Real Analysis Exchange Yol 15(1989-90)

Tomasz Natkaniec & Waldemar Orwat, Instytut Matematyki WSP, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland.

VARIATIONS ON PRODUCTS AND QUOTIENTS OF DARBOUX FUNCTIONS

Let us establish some of the terminology to be used . R I. denotes the real line and N denotes the set of natural numbers . If a, b < R, then (a, b) denotes the open interval with the end-points a,b. For ACR, we shall say that I is an open interval of A iff $I=(a,b)\cap A$ for some $a,b\in \mathbb{R}$. If B is a planar set, we shall denote its x - projection by dom B and its y - projection by rng B. If A, B are subsets of R then A B={a · b : a \in A, b \in B}, a B={a} · B and $A^{-1}=\{1 / a : a \in A \setminus \{0\}\}$. For ACR, aeR, and $f: A \rightarrow R$, we define the set [f(a] as {xeA : f(x) < a }. Analogously, we define the sets [f > a] and [f = a]. Let ACR be a c-dense set in itself (where c denotes the cardinality of the continuum) and let B be a subset of R. We say that $f: A \rightarrow B$ is an (A, B)-Darboux function iff f has the intermediate value property, i.e. $(f(x), f(y)) \cap B \subset f((x, y) \cap A)$ for each x, y A. Let $\mathcal{D}(A,B)$ denote the class of all (A,B)-Darboux functions. Let $\mathcal{D}^{\bullet}(A,B)$ denote the class of all functions $f: A \rightarrow B$ which take on every $y \in B$ in every non-empty interval I of A. Let $\mathcal{D}^{**}(A,B)$ denote the class of all functions $f: A \rightarrow B$ which take on every $y \in B$ c times in every interval of A. It is clear that $\mathcal{D}^{\#}(A,B)\subset \mathcal{D}^{\#}(A,B)\subset \mathcal{D}(A,B)$ for every bilaterally c-dense subset A of R and every subset B of R. For A=B=R, we shall denote the classes $\mathcal{D}(A,B)$, $\mathfrak{D}^{*}(A,B)$, and $\mathfrak{D}^{**}(A,B)$ by $\mathfrak{D}, \mathfrak{D}^{*}, \mathfrak{D}^{**}$ (see [3]).

A.M. Bruckner and J. Ceder proved the following theorem.

THEOREM 1.[3]. Let $f \in \mathcal{D}$ be constant on no subinterval of R and let M be a set of real numbers whose complement is dense. Then for each countable dense subset D of R\M there exists a function $d \in \mathcal{D}^*$ such that the range of f+d is D.

In the same way, we can prove the following result.

THEOREM 1^{π}. If AcR is bilaterally c-dense set in itself, D is a countable dense subset of R, and if feD(A,R) is constant on no interval of A, then there exists a function deD^{π}(A,R) such that for every interval I of A the range of (f+d) I is D.

THEOREM 2. Assume that D is a countable dense subset of R and OeD. Then for each fed there exists a function ded such that for each interval IcR we have:

- if f is not constant on I, then d(I)=R and $(f \cdot d)(I)=D$,

- if f I is constant, then d I is constant and $(f \cdot d)(I) \subset D$. P r o o f . Let $B=\{(x, y) : y=r/f(x) \text{ if } f(x)\neq 0 \text{ and } y=r \text{ if } f(x)=0, r \in D, x \in \mathbb{R} \}$. As in the proof of Theorem 1 ([3]), we shall define a function $d \in D$ such that $d \subset B$. (No distinction is made between a function and its graph).

Let us put $\mathcal{G}=\{I\subset R : I \text{ is a maximal open interval such that } f \mid I \text{ is constant}\}$. Observe that sets from \mathcal{G} are pairwise disjoint and hence the family \mathcal{G} is countable.

Let $\mathscr{G}=\{J_n : n\in\mathbb{N}\}$, $J_n=(a_n,b_n)$, $A_o=\{a_n,b_n : n\in\mathbb{N}\}$, $J=\bigcup \mathscr{G}$ and $A=\mathbb{R}\setminus J$. Notice that $A_o\subset A$ and $f(a_n)=f(b_n)$ for each n\in\mathbb{N}. Additionally, $f \mid A\in\mathcal{D}(A,\mathbb{R})$.

