Real Analysis Exchange Yol 15(1989-90)

 Tomasz Natkaní ec & Waldemar Orwat, Instytut. Matematyki WSP , ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland.

VARIATIONS ON PRODUCTS AND QUOTIENTS OF DARBOUX FUNCTIONS

 I. Let us establish some of the terminology to be used . R denotes the real line and N denotes the set of natural numbers If a,beR, then (a,b} denotes the open interval with the end-points $a,b.$ For AcR, we shall say that I is an open interval of A iff I=(a,b)nA for some a,beR. If B is a planar set, we shall denote its $x -$ projection by dom B and its y - projection by rng B. If A,B are subsets of R then A B={a. b : aeA, b«sB>, a B=-{a}- * B and A-1=-{l/a : aeAVjO». For AcR, aeR, and $f : A \rightarrow R$, we define the set $[f \le a]$ as $\{x \in A :$ $f(x)$ { a }. Analogously, we define the sets $[f > a]$ and $[f = a]$. Let AcR be a c-dense set in itself (where c denotes the cardinality of the continuum) and let B be a subset of R. We say that $f: A \rightarrow B$ is an (A, B) -Darboux function iff f has the intermediate value property, i.e. $(f(x), f(y)) \cap B \subset f((x, y) \cap A)$ for each $x, y \in A$. Let $\mathcal{D}(A, B)$ denote the class of all (A,B)-Darboux functions. Let $\mathcal{D}^*(A,B)$ denote the class of all functions f: A -- B which take on every y∈B in every non-empty interval I of A. Let $\mathcal{D}^{**}(A, B)$ denote the class of all functions $f: A \rightarrow B$ which take on every yeB c times in every $m_{\tilde{t}}$ for $m_{\tilde{t}}$ interval of A. It is clear that $\mathcal{D}^{n}(\mathsf{A},\mathsf{B})\subset\mathcal{D}(\mathsf{A},\mathsf{B})\subset\mathcal{D}(\mathsf{A},\mathsf{B})$ for every bilaterally c-dense subset A of R and every subset B of R. For $A=B=R$, we shall denote the classes $\mathcal{D}(A,B)$, $\overline{\mathcal{D}}^*(A,B)$, and $\overline{\mathcal{D}}^{**}(A,B)$ by $\overline{\mathcal{D}}$, $\overline{\mathcal{D}}^{**}$, $\overline{\mathcal{D}}^{**}$ (see [3]).

A.M. Bruckner and J. Ceder proved the following theorem.

THEOREM 1. [3]. Let $f \in \mathcal{D}$ be constant on no subinterval of R and let M be a set of real numbers whose complement is dense. Then for each countable dense subset D of R'M there exists a function de p^* such that the range of f+d is D.

In the same way, we can prove the following result.

 THEOREM 1*. If AcR Is bilaterally c-dense set in itself, D is a countable dense subset of R, and if $f \in \mathcal{D}(A, R)$ is constant on no interval of A, then there exists a function $de\mathcal{D}^*(A,R)$ such that for every interval I of A the range of $(f+d)[I]$ is D.

 THEOREM 2. Assume that D is a countable dense subset of R and O \in D. Then for each f ∞ there exists a function de $\mathcal D$ such that for each interval IcR we have:

- if f is not constant on I, then $d(I)=R$ and $(f\cdot d)(I)=D$,

- if f|I is constant, then d|I is constant and $(f \cdot d)(I) \subset D$. P r o o f . Let $B = \{(x, y) : y = r \land f(x) \text{ if } f(x) \neq 0 \text{ and } y = r \text{ if }$ $f(x)=0$, reD, xeR }. As in the proof of Theorem 1 ([3]), we shall define a function de D such that d \subset B. (No distinction is made between a function and its graph).

Let us put $\mathcal{J}=\{I\subset\mathbb{R} : I \text{ is a maximal open interval such that }$ f |I is constant}. Observe that sets from $\mathcal Y$ are pairwise disjoint and hence the family \mathcal{J} is countable.

