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 A MULTIDIMENSIONAL VARIATIONAL INTEGRAL AND ITS EXTENSIONS

 Abstract. We define a variational integral in the m- dimensional Euclidean space so

 that the Gauss- Green theorem holds for each vector field which is everywhere differen-

 tiate (not necessary continuously). The variational integral is then extended by a

 transfinite sequence of improper integrals, and the Gauss-Green theorem is proved for

 vector fields which are differenti able only outside fairly large exceptional sets. The

 variational integral and its extensions are invariant with respect to a continuously

 differentiable change of coordinates, and hence suitable for integration on different i able

 manifolds.

 0. Introduction. As the divergence of a noncontinuously differentiable vector field

 need not be Lebesgue integrable, it is clear that the full- strength Gauss- Green theorem

 must be formulated by means of a more general integral than that of Lebesgue. This was

 recognized a long time ago by Denjoy (1912) and Perron (1914), who independently and by

 different means, defined a suitable extension of the Lebesgue integral in dimension one.

 While many higher-dimensional analogs of the Denjoy-Perron integral were subsequently
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 produced by various authors, none of these integrated the divergence of an arbitrary

 differentiable vector field. Consequently, the classical Gauss-Green theorem in higher

 dimensions remained essentially unimproved. The situation changed only recently when

 following the work of Henstock (see [H]) and Kurzweil (see [K]), more sophisticated

 generalizations of the multidimensional Lebesgue integral were obtained in [Maj, [N^],

 [JKS], [Pj], [JK], [P2], and [P^]. However, even these integrals have much to be desired:

 they are either coordinates dependent, and hence unusable on manifolds ([Maj, [Ma^],

 [JKS], [Pj], and ^]), or unable to integrate vector fields with larger sets of singularities

 ([JK] and [P3]).

 Our goal is to define a coordinate free extension of the Lebesgue integral in the

 m- dimensional Euclidean space so that the Gauss- Green theorem holds for every bounded

 vector field, continuous outside a compact set of (m- 1)- dimensional Hausdorff measure

 zero, and differentiable outside a compact set which is a countable union of compact sets

 whose (m- l)-dimensional Hausdorff measures are finite (Theorem 5.12). This is

 accomplished in several steps.

 Elaborating on ideas of Henstock (see [H]), we begin with a simple variational

 integral, and the Gauss- Green theorem for continuous vector fields, differentiable outside

 compact sets of finite (m- 1)- dimensional Hausdorff measure (Theorem 3.12). This is

 already an improvement of [P^, Theorem 5.6] where the exceptional compact set is only of

 finite (m- 1)- dimensional upper Minkowski's content (see [Fe, Section 3.2.37, p.273]). The

 reasons why we chose the variational rather than generalized Riemann integral are partly a

 personal preference, and partly our desire to investigate carefully the behavior of

 variational integrals defined by means of additive majorants. Naturally, superadditive

 majorants could have been employed too, but there appears to be no appreciable advantage

 in using them.

 112



 To enlarge the exceptional sets for the differentiability of vector fields, and relax the

 continuity requirement, we have extended the variational integral by the method of Marik

 (see [M], [HM], [KM], and [MM]). In early sixties, Marik and his collaborators devised a

 general two- stage process of forming improper integrals, and used it to extend the

 multidimensional Lebesgue integral. In [HM], both stages of the extension are treated

 simultaneously in an abstract setting of additive maps from Boolean rings into abelian

 groups. This general approach is very elegant, but it often obliterates the underlying

 intuition. In particular, it conceals the fact that the first stage of the extension is

 transfinite, while the second has only one step. Thus we considered it worthwhile to

 reformulate Marik's method for our specific purpose, and use the transfinite induction and

 recursion whenever convenient. We believe that proceeding in this way makes our

 treatment more intuitive.