For xeR, let $V(x)=\{x\}\times R$ and $H(x)=A\times\{x\}$. For each xeR it is clear that $V(x)\cap B$ is dense in V(x) and it is easy to verify that $H(x)\cap B$ is dense in H(x). Indeed, it is clear for x=0. Assume that x=0 and I is an open interval of A. Then f|I is non-constant and, since feD, there exist y, zeI for which f(y)=f(z) and $f(y) \cdot f(z)>0$. We may assume that f(z)>f(y)>0. Because D is dense in R, we have

$$\bigcup_{r \in D} r (f(y), f(z))^{-1} = \bigcup_{r \in D} (r/f(z), r/f(y)) = R,$$

so there exists an reD such that xe(r/f(z), r/f(y)), i.e. r/xe(f(y), f(z)). Since f |A \in D(A, R), there exists a tel for which f(t)=r/x, i.e. x=r/f(t) and (t, x)e(I ×{x})∩B. For xeR let N(x) = [A × x (E \{0}) •(E \{0\})⁻¹] ∩ B, where

$$E = \bigcup_{n=1}^{\infty} \qquad D \cdot \ldots \cdot D$$

Observe that

(i) $N(O)=H(O)=A\times\{O\}$,

(ii) $\bigcup \{N(x) : x \in \mathbb{R} \} = B \cap (A \times \mathbb{R}),$

(iii) card(rng N(x))= ω_{α} for xeR\{0},

- (iv) dom N(x) is dense in A, for each $x \in \mathbb{R}$,
- (v) if $x \neq 0 \neq y$ and dom N(x) \cap dom N(y) $\neq 0$, then N(x) = N(y).

Now we can define the function d. First we define for each $x\neq 0$ a function d_x such that $d_x=d_y$ if N(x)=N(y), d_x is dense in any non-empty $H(y)\cap N(x)$, $a_n \in \text{dom } d_x$ iff $b_n \in \text{dom } d_x$, and $d_x(a_n)=d_x(b_n)$. To do this, let 0_n , n=0,1,2,... be an enumeration of all horizontal open intervals with rational ends which intersect N(x). Put $w_n \in O_n \cap N(x)$,

$$v_{o} = \begin{cases} w_{o} & \text{if dom } w_{o} \notin A_{o}, \\ (b_{k}, \text{ rng } w_{o}) & \text{if dom } w_{o} = a_{k}, \\ (a_{k}, \text{ rng } w_{o}) & \text{if dom } w_{o} = b_{k}. \end{cases}$$

and $w_n \in O_n \cap N(x) \setminus \bigcup_{i < n} (V(w_i) \cup V(v_i)),$

$$v_{n} = \begin{cases} w_{n} & \text{if dom } w_{n} \notin A_{0}, \\ (b_{k}, rng w_{n}) & \text{if dom } w_{n} = a_{k}, \\ (a_{k}, rng w_{n}) & \text{if dom } w_{n} = b_{k}. \end{cases}$$

Then $d_x = \{w_n, v_n : n \in \mathbb{N}\}$ has the desired properties.

Next let $d_{i,1}$, $d_{i,2}$ be a partition of d_i onto two sets, each dense in d_i and such that $a_n \in d_{i,i}$ iff $b_n \in d_i$ for neN, i=1,2. Then $d_{i,1}$ is dense in N(1), dom $d_{i,2}$ is dense in A and $d_n = \text{dom } d_{i,2} \times \{0\}$ is dense in N(0).

Now enumerate the countable family of uncountable sets of the form { (x,y) : $x \in I \setminus A_0$, y = r / f(x) and $f(x) \neq 0$ }, where $I = (a,b) \cap A$ for some rationals a,b and $r \in D \setminus \{0\}$, as $\{C_i\}$. As in [3], we pick a sequence of points $\{e_i\}$ such that: $e_i \in C_i \setminus Z_i$, where $Z_i = \bigcup \{N(x) :$ there exists $j \leq i$ with $e_i \in N(x) \} \cup N(1)$. This is possible because card (rng C_i)=c and card (rng Z_i)= ω_0 . Since $d_0 \subset (\text{dom N(1)})\times \{0\}$, dom $d_0 \cap \text{dom } e_i = \emptyset$. Let $e = \{e_i : i \in N\}$. Then card($e \cap d_x$) \le 1 for each $x \in \mathbb{R}, 0 \notin \text{rng } e$ and dom $e \cap A_0 = \emptyset$. Let $A_1 = A_0 \setminus \bigcup \{ \text{dom } d_2 : z \in \mathbb{R} \}$. Then $a_n \in A_1$ iff $b_n \in A_1$ for each n in N.