Let $\mathcal{F}=\{J_n : n\in\mathbb{N}\}\$, $J_n=(a_n, b_n)$, $A_0=(a_n, b_n : n\in\mathbb{N}\)$, $J=\bigcup \mathcal{F}$ and A=R\J. Notice that A_{o} cA and $f (a_{n})=f (b_{n})$ for each neN. Additionally, f | AE $\mathcal{D}(A, R)$.

For $x \in R$, let $V(x) = \{x\} \times R$ and $H(x) = Ax \{x\}$. For each $x \in R$ it is clear that $V(x)$ is dense in $V(x)$ and it is easy to verify that $H(x) \cap B$ is dense in $H(x)$. Indeed, it is clear for $x=0$. Assume that $x\neq 0$ and I is an open interval of A. Then $f|I$ is non-constant and, since $f \in \mathcal{D}$, there exist y, zel for which $f(y) \neq f(z)$ and $f(y) \cdot f(z) > 0$. We may assume that $f(z) > f(y) > 0$. Because D is dense in R, we have

$$
\bigcup_{r \in D} r (f(y), f(z))^{-1} = \bigcup_{r \in D} (r/f(z), r/f(y)) = R,
$$

so there exists an reD such that $x \in (r/f(z), r/f(y)), i.e.$ $r \times (f(y), f(z))$. Since f | AE $\mathcal{D}(A, R)$, there exists a tel for which $f(t)=r/x$, i.e. $x=r/f(t)$ and $(t,x)\in (I\times\{x\})\cap B$. For xeR let $N(x) = [A \times \times (E\setminus{0}) \cdot (E\setminus{0})]^T$] \cap B, where

$$
E = \bigcup_{n=1}^{\infty} \underbrace{D \cdot \ldots \cdot D}_{n - \text{ times}}
$$

Observe that

 $N(O)=H(O)=A\times{O}$,

 $(i i)$ $\bigcup \{N(x) : x \in R \} = B \cap (A \times R)$,

(iii) card(rng $N(x)$)= ω for xeR\{0},

- (iv) dom $N(x)$ is dense in A, for each xeR ,
- (v) if $x \neq 0 \neq y$ and dom N(x) \cap dom N(y) $\neq \emptyset$, then $N(x) = N(y)$.

 Now we can define the function d. First we define for each $x \ne 0$ a function d such that d =d if N(x)=N(y), d is dense e the function d. First we define
x such that d=d if N(x)=N(y), d
H(y)∩N(x), a ∈ dom d iff b ∈ do in any non-empty H(y) $\cap N(x)$, $a_n \in \text{dom } d$ iff $b_n \in \text{dom } d$, and $d_{x}(a_{n})=d_{x}(b_{n}).$ To do this, let O_{n} , n=0,1,2,... be an enumen any non-empty $H(y) \cap N(x)$, $a_n \in \mathbb{R}$
 $X^{(a_n)} = d_X(b_n)$. To do this, let O_n
ation of all borizontal open is ration of all horizontal open intervals with rational ends

which intersect $N(x)$. Put $w_0 \in O_0 \cap N(x)$,
 $V = \begin{cases} w_0 & \text{if } \text{dom } w_0 \notin A_0 \\ (b_1, \text{ring } w) & \text{if } \text{dom } w = a_1, \\ w_0 & \text{if } \text{dom } w = a_2. \end{cases}$ which intersect $N(x)$. Put w^{∞} $\cap N(x)$,

$$
v_o = \begin{cases} w_o & \text{if dom } w_o \notin A_o, \\ (b_k, rng w_o) & \text{if dom } w_o = a_k, \\ (a_k, rng w_o) & \text{if dom } w_o = b_k. \end{cases}
$$

and $w_n \in \mathbb{Q}_n \cap N(x) \setminus \bigcup_{i \le n} (V(w_i) \cup V(v_i)),$

$$
P_{n} \cap N(x) \setminus \bigcup_{i \leq n} (V(w_{i}) \cup V(v_{i})),
$$
\n
$$
V_{n} = \begin{cases} w_{n} & \text{if dom } w_{n} \notin A_{0}, \\ (b_{k}, \text{rng } w_{n}) & \text{if dom } w_{n} = a_{k}, \\ (a_{k}, \text{rng } w_{n}) & \text{if dom } w_{n} = b_{k}. \end{cases}
$$

Then $d_x = \{ w_n, v_n : n \in \mathbb{N} \}$ has the desired properties.

