »a<b.

 f »?

 Hence D £ cfûT ^ oSQ, and fJ £oSd » f* € .
 f »ř f -r

 PROOF, (a) Since ^ is left-sided* GrŒÎ^GrŒ^) €(T(ßx2 ).

 Let f e öT(f 6 <Z,+ ) . By Lemma 2.5» So_ļ/nr'Gr <E_> € <T<& x2 ')

 (T OGr(E )e<r(Äx2R>). By Lemma 2.6(a) (Lemma 2.6(b))»
 a+l/n

 A(E»f »n»a» » ) ■ f ( (a-l/n » oo ) ) (~' Gr (E ) = sa_1/nrNGr <E-> é

 0-(ax2R> (A(E»f »n»-w>»a) = f ( (- oo »a+l/n> ) O Gr (E_)

 T OGrtE ) 6 r<ax2R)) for any a e R. By Lemmas 3.2 and
 a+l/n - +

 2.4. I>: „<Ca,~:i>í ÍU<D~ 1 fe <C-~ .»Díí«.). Hence Df?ł « *f<2. ffP 1 fe

 (D- F»F „£ c-faT) . Since c ™ F»F c _ +

 (f ,_1 (C-OO »a3> » D~ (C-eo »al) € <T& ) for all a e R» fjj, €
 f»)f

 (f ^ e c/<Tfl- * •

 (b) Since if is right-sided » Gr (E) = Gr (E+) e <r<Q/x 2 ). Let

 f € ûT(f £ a"). By Lemma 2.5» *a+ļ/n r»Gr (E+) G <r<Q,x2 )
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 (T 4, O Gr (E ) e C(Élx 2R)>. By Lemma 2.6(d) (Lemma 2.6(c))» a-l/n 4, +

 A(E»f ?n»-oo ,a> = f~l ( (- oo,a+l/n> ) OGr (E ) ■ S , , nGr(E >€ o + a+l/n , , +

 <r((Łx 2R> (A(E?f ?n?a? «>*) = f_1((o-l/n»«J))rvGr<E ) = T Ci
 o + a-l/n

 Gr(E+) € G"(Û/h2R)) for all a e R. By Letanías 3.2 and 2.4?

 D (C-«> ?aD> e S'a (D~ (Ca? oo 3) fe Sd ) hence D. <? f* € c/fćL
 ft? f tf f ?r -r

 (D. f f/ e o<fa ) .
 f tf t

 (c) Let N~ = {(x?y)s x>y} r N+ ■ { (x?y> : x<y } . Since

 N~f N+ e (rid h 2R>» Gr <E_) = Gr(E)^N~ e <r(&x2R)? Gr (E+) -

 Gr <E) ON+£ CT(ax2R). f GdnCi. Hence S^i/n'^-l/n^b+l/n'

 T € nßx 2R> for all a?b € R» ní N by Lemma 2.5.
 b+l/n

 There are four cases. <1> a?b € R? a<b. (2) a 8 - w » bí R.

 (3) a 6 R? b =oo . (4) a = -°0*b=00-

 Case (1) .By Lemma 2.6 (e)?(f> A(E?f?n?a?b) = (fQ ((a-l/n?

 b+l/n) ) O Gr <E_> > utf"1 < <a-l/nfb+l/n) ) OGr (E+) ) = <sa_1/n ^

 T C' Gr (E )) W (S OT OGr(E + )) £ <T(&x2R). By b+l/n - b+l/n a-l/n +

 Lemmas 3.2 and 2.4? D^^(Ca?b3)€ $(L .

 Case (2). By Lemma 2.6 (b) ? (d) ? A (E?f ?n ?- oo »b)

 (f_1((-oo , b+l/n)) n Gr(E )) U (f"1 < (-°° ?b+l/n) > OGríE)) ■
 o + o

 (S nGr(E )) U <T. . . O Gr <E > ) € <T( ft x2R) . By Lemmas 3.2
 b+l/n + b+l/n . .

 and 2.4? D~ (C-oo ,bl) € cT# .
 f tt

 Case (3). By Lemma 2.6 (c) ? (a) ? A (E?f ?n ?a? oo ) -

 (f _1 < (a-l/n ? oo > > n Gr (E ) > KJ (f ~4 < (a-l/n , oo ) > OGr (E ) ) = <Ta_1/n n
 o
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 „ . i lurvb )) € (TX ĆLx2") . By Lemmas 3.2 and
 + a-l/n „ .