Now we define a function d on R as follows.

$$d(x) = \begin{cases} e(x) & \text{if } x \in \text{dom } e, \\ d_{z}(x) & \text{if } x \in \text{dom } d_{z} \setminus \text{dom } e, z \in \mathbb{R}, \\ 0 & \text{if } x \in A \setminus (\text{dom } e \cup \bigcup \{\text{dom } d_{z} : z \in \mathbb{R}\}), \\ d(a_{n}) = d(b_{n}) & \text{if } x \in J_{n}, n \in \mathbb{N}. \end{cases}$$

It is clear that dcB and therefore $(f \cdot d)(I)$ cD for every open interval I. If I is an open interval for which f | I is not constant and yeR, then I A is non-empty and $(I \times \{y\}) \cap d_y \setminus e$ is infinite. It follows that yed(I) and, consequently, d(I)=R. If reD {0}, then there exists xeI A such that e(x)=r/f(x), $f(x)\neq 0$ and hence $re(f \cdot d)(I)$. Thus D c $(f \cdot d)(I)$. Since $(I \times \{0\}) \cap d_p \neq 0$, $0 \in (f \cdot d)(I)$.

If f|I is constant, then $I \subset (a_n, b_n)$ for some neN. Then $d(x)=d(a_n)=d(b_n)$ for xeI. Finally, if $x, y \in \mathbb{R}$, $d(x)\neq d(y)$, then f is non-constant on (x, y) and the range of d on (x, y) is R. Thus $d \in \mathcal{D}$. This finishes the proof.

REMARKS. 1) If D satisfies all assumptions of Theorem 2 and feD is constant on no interval, then there exists a deD^* such that for any interval I of R the range of $(f \cdot d)|I$ is D. 2) In the same way as Theorem 2, we can generalize Theorem 1.

THEOREM 1^{}**. Assume that DCR is a countable dense set and $f \in D$. Then there exists a d $\in D$ such that for each interval ICR we have:

- if f is not constant on I then d(I)=R and (f+d)(I)=D,

- if f is constant on I then $d(I)=\{y\}$ for some $y\in D$.

THEOREM 3. Let D be a countable dense subset of R with $0 \in D$ and let $f \in D$ be constant on no interval. Then there exists a function $d\in D^{*}(R, (0, \infty))$ such that for every interval I we have:

- if $I \subset [f>0]$ then $(f/d)(I) = D \cap (0, \infty)$,
- if Ic [f(0] then $(f/d)(I) = D \cap (-\infty, 0)$,
- if f changes sign on I then (f/d)(I) = D.

Proof. Let us put $B = [f>0], C = [f<0], D^{\dagger} = D \cap (0, \omega),$ $D^{-} = D \cap (-\omega, 0), f_{1} = \ln(f|B) \text{ and } f_{2} = \ln(-f|C).$ By Theorem 1^{*}, there exists a function $d_{1} \in \mathcal{D}^{*}(B,R)$ such that $(f_{1} + d_{1})(I) = \ln D^{\dagger}$ for every interval I of B. Then $[\exp(f_{1}+d_{1})](I)=D^{\dagger}$ and hence the range of $(f|I) \cdot (\exp d_{1}|I)$ is D^{\dagger} . Observe that $d_{1} = \exp(-d_{1}) \in \mathcal{D}^{*}(B,(0,\omega))$. In the same way, we define $d_{2} \in \mathcal{D}^{*}(C,R)$ such that $(f_{2} + d_{2})(I) = \ln(-D^{-})$ for every interval I of C. Then $d_{-} = \exp(-d_{2}) \in \mathcal{D}^{*}(C,(0,\omega))$ and the range of $(f|I)/(d_{-}|I)$ is D^{-} .