 Our presentation is local (e.g., in a Euclidean space equipped with a fixed

 coordinate system), however when a new integral is defined, we always prove its invariance

 with respect to a continuously differentiable change of coordinates (Theorems 3.14, 4.28,

 and 5.16). Thus using standard techniques, the integrals can be lifted to differentiable

 manifolds, and appropriate Stokes theorems can be obtained (see [P^, Section 7]).

 Our exposition is organized as follows. After some necessary preliminaries in

 Section 1, we prove in Section 2 the basic lemma (Lemma 2.2) about lower continuous

 additive functions of sets. The importance of this lemma for variational integrals is the

 same as that of Cousin's lemma (see [P^, Proposition 2.5]) for generalized Riemann

 integrals; in fact, it is not hard to see that both results are actually equivalent. Section 3 is

 devoted to the development of the variational integral. The transfinite extension of the

 variational integral is presented in Section 4, and the final, nontransfinite, extension in

 Section 5.
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 The authors axe obliged to Professor Jan Marik for many clarifying comments and

 suggestions.

 1. Preliminaries. By IR we denote the set of all real numbers. Unless stated

 otherwise, all functions considered in this work are real- valued. The algebraic operations,

 partial order, and convergence among functions on the same set are defined pointwise.

 On several occasions we shall employ arguments by transfinite induction and

 recursion in which the ordinal numbers are used extensively. As usual an ordinal is

 identified with the set of all smaller ordinals, and cardinals are the initial ordinals. The

 first uncountable cardinal is denoted by Wj .

 Throughout, m > 1 is a fixed integer, and IRm denotes the m- dimensional

 Euclidean space. For x = Uļv>£m) and y = (ł?p.. in > we
 x-y = + ••• + ŚmV' and set 311(1 lxl =ma*(Uilv,Uml) •
 Unless specified otherwise, in IRm we use exclusively the metric induced by the norm

 I x I . The distance between a point x e IRm and a set E c IRm is denoted by dist(x,E) .

 If E c IRm , then E- , E° , E' , and d(E) denote, respectively, the closure, interior,

 boundary, and diameter of E .

 An interval III|ri_ļ[kļ2- n,(kj+l)2- n) , where n > 0 and kp...,km are integers, is

 called a dyadic cube. Often we shall use the simple observation that any family of dyadic

 cubes contains a disjoint subfamily which has the same union as the original family.

 By Jif we denote the (m- 1)- dimensional outer Hausdorff measure in IRm as

 defined in [Fe, Section 2.10.2]. If k > 1 is an integer, then A^ denotes the k- dimensional

 outer Lebesgue measure in IR^ . We write A instead of A^ , and |E| instead of Am(E)
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 for each E c IRm . The words "outer measure", "measure", and "measurable", as well as

 the expressions "almost all", "almost everywhere", always refer to Am .

 Note that the measure JV is defined so that <#(E) = Am_^(E) for each set

 E c IRm- * . In particular, is a constant multiple (by a constant different from one) of

 the measure <&m~ ^ defined in [Fa, Section 1.2] - cf. [Fa, Theorem 1,12, p.13].

 A compact set T c IRm with < +00 is called thin. In view of [Fe, Section

 3.2.40, p. 276], our thin sets are larger than the thin sets defined in [Pg]. A bounded set

 A c !Rm is called admissible if its boundary is thin. Admissible subsets form a ring,

 denoted by 21 , which is central to all our further work. The collection of all thin subsets

 of Rm is a subfamily of 01 , which is closed with respect to finite unions. If A C IRm , we

 set 21(A) = {B e 21 : B C A} and 21q(A) = {B G 21 : B~ C A} .