Next let $d_{1,1}$, $d_{1,2}$ be a partition of d_{1} onto two sets, each ${w_n, v_n : n \in \mathbb{N}}$ has the desire

1.1 ${d_{1,2}}$ be a partition of d_1

1 and such that a ϵ d if dense in d and such that $a_n \in d_i$ iff $b_n \in d_i$ for neN, $1,1$, $d_{1,2}$ be a partition of d_1 onto two:

4 and such that $a_n \in d_{1,i}$ iff $b_n \in d_{1,i}$

4 and is dense in N(1), dom d is d i=1,2. Then d_i is dense in N(1), dom d_i is dense in A a_{1,2} be a partition of a once

and such that $a_n \in d_{1,i}$ iff b_n
 $a_{1,1}$ is dense in N(1), dom d_{1,2}
 \times {0} is dense in N(0). Then $d_x = \{ w_n, v_n : n \in \mathbb{N} \}$ has the desired properties.

Next let $d_{1,1}$, $d_{1,2}$ be a partition of d_i onto two sets, each

dense in d_i and such that $a_n \in d_{1,1}$ if $b_n \in d_{1,1}$ for neN,

i=1,2. Then $d_{1,1}$ is

 Now enumerate the countable family of uncountable sets of the form $\{ (x,y) : x \in I \setminus A_0, y = r/f(x) \text{ and } f(x) \neq 0 \}$, where I=(a,b) \cap A for some rationals a,b and reD \setminus {0}, as {C_i}. As in [3], we pick a sequence of points $\{e_i\}$ such that: $e_i \in C_i \setminus Z_i^-,$ where $Z_i = \bigcup \{N(x) : \text{there exists } j \leq i \text{ with } e_i \in N(x)\} \cup N(1)$. This

is possible because card (rng C_i)=c and card (rng Z_i)= ω_{α} . Since $d_{\mathbf{0}}$ c(dom N(1))x{0}, dom $d_{\mathbf{0}}$ n dom e =0. Let e={e :ieN}. sible because card (rng C_i)=c and card (rng Z₀ c(dom N(1))×{0}, dom d₀ ∩ dom e_i =0. Let e={e_i
rd(e ∩ d₂)≤1 for each xeR,0 ∉ rng e and dom e ∩ Then card(e \cap d) ≤ 1 for each xeR, 0 ϵ rng e and dom e \cap A =0. is possible because card (rng C₁)=c and card (rng Z₁)=ω₀.
Since d₀ c(dom N(1))×{0}, dom d₀ ∩ dom e₁ =0. Let e={e₁:1eN}.
Then card(e ∩ d₁)≤1 for each xeR,0 ∉ rng e and dom e ∩ A₀=0.
Let A₁ = A₀ \ U { for each neN.

Now we define a function d on R as follows.

$$
d(x)=\begin{cases} e(x) & \text{if } x \in \text{dom } e, \\ d_{z}(x) & \text{if } x \in \text{dom } d_{z} \text{ dom } e, z \in \mathbb{R}, \\ 0 & \text{if } x \in A \setminus (\text{dom } e \cup \bigcup \{\text{dom } d_{z} : z \in \mathbb{R}\}), \\ d(a_{n})=d(b_{n}) & \text{if } x \in J_{n}, n \in \mathbb{N}. \end{cases}
$$

It is clear that $d \subset B$ and therefore $(f \cdot d)(I) \subset D$ for every open interval I. If I is an open interval for which f|l is not constant and yeR, then InA is non-empty and $(I \times \{y\})$ n d_y \setminus e is infinite. It follows that yed(I) and, consequently, d(I)=R. If reD\{0}, then there exists xeI\A_o such that $e(x)=r/f(x)$, $f(x)=0$ and hence $ref \cdot d)(1)$. Thus $D \subset (f \cdot d)(1)$. Since $(I \times \{0\}) \cap d_{\Omega} \neq \emptyset$, $0 \in (f \cdot d)(I)$.

d(x)=d(a_n)=d(b_n) for xel. Finally, if x,yeR, d(x)*d(y), then If f |I is constant, then $I \subset (a_n, b_n)$ for some neN. Then f is non-constant on (x, y) and the range of d on (x, y) is R. Thus de D . This finishes the proof.