Let us define d: $R \rightarrow (0, \infty)$ by

(d ⁺ (x)	for x∈B,
d(x) = {	d_(x)	for x∈C,
l	1	if $f(x)=0$.

It is easy to verify that such a defined function d satisfies the conditions of Theorem 3.

II. The following result is proved in [6].

THEOREM 4. Assume that A,B,CcR, F: $A \times B \rightarrow R$ and f: $R \rightarrow A$. Then there exists a $d \in \mathcal{D}^{**}(R,B)$ such that $F(f,d) \in \mathcal{D}^{**}(R,C)$ iff the following conditions hold:

- (1) for every xeR there exists yeB such that $F(f(x), y) \in C$,
- (2) card ({xeI : F(f(x), y)=c for some yeB })=c for every ceC and every interval I,
- (3) card ({x∈I : F(f(x),y)∈C })=c for every y∈B and every interval I.

Observe that for A=B=R, F(x,y)=x+y, f:R \rightarrow R and OeC we obtain the following.

COROLLARY. There exists a $d\in D^{**}$ such that $f \cdot d\in D^{**}(R,C)$ iff card ({xeI : $f(x)\neq 0$ }) = c for every interval I and card(xeI : $f(x)\cdot y\in C$ })=c for every $y\in R$ and every interval I.

III. Let \$\$ be a family of real functions. A subfamily \$\$ of

A is called the maximal multiplicative (additive) family for A provided B is the set of all functions in A such that f geA (f+geA, respectively) whenever feB and geA. (See [2], p. 14).

As an immediate consequence of Theorem 2 (respectively Theorem 1^{**}), we obtain that the maximal multiplicative (additive) family for \mathcal{D} is the class of all constant functions ([7],[2]).

Using a method similar to that used by J. Jastrzębski in [5], we can porove the following results.

THEOREM 5. Let $g \in \mathcal{D}$ and $g \not\equiv 0$. Then $f g \in \mathcal{D}$ for every $f \in \mathcal{D}^{\text{T}}$ iff theree exists a sequence a of open intervals $\{I_k\}$ such that:

(1) $\bigcup_{k=1}^{n} I_k$ is dense in R,

(2) $g|I_k$ is constant and $g|I_k \neq 0$.

Proof. Assume that for $g \in \mathcal{D}$ there exists a sequence $\{I_k\}$ which satisfies the conditions (1) and (2). Let $f \in \mathcal{D}^*$ and let I be an open interval. Then $\emptyset \neq J = I_k \cap I \subset I$ for some keN, $g \mid J$ is constant and $g \mid J \not\equiv 0$. Consequently, f(J)=Rand $g \circ f(I)=g \circ f(J)=R$. Thus $f \circ g \in \mathcal{D}^*$.

Assume that $g \in D$, I is an open interval and g is not constant on every subinterval of I. It follows from Theorem 2 that there exists a function $f \in D^*$ such that $f \circ g \notin D$. Now assume that there exists an open interval I and a sequence of pairwise disjoint, open subintervals of I, $\{I_k\}$ such that $\bigcup_{k=1}^{\infty} I_k$ is dense in I and g(x) = 0 for each $x \in \bigcup_{k=1}^{\infty} I_k$. Since

 $g \in \mathcal{D}$ and $I \neq \bigcup_{k=1}^{\infty} I_k$, there exist y, $z \in I \setminus \bigcup_{k=1}^{\infty} I_k$ with

 $g(y) \neq g(z)$. Choose $f_k \in \mathcal{D}^*(I_k, R)$ for keN and put

$$f(x) = \begin{cases} f_k(x) & \text{for } x \in I_k, k \in \mathbb{N}, \\ 1 & \text{for } x \in \{y, z\}, \\ 0 & \text{otherwise.} \end{cases}$$

Then $f \in \mathcal{D}^*$ and $f \cdot g(y) = g(y) \neq g(z) = f \cdot g(z), f \cdot g(x) = 0$

for $x \notin \{y, z\}$, i.e. $f \cdot g \notin D$.

Of course, the condition (2) can not be satisfied for any $g \in \mathcal{D}^*$. Hence the maximal multiplicative family for \mathcal{D}^* is empty.