 It follows from [KM, Theorem 26] and [M, Theorem 18] that if A e 21 , on A* there

 is a unique finite Borei measure p and a p- almost everywhere unique vector field v such

 that

 I div v dAm = f v-v dp
 Jk I v dAm m = Jk-

 for each vector field v continuously differentiable in a neighborhood of A- . According to

 [Fe, Chapter 4], to each A e 21 we can also associate an ^-measurable vector field

 on IRm (usually referred to as the Federer exterior normal) such that

 J*div v d/'m = J .v'nA d<^" A A

 115



 for each vector field v continuously differentiable in a neighborhood of A . If
 $ $

 d A = {x e A':||n^|| = 1} , then <%{d A) = /?(A') and n^ = v <#- almost everywhere
 *

 on d A . For a proof of this well- known but nontrivial fact, we refer the reader to [De
 *

 G J and [De G0]. The number ||A|| = A) is called the perimeter of A . Note that

 if A is a cube, then ||A|| is the surface area of A. Following [P^], we set

 I A I

 t

 r (A) = I t
 * 0 otherwise.

 We close this section by proving a simple lemma, which will be needed later.

 1.1. Lemma. There is a constant a , depending only on m , with the following

 property: for every set E c IRm with (E) < +oo , uid for each r¡ > 0 , there is a

 countable disjoint family C of dyadic cubes such that E c (U<£)° , |U<£| < r) , and

 £ l|C|| < «<*(E) + , .
 Ce<£

 Proof. It follows from [Fa, Theorem 5.1, p. 65] that there is a constant a > 0 ,

 depending only on m , such that for each 6 > 0 , we can find a countable family ñ of

 dyadic cubes such that E c (UJ^)° ,

 ^ [d(K)]ra * < (E) + ^¡¡ļ »
 KeS

 and d(K) < ó for each K e ft . Let a = 2ma , and choose 6 e (0,1) so that

 a^(E)í< r¡/2 . Then
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 £ ||K|| = 2m£ [d(K)]m 1 < ûc#(E) + ņ
 Keß Ke£

 and

 |K|<í£ [d(K)]1"-1 < 5(a<»(E) + güj) <„.
 Ke# Ke£

 Now it suffices to select a disjoint family <£ c & with u£ = U£ . D

 2. Lower continuous additive functions. A division of an admissible set A is a

 finite disjoint family D C 21 with UD = A .

 2.1. Definition. Let A e 21 , and let F be a function on 21(A) . We say that F

 is :

 (i) additive if F(A) = Spg^F(D) for each division D of A;

 (ii) lower continuous if given e > 0 , there is a 6 > 0 such that F(B) > - t for

 each B e 21(A) with |B| < 6 and ||B|| < 1/c .

 (iii) continuous if both F and - F are lower continuous.

 2.2. Lemma. Let A e 21 , let T c A- be thin, and let F be an additive lower

 continuous function on 21(A) . If F(A) < 0 , then there is a strictly decreasing sequence

 {Cn} of dyadic cubes such that C~c A°-T and F(Cn) <0 for n = 1,2,... .

 Proof. We may assume that A' CT. Select r¡> 0 , so that F(B) > F(A) for

 each B e 21(A) with |B| <3 and ||B|| < ||A|| + 3m[a¿Sf(T) + r¡] ; here a is the

 constant defined in Lemma 1.1. Now by Lemma 1.1, there is a sequence {Xn} of dyadic

 cubes such that T c UßTn , En ļ Tn ļ < , and EJITJI < (*<%{ T) + r' . For n = 1,2,... ,
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 let Tn be the collection of those dyadic cubes C for which d(C) = d(Tn) and

 C- n T~ # 0 . If T* = (uî )° , then {T*} is an open cover of T . As T is compact,

 TCU^ n=l ,T* for some integer ° N > - 1 ' , and we let T = n=l and B = UT . Since T n=l n ° - ' , n=l n . n

 contains 3m cubes congruent to Tß , we see that

 I A n B I <3m£|TJ <3%,
 n

 and by [M, Theorem 35],

 IIA n B|| < ||S|| + ||B|| < HAH ♦ 3»^||Tn|| < ||A|| ♦ 3m[0X(T) * ,] .
 n

 It follows that F(AflB)>F(A), and consequently

 F(A-B) = F(A) -F(AnB) <0.