 REMARKS. 1) If D satisfies all assumptions of Theorem 2 and fe $\mathcal D$ is constant on no interval, then there exists a de $\mathcal D^{\text{th}}$ such that for any interval I of R the range of (f.d)|I is D. 2) In the same way as Theorem 2, we can generalize Theorem 1.

 THEOREM 1**. Assume that DcR is a countable dense set and feD. Then there exists a deD such that for each interval IcR we have:

if f is not constant on I then $d(I)=R$ and $(f+d)(I)=D$,

- if f is constant on I then d(I)={y} for some yeD.

 THEOREM 3. Let D be a countable dense subset of R with $0 \in D$ and let $f \in \mathcal{D}$ be constant on no interval. Then there exists a function $d \in \mathcal{D}^{\top}(R, (0, \omega))$ such that for every interval 1 we have:

- if Ic $[f>0]$ then $(f/d)(I) = D \cap (0, \infty)$.
- if Ic $f(0)$ then $(f/d)(I) = D \cap (-\infty, 0)$,
- if f changes sign on I then $(f/d)(I) = D$.

Proof. Let us put $B = [f>0]$, $C = [f<0]$, $D^{\dagger} = D \cap (0,\infty)$, $D^{\top} = D \cap (-\infty, 0)$, $f_1 = \ln(f | B)$ and $f_2 = \ln(-f | C)$. By Theorem 1^{*}, there exists a function $d^{\prime} \in \mathcal{D}^{*}(B,R)$ such that ($f_1 + d_1$)(I) = ln D⁺ for every interval I of B. Then $[exp(f_1+d_1)](I)=D^+$ and hence the range of $(f|I) \cdot (exp(d_1|I))$ $D^- = D \cap (-\infty, 0)$, $f_1 = \ln(f|B)$ and $f_2 = \ln(-f|C)$.
By Theorem 1^{*}, there exists a function $d_1 \in \mathcal{D}^*(B, R)$ such that
 $(f_1 + d_1)(I) = \ln D^+$ for every interval I of B. Then
 $[exp(f_1+d_1)](I)=D^+$ and hence the range of $(f|I)*(exp d$ is D⁺. Observe that d₊ = exp(-d₁) e $\overline{D}^*(B, (0, \omega))$. In the same
way, we define d₂ = $\overline{D}^*(C, R)$ such that $(f_2 + d_2)(I) = \ln(-D^*)$ way, we define $d_2 \in \mathcal{D}^*(C,R)$ such that $(f_2 + d_2)(I) = ln(-D))$ for every interval I of C. Then $d = \exp(-d^2) \in \mathbb{D}^*(C,(0,\infty))$ is D^t. Observe that $d_+ = \exp(-d_1) \in \mathcal{D}^*(B,(0,\omega))$. In the same and the range of $(f|I)/(d|I)$ is D .

Let us define $d: R \rightarrow (0, \infty)$ by

 It is easy to verify that such a defined function d satisfies the conditions of Theorem 3.

II. The following result is proved in [6] .

THEOREM 4. Assume that $A, B, C\subset R$, $F: A\times B \rightarrow R$ and $f: R \rightarrow A$. II. The following result is proved in [6].

THEOREM 4. Assume that A,B,CcR, F:AxB— R and f:R— \rightarrow A.

Then there exists a de $\mathcal{D}^{**}(R, B)$ such that $F(f, d) \in \mathcal{D}^{**}(R, C)$ iff the following conditions hold:

- (1) for every xeR there exists yeB such that $F(f(x), y) \in C$,
- (2) card $({x \in I : F(f(x), y)=c \text{ for some } y \in B})=c \text{ for every }$ ceC and every interval I,
- (3) card $({x \in I : F(f(x), y) \in C})$ =c for every yeB and every interval I.