THEOREM 6. Let $g: R \rightarrow R$, $g \not\equiv 0$. Then $f \cdot g \in \mathcal{D}$ for every $f \in \mathcal{D}^{**}$ iff there exist a sequence of open intervals $\{I_k\}$ and a set ACR such that:

- (3) $\bigcup_{k=1}^{\infty} I_k$ is dense in R,
- (4) card (A)<c,
- (5) $g|(I_k A)$ is constant for every k and $g|(I_k A) \neq 0$.

Proof. Assume that for $g: \mathbb{R} \to \mathbb{R}$ there exist a set A and a sequence $\{I_k\}$ which satisfy the conditions (3), (4) and (5). Let I be an open interval, $f \in \mathcal{D}^{**}$, and $y \in \mathbb{R}$. Then $\emptyset \neq J = I_k \cap I \subset I$ for some k eN and $g(x) = a \neq 0$ for each $x \in J \setminus A$. Since $f \in \mathcal{D}^{**}$, card ($\{x \in J : f(x) = y/a\}$) = c. Thus card ($\{x \in I : f(x) \cdot g(x) = y\}$) \geq card ($\{x \in J \setminus A : f(x) = y/a\}$) = c and $f \cdot g \in \mathcal{D}^{**}$.

Assume that $g: \mathbb{R} \longrightarrow \mathbb{R}$, I is an open interval and $g|(J \setminus A)$ is not constant for every subinterval J of I and every subset A of J with card(A)<c. Let C=R \{1}. It follows from the Corollary to Theorem 2, that there exists a d $\in \mathcal{D}^{**}$ such that f $\cdot d \in \mathcal{D}^{**}(\mathbb{R},\mathbb{C})$, i.e. f $\cdot d \notin \mathcal{D}$.

Now assume that there exist an open interval I, a sequence of pairwise disjoint, open subintervals of I, $\{I_k\}$ and a subset A of I such that card(A) < c, $\bigcup_{k=1}^{\infty} I_k$ is dense in I and g(x) = 0 for each $x \in \bigcup_{k=1}^{\infty} I_k \\ > A$. Notice that there exist y,z $\in I \\ > \bigcup_{k=1}^{\infty} I_k$ with $g(y) \neq g(z)$. Choose $f_k \in \mathcal{D}^{**}(I_k, \mathbb{R})$ for $k \in \mathbb{N}$ and put

 $f(x) = \begin{cases} f_k(x) & \text{for } x \in I_k \setminus A, \ k \in \mathbb{N}, \\ 1 & \text{for } x \in \{y, z\}, \\ 0 & \text{otherwise}. \end{cases}$

Then $f \in \mathcal{D}^{**}$ and $f \cdot g \notin \mathcal{D}$.

Evidently, the conditions (4) and (5) can not be satisfied for any $g \in D^{**}$. Therefore the maximal multiplicative family for D^{**} is empty.

IV. J. Ceder in [4] has characterized those functions which can be factored into a product of two Darboux functions. In the same paper, the author stated that a function f is a quotient of two Darboux functions iff $[f \neq 0]$ is bilaterally c-dense in itself ([4],Theorem 2). Unfortunately, this result is not true. For example, for the function f:R \rightarrow R, defined by f(x)=1 if x=0 and f(x)=-1 if x=0, the set $[f \neq 0]$ is bilaterally c-dense in itself, and evidently, f is not a quotient of two Darboux functions. We shall prove the following theorem.

THEOREM 7. A function $f: \mathbb{R} \to \mathbb{R}$ is a quotient of two Darboux functions iff f satisfies the following conditions: (i) if $a \leq b$ and $f(a) \cdot f(b) \leq 0$ then f(c)=0 for some $c \in (a, b)$,

- (ii) the sets [f>0] and [f<0] are bilaterally c-dense in itself.

Proof. Assume that $h_1, h_2 \in \mathcal{D}$ and $f = h_1 / h_2$. Then $h_2 < 0$ or $h_2 > 0$. Thus, if $f(a) \cdot f(b) < 0$, then $h_1(a) \cdot h_1(b) < 0$ and, since $h_1 \in \mathcal{D}$, we have $h_1(c) = 0$ for some $c \in (a, b)$. Then f(c) = 0 and (i) holds.

We may assume that $h_2>0$. Then $[f>0] = [h_1>0]$ and $[f<0] = [h_1<0]$, and by $h_1 \in \mathcal{D}$ we obtain that [f>0] and [f<0] are bilaterally c-dense in itself. The condition (ii) holds too.