 Now A - B is the union of finitely many disjoint dyadic cubes each of which is

 congruent to a cube in T of the smallest diameter. By the additivity of F , for one of

 these cubes, say , we have F(Cj) < 0 . As fl B = 0 and A' c T c B° , it follows

 that c A° - T . Since is the disjoint union of dyadic cubes whose diameters are

 equal to d(Cj)/2 , by the additivity of F , for one of these cubes, say C2 , we have

 F(C2) < 0 . An obvious induction completes the proof. D

 2.3. Lemma. Let A e 21 , let f be a measurable function on A with

 / I f I dAm < + 00 , and let v be a continuous vector field on A- . For each B 6 01(A)
 A

 set F(B) = / f dA_ m and G(B) = / V'nn 0 àJíf . Then F and G are additive B m B' 0
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 continuous functions on 21(A) .

 Proof. The additivity of F and G is easy to show, and the continuity of F

 follows from the absolute continuity of the indefinite Lebesgue integral. To prove the

 continuity of G , we proceed as in [KM, Section 12]. Choose an e > 0 , and using the

 Stone-Weierstrass theorem, find a vector field w with polynomial coordinates

 and such that ||v(x) - w(x)|| < e^/2 for each x 6 A . Let

 M = sup { 1 div w(x) I : x € A } ,

 and find a 6> 0 with ¿M < f/2 . Now if B e 21(A) , ¡|B|| < l/c , and |Bļ < 6 , then

 C(B)| = 1/ (v-v).i>Bd¿r| + I f WDBd<*

 />b"<í'*+ fldivwl dAa<l^i+M|B| <e . □

 3. The variational integral. Let A € 21 , and let f and F be functions defined on

 A and 21(A) , respectively. Given c > 0 and E c A , an t- majorant of the pair (f,F)

 in E is a nonnegative additive function M on 21(A) which satisfies the following

 conditions:

 (i) M(A) < e ;

 (ii) for every x e E there is a 6 > 0 such that

 |f(x)|B|-F(B)| <M(B)
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 for each B € 2lQ(E) with x € B , d(B) < 6 , and r(B) > e .

 3.1. Definition. Let A €21 and f:A->IR. We say that f is variationaUy

 integrable, or simply v-integrable, in A if there is an additive continuous function F on

 21(A) which satisfies the following condition: for each i > 0 there is a thin set T c A

 such that the pair (f,F) has an e- majorant in A - T .

 The family of all v- integrable functions on a set A € 21 is denoted by V (A) . If

 f G V{ A) , then each function F on 21(A) which satisfies the conditions of Definition 3.1

 is called an indefinite v-integral of f in A . Our first aim is to show that every f G F(A)

 has precisely one indefinite v- integral.

 3.2. Lemma. Let A g 21 , and let Fj be an indefinite v-integral in A of

 f¡ G V{ A) , i = 1,2 . If fx < f2 , then Fļ < F2 .

 Proof. Since for each B g 21(A) , the restriction Fj f 21(B) is an indefinite

 v- integral in B of f^fB , i = 1,2 , it suffices to show that F^(A) < F2(A) . Working

 towards contradiction, suppose that F2(A) < Fj(A) , and choose an e > 0 so that

 e < l/2m and F2(A) +2 e < F^(A) . For i = 1,2 , there is a thin set Tj c A~~ , and an

 e- majorant Mj of (f,Fj) in A - Tj . The function

 F = F2"F1+M1+M2

 is additive and lower continuous on 21(A) . As T = Tj U T2 is a thin set and

 F(A) <F2(A) -Fj(A) + 2ę <0,
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 it follows from Lemma 2.2 that there is a strictly decreasing sequence {Cn} of dyadic

 cubes such that C~c A-T and F(Cn) <0 for n = 1,2,... . If rÇ_jCn = {x} , then
 X e A - T and there is > 0 such that

 fi(x)|B| -Fi(B)| <Mi(B)

 for each B e 2lQ(A - T) with x 6 B- , d(B) < , i = 1,2, and r(B) > e . Find an

 integer N > 1 so that diC^) < min^,^) • As r(^N^ = l/2m > e , we have

 - - ^l(x) - ^2^N^ + ®2^N^ '