Observe that for $A=B=R$, $F(x,y)=x\cdot y$, $f:R\rightarrow R$ and $O\in C$ we obtain the following. Following.
 colowing.
 COROLLARY . There exists a de \overline{D}^{**} such that $f \cdot d\overline{eD}^{**}(R, C)$

iff card $({x \in I : f(x) \ne 0 }) = c$ for every interval I and card(xeI : $f(x)$ •yeC })=c for every yeR and every interval I.

III. Let $\mathcal A$ be a family of real functions. A subfamily $\mathcal B$ of

 $\mathcal A$ is called the maximal multiplicative (additive) family for $\mathcal A$ provided $\mathcal B$ is the set of all functions in $\mathcal A$ such that f ged (f+ged, respectively) whenever feB and ged. (See [2], P. 14).

As an immediate consequence of Theorem 2 (respectively Theorem 1^{**}), we obtain that the maximal multiplicative (additive) family for \hat{D} is the class of all constant functions ([7] , [2]).

 Using a method similar to that used by J. Jastrzębski in [5] , we can por ove the following results.

THEOREM 5. Let ge $\mathcal D$ and g $\mathcal Z$ O. Then f ge $\mathcal D$ for every fe $\mathcal D^{\overline{n}}$ iff theree exists a sequence a of open intervals $\left\{ \mathbf{I}_{_{\mathrm{L}}}\right\}$ such that:

(1) $\bigcup_{k=1}^{w} I_k$ is dense in R,

(2) g|I_k is constant and g|I_k \neq 0.

P r o o f . Assume that for geD there exists a sequence $\{I^*_k\}$ which satisfies the conditions (1) and (2). Let fe \mathcal{D}^* and let I be an open interval. Then $\emptyset \neq J = I_{\Box} \cap I \subset I$ for some keN, g|J is constant and g|J \neq 0. Consequently, f(J)=R and $g \cdot f(I)=g \cdot f(J)=R$. Thus $f \cdot g \in \mathcal{D}^{\top}$.

Assume that geD. I is an open interval and g is not constant on every subinterval of I. It follows from Theorem 2 that there exists a function $f \in \mathcal{D}^{\top}$ such that $f*g \notin \mathcal{D}$. Now assume that there exists an open interval I and a sequence of pairwise disjoint, open subintervals of I, ${I_L}$ such that In every subinterval of I. It follows from Theorem exists a function $f \in \mathcal{D}^*$ such that $f \circ g \in \mathcal{D}$.

And there exists an open interval I and a stairwise disjoint, open subintervals of I, $\{I_k\}$
 ∞
 $\bigcup_{k=1$ pairwise disjoint, open subintervals of I, $\{I_k\}$
 $\begin{matrix} \infty & \infty \\ \cup & I_k \end{matrix}$ is dense in I and $g(x) = 0$ for each $x \in \bigcup_{k=1}^{\infty} I_k$ U I_k is dense in I and $g(x) = 0$ for each $x \in \bigcup_{k=4}^{\infty} I_k$. Since it, open subintervals of I, $\{I_k\}$ s

in I and $g(x) = 0$ for each $x \in \bigcup_{k=1}^{\infty}$
 $\bigcup_{k=1}^{\infty} I_k$, there exist $y, z \in I \setminus \bigcup_{k=1}^{\infty} I_k$

 $g \in \mathcal{D}$ and $I \neq \bigcup_{k=1}^{\infty} I_k$, there exist y, $z \in I \setminus \bigcup_{k=1}^{\infty} I_k$ with $g(y) \neq g(z)$. Choose $f_k \in \mathcal{D}^*(I_k, R)$ for keN and put $g \in \mathcal{D}$ and $I \neq \bigcup_{k=1}^{\infty} I_k$, there exist $y, z \in I \setminus \bigcup_{k=1}^{\infty} I_k$ with
g(y) $\neq g(z)$. Choose $f_k \in \mathcal{D}^*(I_k, R)$ for keN and put
 $\begin{cases} f(x) & \text{for } x \in I_k, k \in \mathbb{N}, \end{cases}$

$$
f(x) = \begin{cases} f_k(x) & \text{for } x \in I_k, k \in N, \\ 1 & \text{for } x \in \{y, z\}, \\ 0 & \text{otherwise.} \end{cases}
$$

Then $f \in \mathcal{D}$ and $f \cdot g(y) = g(y) \neq g(z) = f \cdot g(z)$, $f \cdot g(x) = 0$

for $x \notin \{y, z\}$, i.e. f.g ∞ .