 2.4» D 7 .(Ca» °0) Ê Sd .
 f »F

 fļ
 Case (4). A (E»f »n »- oo r «> ) = 6r (E) € <r( & x2 ) and by Lemmas

 3.2 and 2.4» D~ , (C- «> » 003) e SCb .
 f fř

 Now we obtain the following consequence of Theorem 3.3

 for the semi-Borel classification of •

 COROLLARY 3.4. Let t be an ordinary or qualitative DS in
 p

 which Gr (E) € tíQ^jk 2 >-

 (a) If f is a lower (upper) semi-Borel function of class
 ou and t is left-sided» then the upper (lower) extreme ?-de-
 rivative of f is an upper (lower) semi-Borel function of

 class oC+1 and Df^ is an upper (lower) semi-Borel multi-
 function of class <*,+1.

 (b) If f is a lower (upper) semi-Borel function of class
 and t is r ight-sided»then the lower (upper) extreme ^-de-

 rivative of f is a lower (upper) semi-Borel function of

 class dL + 1 and Df ^ is a lower (upper) semi-Borel multi-
 function of class ot+1.

 (c) If f is a Borei function of class d* » then the upper
 (lower) extreme t -derivative of f is an upper (lower) semi-

 Borel function of class c^+l and *s a Baire multi-

 function of class cL+1.
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 REHARK_3.5. The results of Theorem 3.3. and Corollary 3.4

 can be remembered very easily. If the sing + <-) corresponds

 to a right (left) -sided DSr then the assertions of Theorem

 3.3 and Corollary 3.4 can be read out of the following tables

 by the rules concerning the Multiplication of negative and

 positive numbers.

 f i *• i vin i f i y i Df ~
 a* + osci a* + a*

 __________ *

 qT - oSa* d' - ci

 (L* - oSa oż * - CL „

 cl + oSCL a * + a _ * <¿+i _

 For examples if f e CL and ¥ is left-sided» then D„ .€ o6CL
 f tt

 ('+ times - = see line 3).

 For the classification of the extreme ^-derivatives we

 have another rule. If the sign + (-> corresponds to the up-

 per (lower) extreme ^-derivative* then we can read out of

 the following tables: If f eft and g is right-sided» then

 the lower extreme ^-derivative is lower semi- oSCL -measurable

 (" - times + = - ~ see line 4).

 f ř ťf f ř *>' l't
 CL* + 0<fa+ + CL*

 d~ - *s<l aZ - CL

 CL* - oS <L~ CLÍ - fl>~+ļ
 CL + o '60, + ^<¿+1
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 Our next consequence of Theorem 3.3 deals with

 measurabil ity of D. r_ »fj *f' .
 f »? r_ r -ft

 COROLLARY 3.6. Let fr be on ordinary or qualitative DS in
 R RR

 which Gr(E)€<r(®rx 2 )» r(¿x 2 )» <r(fiļ< 2 > respectively.

 If f is Borei» Lebesgue» Baire Measurable respectively» then

 f' i f ' i D are Borei» Lebesgue» Baire Measurable re-
 F -fr f »fr

 spectively .

 PROOF. By Theorei» 3.3(c>» D . (Ca»b3)€<Br » ¡C » <8 » re-
 ^ oo

 spectively» for all a»b € R » a<b. Since Df A^) =

 öD" (A ) for all A CR*» D~ f »fr JG>€ ßt , » ß » respect- n=l f»íř n n f »fr

 ively» for all G € (O .

 The following corollary improves Professor Misik's re-
 sults C63.

 (a) If f is a lower seni-Borei function of class cC » then
 f f- (B f » f+) are upper (lower) semi-Borei functions

 q +
 of class oL+l.