 and hence F(C^) > 0 ; a contradiction. Ū

 3.3. Corollary. If A e 21 and f G Y (A) , then all indefinite v- integrals of f in

 A are equal. Ū

 Let A G 21 and fe Y(k) . In view of Corollary 3.3, we can talk about the

 indefinite v- integral of f in A , denoted by Iv(A;f, ♦ ) . The number Iv(A;f,A) is called

 the v-integral of f over A. Since Iv(B;f,-) = Iy(A;f,')f2l(B) for each B e 21(A) , no

 confusion will arise if instead of Iv(A;f,-) and Iy(A;f,A) , we write simply Iy(f, • ) and

 Iv(f,A) , respectively.

 3.4. Proposition. If A € 21 , then Y( A) is a linear space, and the map fnlv(f,A)

 is a nonnegative linear functional on Y (A) .

 Proof. If f e Y (A) and f > 0 , then it follows from Lemma 3.2 that Iy(f,A) > 0 .

 The rest of the proposition follows easily from Definition 3.1. Ū
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 3.5. Proposition. Let A e 21 , f: A -» IR , and let D be a division of A . Then

 fe ^(A) if and only if ffD e ^(D) for each Del).

 Proof. If fer" (A), F = Iy(f, • ) , and DeD, then it is clear that Ff2l(D) is

 the indefinite v- integral of f ÎD in D , and so ffD e V{ D) .

 Conversely, suppose that ffD e ^(D) for each DeD, and let Fp = Iv(ffD,-) .

 For every B e 21(A) , we set

 F(B) . I FD(B n D) ,
 DeD

 and we show that F is the indefinite v- integral of f in A . It is easy to see that F is an

 additive continuous function on 21(A). Given e > 0 , let = e | D 1/(1 + ļ A ļ ) for each

 DeD, and find a thin set c D- for which the pair (f fD,Fp) has an c^y- majorant

 Mp in D - Tp . For every B e 21(A) , set

 «(B) = £ Md(B n D)
 DeD

 and let T = Uj-jg^(D ' U T^) . Fix an x e A - T . Then x e D° for some DeD, and

 we can find rj > 0 so that E~cD whenever x e E- and d(E) < r¡ . Moreover, there is

 a 6 > 0 such that

 f(x)|B|- Fd(B)|<Md(B)

 for each B e 2lQ(D - Tp) with x e B- , d(B) < 6 , and r(B) > . Thus if

 B e 21q(A - T) , x e B- , r(B) > e > , and d(B) < min (r),6) , then B e 2lQ(D - T^)
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 and we have

 f(x)|B| - F(B) I =|f (x) |Bļ -Fd(B)1 < Hd(B) =H(B) .

 Since T is a thin set, and

 ļrn e I A I
 "(*) = X ļrn ¥D)<1 eD = 7T77<f'

 De® děd 1+iai

 the proposition is proved. Ū

 If E c iRm is a measurable set, we denote by ^(E) the family of all measurable

 functions f on E for which the finite dAm exists.

 3.6. Proposition. If A g 21, then ¿'(A)cV(A) and Iy(f,A) = /^f dAm for

 each f g Jf(A) .

 Proof. Let f e y(A) , and set F(B) = /gf dAm for each B e 21(A) . According

 to Lemma 2.3, F is an additive continuous function on 21(A) , and we show that F is the

 indefinite v- integral of f in A . Given e > 0 , there are extended real- valued functions

 g and h on A which are, respectively, upper and lower semicontinuous, and such that

 g < f < h and /^(h - g) dAm < c/2 (see [Ru, Theorem 2.25, p.56]). For every B e 21(A) ,

 set

 c|B|
 M(B) =
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 and fix an x € A . There is a 6 > 0 such that

 g(y)<f(x)+ ' and h(y)>f(x)
 2(1+1*1) 2(1+1*1)

 for each y 6 A with ļ x - y | < Ö . Thus if B e 2lQ(A) , x e B- , and d(B) < 6 , then

 c|B| . e I B I
 f g dA m
 B g m

 Since also

 ļiU.sKDijļi«,,

 we have

 f (x) I B I - F(B) < M(B) .