Of course, the condition (2) can not be satisfied for any ge \mathcal{D} . Hence the maximal multiplicative family for \mathcal{D} is empty. $x \in \{y, z\}$, i.e. f.geD.
course, the condition (2) can not be satisfied for
*. Hence the maximal multiplicative family for \overline{x}
ty.
THEOPEM 6. Let. $\overline{x} : \mathbb{R} \to \mathbb{R}$, $\overline{x} = 0$. Then, f.g.e.D. for ex-

THEOREM 6. Let $g: R \rightarrow R$, $g \not\equiv 0$. Then $f \cdot g \in \mathcal{D}$ for every $f \in \mathcal{D}^{**}$ iff there exist a sequence of open intervals $\{I_{\mu}\}\$ and a set AcR such that:

- (3) $\bigcup_{k=1}^{\infty} I_k$ is dense in R,
- (4) card (A) $\lt c$,
- (5) g|(I_k\A) is constant for every k and g|(I_k\A) \neq 0.

Proof. Assume that for g: R-+R there exist a set A and a sequence $\{I^{\dagger}_{\nu}\}$ which satisfy the conditions (3), (4) and (5). Let I be an open interval, $f \in D^{**}$, and y $\in R$. Then $\emptyset \neq J = I_{L} \cap I \subset I$ for some keN and $g(x) = a \neq 0$ for each $x \in J \setminus A$. Since $f \in D^{\ast\ast}$, card $(\{x \in J : f(x) = y/a\}) = c$. Thus card $({x\in I : f(x) \cdot g(x) = y}) \geq card ({x\in J \setminus A : f(x) = y / a}) = c$ and $f \cdot g \in \mathcal{D}^{\bullet\bullet}$.

Assume that $g: R \rightarrow R$, I is an open interval and $g/(J\setminus A)$ is not constant for every subinterval J of I and every subset A of J with card(A)<c. Let C=R\{1}. It follows from the Corollary to Theorem 2, that there exists a $d \in \mathcal{D}^{**}$ such that $f \cdot d \in \mathcal{D}^{**}(R, C)$, i.e. f $\cdot d \notin \mathcal{D}$.

Now assume that there exist an open interval I, a sequence of pairwise disjoint, open subintervals of I, ${I_{i}}$ and a oo subset A of I such that card(A)<c, \bigcup_{k} I is dense in I and k = i ao $g(x) = 0$ for each $x \in \bigcup_{k=1}^{\infty} I_k$ \ A. Notice that there exist y,z oo ϵ I $\setminus \bigcup_{k=1}^{\infty} I_k$ with g(y) \neq g(z). Choose $f_k \in \mathcal{D}$ (I_k,R) for k ϵ N and put

> $f_{k}(x)$ for $x \in L_{k}^{\infty}$, $k \in \mathbb{N}$, $f(x)=\begin{cases} 1 & \text{for } x \in \{y, z\}, \end{cases}$ O otherwise.

Then $f \in \mathcal{D}^{**}$ and $f \cdot g \notin \mathcal{D}$.

 Evidently, the conditions (4) and Ç5) can not be satisfied for any $ge^{\#*}$. Therefore the maximal multiplicative family for x^{**} is empty.