 <b) If f is an upper semi-Borel function of class o o »then

 D f , f" (D+f » f+> are lower (upper) semi-Borei functions
 - -q q

 of class cC+1.

 (c) If f is a Baire function of class ot » then D f» D f»
 f+f f" (B f» B f» f+» f"> ope upper (lower) semi-Borei func-
 q q + - -q -q

 tions of class oü+1.

 In th. r.Maind.r of this »«ction ue will recall .o.e re-
 ,„lt. conc.ming th. ordinar« DS «hich con b. found in C5Í.
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 As we will see the continuity of E assumed in CI] can be re-

 placed by setti continuity.

 PEFINITI0N 3J. IB- A Multifunction EsR- >2* is lower (upper)
 seni continuous if F (G>€ Í? (F+(G)e & ) for all Gei?.

 The proof of the following theoreMS can be found in C51.

 THE0REH3.9 (see Theorem 4.11 in C53) . Let t be an ordi-

 nary derivation systeM and let f be a Baire function of

 class one. If Gr (E> is an set and E(x) has x as a point

 of -accumulation* then D. ^ ^ ^ » f J r e » f ' f»Jf 2 2 r 2 -t 2

 Consequently» if E is a closed valued upper semi continu-

 ous Multifunction (that Means Gr (E) is closed)* then Theorem

 3.9 holds.

 JHE0REM_3j.l0 (see TheoreM 4.14 in C53) . Let £ be an ordi-
 nary DS and let f be a continuous function. If E is a lower

 seMi continuous Multifunction and E(x) has x as a point of

 0 -accuMulation* then ^ Où,* f f* € û.* , f^ e^.

 <see also Corollary 10 of C13) . Let t be a

 congruent and ordinary DS. If f is a continuous function»

 then fj € cļ t f ' €(f and D. £ ûT nû? •
 Fl -ř 1 f »Jf 1 1

 4. The classification of ^ anrf _ th e_e><tir erne

 forthę ttgproxiMate_deriyation_systems

 This section is devoted to the seMi-Borel classification

 and Lebesgue Measurabil ity of the Multifunction of all ap-
 - + + - ~

 proximate ř-derived numbers and f » f » f » f . First
 ap -ap ap -ap
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 of all we «ust solve the structure of the set of fixed

 points of certain Multif unctions for the density topology SD.

 This is solved by the following three lentias.

 LEHMA 4.1. Let CL C 2 be a P' -additive and Multiplicative

 J *
 fonii Mr ÚrR G CL t S 8 ^ A . xB . » A.6 il » B,£ • If SR - ► R is

 n=l iii . . i

 defined as fix) » A.ÍF <x>> ( A is Lebesgue Measure) r then
 b

 f~* < (ar oo 3) 6 Q, for all a e R.

 j'

 PROOF. Let 1=2 J » Iq = {i € Is A< J *
 k

 Ue shall show that {xs f <x)¿a} - ^ F*< Bk> . If x €
 a k

 then JÍFgíK) Ï - A«iV1VBi>K>- ^

 Hence io •- (»k« x € Aj £ Ia «nd h tF¡< V

 If ** Ul FS( B~€i V' the" ther<! 1S Ío(I" *UCh
 a k

 that F OOC^ Bk. ».nee A <F8<*» - f <*> * •■
 k o

 The following two equalities finish the proof-

 F+< B, k ) = R'F"(R' S B 61 B k >» 8 B,Éi B, k S B K 61 k k K

 F-(R' B(> = U ^ (A SB 0(R' ^ B ąi B k > f ^1- ■> S Bei B(> k m ^ m m B ąi k ■>
 k K