 As M (A) < e , we conclude that M is an e- majorant of the pair (f,F) in A . D

 A set C = nr|[1_ļ[ai,a.j+h] , where ap...,am , and h are positive real numbers, is

 called a closed cube. Let A 6 21 , x e A0 , and let F be a function on 21(A) . We say

 that F is derivable at x if a finite lim[F(Cn)/|C |] exists for each sequence {Cn} of

 closed subcubes of A such that xECn for n = 1,2,... , and lim d(Cn) = 0 . If all these

 limits exist, they have the same value, denoted by F'(x) .

 3.7. Lemma. Let A e 21 , fe ^(A) , and let F = Iy(f,-) . Then for almost all

 x e A0 the function F is derivable at x and F'(x) = f(x) .
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 Proof. Let E be the set of all x e A° for which either F is not derivable at x ,

 or F'(x) î f(x) . Then given x e E , we can find a ß(x) > 0 so that for each 6 > 0 there

 is a closed cube C c A with x e C , d(C) < S , and

 F(C)
 - -f(x) >«x)

 Fix integers n > 1 and k > 2m , and let EQ = {x e E : ß(x) > 1 /n} . There is a thin set

 T^ c A- such that in A - T^ the pair (f,F) has a (1/nk)- majorant M . Thus for each

 x e A - T^ there is a ¿(x) > 0 so that

 |f(x)|C|-F(C)|<M(C)

 for each closed cube C c A - T^ with x e C and d(C) < 6(x) ; for

 r(C) = l/2m > 1/nk . Let € be the family of all closed cubes C c A - T^ such that

 d(C) < 6(x ) for some x e C , and
 v V/

 I |C|
 I |f(C) -f(xc)|C| > - .

 It is easy to see that € covers - T^ in the sense of Vitali. By [Sa, Chapter IV,

 Theorem 3.1, p.112] , there are disjoint cubes CpCg,- in <£ such that

 I <En - Tk> - ^=lCi I = 0 ■ We have

 P P P

 XlCil inY F(Ci)-f<xC.»lCil| < nVM(C.)
 i=l i=l 1 i=l
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 =nMļyciļ ^nM(A) < i/k

 for each p = 1,2,... , and hence

 00 00

 lEn"Tkl í Uci -2|Ci' S1/k-
 i=l i=l

 Since I I = 0 , we obtain that | Eß | < 1/k for all k > 2m , and consequently

 |En| = 0 . As E = U^=1En , also |E| = 0 . Ū

 3.8. Corollary. If A € 21 , then each fe V{k) is measurable.

 Proof. Since |A'| = 0, the corollary follows from Lemma 3.7 by standard

 arguments (see, e.g., [Sa, Chapter IV, Theorem (4.2), p.112]). Ū

 Next we establish a fairly general result concerning a broad class of integrals.

 If (X,9Jt,//) is a measure space, we denote by ^(/z) the family of all

 9JI- measurable functions f on X with /-^ļfļ dß < +oo .

 3.9. Proposition. Let (X,9H,//) be a a- finite measure space, and let 3e be a

 linear space of 9JI- measurable functions on X which contains ^(/x) . Further, let L

 be a nonnegative linear functional on S such that L(f) = jyi dß for each f e ¿f^ß) .

 Then a function f on X belongs to Jfļ(ļi) whenever both f and |f| belong to S? .

 Moreover, if f e 9e , n = 1,2,... , and lim f = f , then f € S and L(f) = lim L(ffl)

 whenever either of the following conditions holds:
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 W fn * fn+l ' n = ^2' " , and lim L(fn) < + oo ;

 (ii) g < f < h for some g , h in & and n = 1,2,... .