Now notice that if A is bilaterally c-dense in itself then $\mathcal{D}^{*}(A,B) \neq \emptyset$ ([4]). Assume that f satisfies the conditions (i) and (ii). Let us decompose [f>0] into disjoint sets T_{4} and T_{2} each c-dense in [f>0]. (See [1] or [4]) Similarly, let us decompose [f<0] into disjoint sets T_{3} and T_{4} each c-dense in [f<0].

Let us define h, h, as follows:

on [f=0],	h _i =0	h_=1,
on T,	h_€D [*] (Τ,(0,∞)),	$h_{\mathbf{z}} = h_{\mathbf{i}} / \mathbf{f}$,
on T ₂ ,	h ₂ ∈D [*] (T ₂ ,(0,∞)),	$h_i = f \cdot h_2$,

200

on T_g , $h_i \in \mathcal{D}^{\bullet}(T_g, (-\infty, 0))$, $h_2 = h_i / f$,

on T_4 , $h_2 \in \mathcal{D}^*(T_4, (0, \infty))$, $h_1 = f \cdot h_2$. Let us observe that $f = h_1 / h_2$ and $h_2 > 0$. We shall prove that $h_1 \in \mathcal{D}$. Let $h_1(a) < h_1(b)$ and $y \in (h_1(a), h_1(b))$. There are five possible cases:

(a) if $h_i(a) \ge 0$, then f(b) > 0. Since the set [f>0] is bilaterally c-dense in itself, we obtain that $[f>0] \cap (a,b) \ne 0$ and consequently $h_i(x) = y$ for some $x \in T_i \cap (a,b)$,

(b) if $h_1(b) \le 0$, then f(a)<0 and hence there exists $x \in T_a \cap (a,b)$ such that $h_1(x)=y$,

(c) if $h_i(a) < y < 0 \le h_i(b)$, then f(a) < 0 and $h_i(x) = y$ for some $x \in T_a \cap (a,b)$,

(d) if $h_i(a) < 0 = y < h_i(b)$, then it follows from (i) that there exists xe(a,b) such that $h_i(x) = f(x) = 0$,

(e) if $h_i(a) \le 0 < y < h_i(b)$, then f(b) > 0 and $h_i(x) = y$ for some $x \in T_i \cap (a,b)$.

Thus $h_1 \in \mathcal{D}$. Now we shall show that $h_2 \in \mathcal{D}$. Assume that $h_2(a) < h_2(b)$ and $y \in (h_2(a), h_2(b))$. Then $h_2(a) > 0$ and $(a,b) \cap [f>0] \neq \emptyset$ or $(a,b) \cap [f<0] \neq \emptyset$. If $(a,b) \cap [f>0] \neq \emptyset$, then $h_2(x) = y$ for some $x \in T_2 \cap (a,b)$. If $(a,b) \cap [f<0] \neq \emptyset$, then $h_2(x) = y$ for some $x \in T_4 \cap (a,b)$. Thus $h_2 \in \mathcal{D}$ and this finishes the proof of Theorem 7.

REFERENCES

- [1] N. Boboc and S. Marcus, Sur la détermination d'une function par les valeurs prises sur un certain ensamble, Annales Scientifiques de l'ecole Normale Superiore 76(3), 1959, 151-159.
- [2] A. Bruckner, Differentiation of Real Functions, Springer-Verlag, Berlin-Heidelberg, New York, 1978.
- [3] A. Bruckner and J. Ceder, On the sum of Darboux functions, Proc. Amer. Math. Soc. 51, 1975, 97-102.
- [4] J. Ceder, On factoring a function into a product of Darboux functions, Rendiconti del Circolo Matematico di Palermo II, XXXI, 1982, 16-22.

- [5] J. Jastrzębski, Maximal additive families for some classes of Darboux functions, Real Analysis Exchange 13, 1987-88, 351-355.
- [6] T. Natkaniec, On \mathcal{D}^{**} -Darboux functions, Problemy Mat., to appear.
- [7] T. Radakovič, Über Darbouxsche und statige Functionen, Monatsch. Math. Phys. 38, 1931, 117-122.

Received December 27, 1988