 IV. J. Ceder in [4] has characterized those functions which can be factored into a product of two Darboux functions. In the same paper, the author stated that a function f is a quotient of two Darboux functions iff $[f \neq 0]$ is bilaterally c-dense in itself ([4].Theorem 2). Unfortunately, this result is not true. For example, for the function f: R-->R, defined by $f(x)=1$ if $x\neq 0$ and $f(x)=-1$ if $x=0$, the set [$f \neq 0$] is bilaterally c-dense in itself, and evidently, f is not a quotient of two Darboux functions. We shall prove the following theorem. Unfortunately, this result is not true. For example, for the
function f: R--R, defined by $f(x)=1$ if $x=0$ and $f(x)=1$ if
 $x=0$, the set $[f*0]$ is bilaterally c-dense in itself, and
evidently, f is not a quotient of two mo

THEOREM 7. A function $f: R \rightarrow R$ is a quotient of two Darboux functions iff f satisfies the following conditions: (i) if $a < b$ and $f(a) \cdot f(b) < 0$ then $f(c)=0$ for some $ce(a, b)$,

-
- Cii) the sets [f>0] and [f<0] are bilaterally c-dense in itself.

Proof. Assume that $h_1, h_2 \in \mathcal{D}$ and $f = h_1/h_2$. Then $h_2 < 0$ h_1 , $h_2 \in \mathcal{D}$ and $f = h_1/h_2$. Then h_2
(0, then h_1 (a) $\cdot h_1$ (b) \times 0 and, sin or h_2 >0. Thus, if $f(a) \cdot f(b)$ <0, then $h_1(a) \cdot h_1(b)$ <0 and, since if a(b and f(a) \cdot f(b)(0 then f(c)=0 for s
the sets [f)0] and [f(0] are bilated
itself.
o o f. Assume that h_1 , $h_2 \in \mathcal{D}$ and f
 \geq 0. Thus, if f(a) \cdot f(b)(0, then h_1 (a) $\cdot h_1$
, we have h_1 (c)=0 for some ce hoi ds .

We may assume that $h_2>0$. Then $[f>0]=[h_2>0]$ and $[f<0]=[h_1<0]$, and by $h \in \mathcal{D}$ we obtain that [$f>0$] and [$f<0$] are bilaterally c-dense in itself. The condition (ii) holds too.

 Now notice that if A is bilaterally c-dense in itself then $\overline{\mathcal{D}}^*(A,B) \neq \emptyset$ ([4]). Assume that f satisfies the conditions (i) and (ii). Let us decompose $[f>0]$ into disjoint sets T and $T_{\rm z}$ each c-dense in [f>0]. (See [1] or [4]) Similarly, let us decompose [f<0] into disjoint sets T_g and T₄ each

c-dense in [f<0].

Let us define h_1, h_2 as follows:

on [f=0], $h_1=0$ $h_2=1$,

on T, $h_1 \in \mathbb{D}^*(T, (0, \infty))$, $h_1=h/f$, c -dense in $[f<0]$. some one of e^{2C} ment ($1 \vee 1$ and $1 \vee 0$ are bilatorally
in itself. The condition (ii) holds too.
ice that if A is bilaterally c-dense in itself then
 $\neq 0$ ([4]). Assume that f satisfies the conditions
(ii). Let

Let us define h_1, h_2 as follows:

200

on T_a , h $\epsilon \mathcal{D}^{\mathsf{T}}(T_a, (-\infty, 0))$, $h_a = h_a / f$, $h_1 \in \mathcal{D}^*(T_1, (-\infty, 0)),$ $h_2 = h_1$
 $h_3 = h_2$ $h_3 = h_1$

on T_4 , h₂ $\epsilon \mathcal{D}^*(T_4,(0,\infty))$, h₁=f·h₂. Let us observe that $f=h_{1}/h_{2}$ and $h_{2}>0$. We shall prove that $\binom{h_1}{1}$ and $\binom{h_2}{1}$ on T_a , $h_2 \in \mathbb{D}^*(T_a, (0, \infty))$, $h_1 = f \cdot h_2$.

us observe that $f = h_1/h_2$ and $h_2 > 0$. We shall prove that
 $\in \mathcal{D}$. Let $h_1(a) < h_1(b)$ and $y \in (h_1(a), h_1(b))$. There are

e possible cases: Tive possible cases:

(a) if $h_1(a)\geq 0$, then $f(b) > 0$. Since the set $[f > 0]$ is bilaterally c-dense in itself, we obtain that $f > 0$ α , b) $\neq 0$

and consequently $h_1(x)=y$ for some $x \in T_1 \cap (a, b)$,
(b) if $h_1(b) \le 0$, then $f(a) < 0$ and hence if $h^{(b)} \leq 0$, then $f(a)$ <0 and hence there exists $x \in T_a \cap (a,b)$ such that $h(x)=y$, and consequently $h_1(x)=y$ for some $x \in T_1 \cap (a,b)$,

(b) if $h_1(b) \le 0$, then $f(a) \le 0$ and hence there exists $x \in T_1 \cap (a,b)$ such that $h_1(x)=y$,

(c) if $h_1(a) \le y \le 0 \le h_1(b)$, then $f(a) \le 0$ and $h_1(x) = y$

for some $x \in T_g \cap (a, b)$,

(d) if h^{\bullet} (a) < 0 = y < h₄(b), then it follows from (i) that there exists $x \in (a, b)$ such that $h^{(x)} = f(x) = 0$,

(e) if $h^{\bullet}(\mathbf{a}) \leq 0 \leq y \leq h^{\bullet}(\mathbf{b})$, then $f(\mathbf{b}) > 0$ and $h^{\bullet}(\mathbf{x}) = y$ for some $x \in T$, \cap (a, b).

Thus $h_1 \in \mathcal{D}$. Now we shall show that $h_2 \in \mathcal{D}$. Assume that $h_2(a) \leftarrow h_2(b)$ and $y \in (h_2(a), h_2(b))$. Then $h_2(a) > 0$ and $(a, b) \cap [f>0] \neq \emptyset$ or $(a, b) \cap [f<0] \neq \emptyset$. Then $h_2(x) = y$ for some $x \in T_2 \cap (a, b)$. If (a, b) $h₂(a)$ < $h₂(b)$ and y $\in (h₂(a), h₂(b))$. Then $h₂(a) > 0$ and me $x \in T_g \cap (a,b)$,

if $h_i(a) \le 0 = y \le h_i(b)$, then it

here exists $xe(a,b)$ such that $h_i(x) =$

if $h_i(a) \le 0 \le y \le h_i(b)$, then f(b)

me $x \in T_i \cap (a,b)$.
 $x \in \mathcal{D}$. Now we shall show that h_2
 $h_2(b)$ and $y \in (h_2(a), h_2(b))$. T
 h $(a,b) \cap [f \ge 0] \neq 0$ or $(a,b) \cap [f \le 0] \neq 0$. If $(a,b) \cap [f \ge 0] \neq 0$, then $h_2(x) = y$ for some $x \in T$, \cap (a,b). If (a,b) \cap [f(0] $\neq \emptyset$, then $h_2(x) = y$ for some $x \in T$ \cap (a,b). Thus $h_2 \in \mathcal{D}$ and this finishes the proof of Theorem 7.

REFERENCES

- [1] N. Boboc and S. Marcus, Sur la détermination d'une function par les valeurs prises sur un certain ensamble. Annales Scientifiques de l' ecole Normale Superiore 76(3), 1959, 151-159.
- [2] A. Bruckner, Differentiation of Real Functions, Springer -Ver lag, Berlin-Heidelberg, New York, 1978.
- [3] A. Bruckner and J. Ceder, On the sum of Darboux functions, Proc. Amer. Math. Soc. 51, 1975, 97-102.
- [4] J. Ceder, On factoring a function into a product of Darboux functions. Rendiconti del Circolo Matematico di Palermo II, XXXI, 1982, 16-22.
- [5] J. Jastrzębski, Maximal additive families for some classes of Darboux functions. Real Analysis Exchange 13, 1087-88 , 3S1-3SS.
- [6] T. Natkaniec, On $\overline{\mathcal{D}}^{**}$ -Darboux functions, Problemy Mat., to appear .
- [7] T. Radakovič, Über Darbouxsche und statige Functionen, Monatsch. Math. Phys. 38, 1931, 117-122.

Received December 27, 1988