 LEHHft 4.2 Let. S - g VV V0" 'V * ' * " "
 Loa 4.1). If f <«> = i(Fs<">>' then f'1 < <*f oo e & for oli

 a e R-
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 PROOF- Let f <x> = '<F„ (x> ) t xeR»j ■ lr2r... where S ■
 J J ^
 .Y, = A . xB . . Evidently f F_ <x> C F_ (x) and F_(x) = y.F_ <K> 1 = 1 11 S 5 . 5 JS1 5

 j j

 for all x € R. Hence f (x>= A(F <x)>=lim }(F„ (x))=lim f (x)
 S J-*oo S j-*#* j

 3

 for all x e R. Since £f J J J * is a nondecreasing sequence» J J *

 f_1<(a»ooD) « Ö, {x! c f (x) >a } J e (X> . J=1 c J J

 LEMMA 4.3. Let S « Ą A.xB.» A £d ? B » (?c d < d is

 as in Lemma 4.1). If Í? * 2^'{0}» then P( £ <rSã> •

 PROOF. Let Cn = {(x»y)s x-l/n(y<x+l/n} . Evidently C^nS £

 <r( & x £> • Since x € P ( &gj(F )> if and only if

 lin sup n/2 ( A (F (x) O (x-l/n » x+l/n) ) ) =
 n - ♦ oo S

 lim sup n/2Q(F_ _ (x)))>Of n - > oo Snc _
 n

 P( if (F )) = g~1((0»13> where gsR- >C0»1D is defined as
 SO S

 g (x) ■ lim sup n/2 0<F (x>)>. By Lemma 4.2r for any n eN
 n - > oo S OC

 n

 and a ć R we have {x: ^^^FSnC (x}))>tt]^" The equality
 n

 oo to oo -

 g'1««)»«) " - V. O U ÍK» m/2 (A (F <x> ) ) > 1/rj f inishes
 " r =1 n=l m=n n
 the proof .

 A motivation for this section came from paper Z71 where

 Professor Mišík showed that the upper (lower) unilateral
 (i.e. E (x) =Cx» oo ) r E(x) = (-«5»k3 respectively) approximate
 derivative of a function of Baire class d, is <* lower (upper)
 semi-Borel function of class <*,+2. The following main theorem
 of this section and its consequences show that E can have

 more general form.
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 THEOREM 4.4. Let CL be a <r -additive and Multiplicative

 family» (fcCLCX t fsR - »R and let ÍT be an approximate DS in

 which Gr (E) e (T( CL h !£) .

 (a) If f £ CL (f € d+ ) and Ž? is left-sided » then

 D ec 'S<rS(Č (D £c /StSCL ) and fL' ć o$r6(¿ (f *€.c/S<rSCb >.
 f»ř f rfr F -t

 <b) If f € CL <f é ûlT > and ? is right-sided» then

 D € oSvSQj (D ^ c/£(rGQ, ) and f * /S<r£Q* (f^ ® c<T (r6(L ) .
 f,? f »r -t

 (c) If féOTna"» then D~^<Ca»b3> € Ma for ail a.beR»
 a<bt and h.nc. ond f/ êc/írítf .
 f ' e ^<T<r<T CU .
 -r

 «• I r I Pfr^~ ''t
 O* + c/S (tSGL C/MCL

 q~ - c/Sr&CL c /S<rSCL

 (L - c/£<rSCL ^c/£<r£&^
 (£ + c /ScrSCL c/S<rSCü

 Considering Lemma 4.3 the proof is similar to that of
 Theorem 3.3.

 C0R0ĻĻARY_4.5. Let ? be an approximate DS in which Gr (E> €
 <r<£Łx£>. The semi-Borel classification of »f^ » can
 be read out of the following table
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 + ~+ J'

 * <*-+3 <t>+3

 &cb ~ ^<¿+3 ^aU-3

 &+ " 3 ______ ^«tł3
 ^ + ^oí+3 a'¿+3

 £9?9
 (a) If f e CU t then f ~ € (Č , f+ £ a .

 «t ap «6+3 -ap «t+3

 <b) If f € CU f then f" fíí . f+ €û,+ .
 to -ap «t+3 ap «t+3

 <c) (see Theorem 3 of C7D> If f €CL(^CŪ t then
 OÜ «6

 f+ 7 , f ~ € CL+ t f+ , f~ € oL~ . ap , 7 ap «t+3 -ap -ap «¿+3

 IHE0REM4.7. (for f~ see Theorem 3 of C73). Let ? be an
 approximate DS in which Gr (E) is Lebesgue measurable. If f

 is a Lebesgue measurable function? then Df ^ » f ļ t fļ are
 Lebesgue measurable.

 PROOF. Let A^ = {(x»y) s x-l/n<y<x+l/n| . By Lemmas 2.6 and
 *

 2.5» A (E»f »n »a» b) A is Lebesgue measurable for all a»b e R
 n

 a<b. Consider the functions

 f (x) = n/2 ( f (Fa _ A /f_ o (x) > ) m»n A O _ A(E»f A /f_ o rmra?b)
 n

 and g - lim sup f
 m n - > oo mm

 *

 where X is Lebesgue outer measure (mrnsl r2f 3» . . . ) . Evident-
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 ly g is Lebesgue Measurable. Since P< *6 A F1#_ _ ._»>> =
 • Sb A (Erf _ f Mf Orb)

 g *((0rl3)r ..)) is Lebesgue Measurable and m » A(ErfrMrarb)

 » £.

 by LeMMa 2.4» D. [_<Ca»b3)e £ for all arb €R r a<b. Hence
 f rfr

 D~ (G) e £ for all 6 € Q .
 f if

 5^ Itî®_P£0P®riie5_2£ & ~pr iMitives

 The results of the previous sections show that the prop-

 erties of the extreMe Ç -der i va ti ves depend on the structure

 of Gr(E). On the other handr as we shall see in this section?

 the properties of the ^-priMitives depend on the values of E.

 The following facts can be found in C53.

 DEFINIII0N_5J1 1 - A function fs<RrT>- >R is r-quasicontinu-
 ous at a point x e R if for any V € & r U e J' r f (x) e V r x e U

 there is a set He T r 0 £ H C U such that H C f * (V) . A
 function f is T'-quasicontinuous if it is T"-quasicontinuous

 at every x € R. A function f has the ÍT-Baire property if

 f * <G) has the T"-Baire property for any G € (9 .

 THEOREH 5.2 (see TheoreM 2.7 in U53) .Let ř = (RrTrErÉ?) be

 a DSr if = {ACRs A is of the T-second category and A has the

 3~-Baire property J .

 (a) If there is a T-dense set S such that for all x e S

 f has at least one finite ř-derived number at xr then f has

 the T-Baire property.

 (b) If for any x € R f has at least one finite ^-derived

 nuMber at xr then f is T-quas i continuous.
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 THEOREM

 Boire space having no isolated pointsr U c T . Let ^ be a

 Baire essential and unilateral DS. If f^(x)(c<> (f ^(x) >- 00 )
 except for a set of the T-first category? then f has the

 Baire property.

 p

 Let ^ = <R»3'E»2 'Í0}> be a unilateral and

 approximate DS in which E(x)€ ič for all x €R. If īĻ (x) < ®°

 (f^(x>>-eo) except for a set of Lebesgue «easure zero? then
 f is Lebesgue measurable.

 PROOF. Let A ={xs f¿(x)<<*>} (A = { x: f ļ(x) >-<*>} ) . Let
 rt= (R»S fEtf ř ) r fr = { A S £ (A) >0} F Eļ(x) = E(x> if x č Ar
 Eļ(x) = Ex f co ) if x ^ A and ? is right- sided* E^ (x) - i-oo »xD
 if xi A and t is left-sided. Since £ is a Baire unilateral

 and essential DS and D. fa(x) = D„ , (x> for all x € Ar f is
 f r f f r % ,

 Lebesgue measurable by Theorem 5.3.

 THEOREM

 Baire space having no isolated pointsr C? c T . Let ? be a

 unilateral and ordinary DS in which E(x) has the Í'-Baire

 property and E(x) is of the T-second category at x for all

 xsR.If f¿ (x) < 00 (f ^(x) >-®o > except for a set of the T*-second
 categoryr then f has the T^-Baire property.
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