 Proof. Since fi is a- finite , -^(m) contains a strictly positive function w (see

 [Ru, Lemma 6.9, p.121]). If f and |f| belong to 3e , then

 gn = min(|f|,nw)

 belongs to «¿^(/i) , and hence to & , for n = 1,2,... . As w(x) > 0 for each x 6 X , we

 have

 f |f I d/i = lim J gnd/i = limL(gn) < L(|f |) < +oo .
 X X

 Since f is OJÍ- measurable, it belongs to ^(/z) .

 Now the rest of the proposition follows from the monotone and dominated

 convergence theorems applied to the sequences {fn - fj} and {fQ - g} , respectively. Ū

 In view of Proposition 3.6 and Corollary 3.8, Proposition 3.9 applies to the

 variational integral Iy( • ,A) on V(k) , where A € 21 . We also have the following

 corollary.

 3.10. Corollary. Let f be a function A G 21 . Then f = 0 almost everywhere if

 and only if f G ?^(A) and Iy(f,B) = 0 for each B G 21(A) .

 Proof. If f g ^ (A) and Iy(f, ♦ ) = 0 , then it follows directly from Definition 3.1
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 that ļfļ 6 F(A) and Iy( ļ f ļ , ♦ ) = 0 . Now it suffices to apply Proposition 3.9. D

 Note. In view of previous corollary, if a function f is defined almost everywhere on

 a set A in IRm , then the function can be extended to A and the v- integral of the

 extended function depends only on f and not on the way f is extended.

 The next lemma is proved in [P^ , Lemma 5.5]. We quote it here for completeness.

 3.11. Lemma. Let v be a continuous vector field in an open set U c IRm which is

 differentiable at x G U . Then given e > 0 , there is a S > 0 such that

 div v(x) I B I - J ,v»ng dc# < e|B| B

 for each B e 21q(U) with x G B- , d(B) < 6 , and r(B) > e . D

 If v = (fp...,fm) is a vector field defined in E c IRm , we let

 div v(x) = V

 i=l H dí. si i=l si

 for each x e E° at which v is differentiable.

 Note. We use the usual definition of a differentiable map (see, e.g. , [Ru, Definition 7.22,

 p. 150]). In particular, differentiable does not mean continuously differentiable.

 3.12. Theorem. Let A e 21 , and let T c A- be a thin set. Let v be a continuous
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 vector field in A which is differentiate in A° - T . Then div v(x) is defined for

 almost all x 6 A , is v- integrable in A and

 Iy(div v , A) = / .v-nA d<# . A

 Proof. For each B € 21(A) , let F(B) = /g.vng d<# . By Lemma 2.3, F is an

 additive continuous function on 21(A) , and we show that it is an indefinite v- integral of

 f = div v in A . To this end, choose an e > 0 , and let M(B) = e | B | /(1+ 1 A | ) for each

 B g 21(A) . Clearly, M is nonnegative and additive, and M(A) < e . If x G A0 - T ,

 then by Lemma 3.11, there is a 6 > 0 such that

 |f(x)|B|-F(B) I <_i_|B| =M(B) I 1+1 A|

 for each B e 2lQ(A0 - T) with x G B- , d(B) < 6 , and

 r(B) > e > - - - .
 1+ 1 A I

 Thus M is an e- majorant of the (f,F) in A0 - T , and since A' UT is thin subset of

 A , the theorem is proved. Ū

 Let E c IRm and $: E -» Rm . We say that $ is a regular map of E if it can be

 extended to a C^- diffeomorphism (also denoted by $ ) of an open neighborhood of E- .

 For a regular map $ , we denote by det $ the determinant of its Jacobi matrix. Note

 that if $: E -» IRm is regular, then $ is defined uniquely on E- , and det $ is defined

 uniquely on E° whenever E° is nonempty. Since (E' | = 0 , we see that det $ is

 defined uniquely almost everywhere in E . If $ is regular, then $ and det $ are both
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 extended continuously to a neighborhood of E .

 3.13. Lemma. Let $ be a regular map of E c IRm . If E is thin or E e 21 , then so

 is $[E] , respectively.

 Proof. This follows immediately from [Ro, Theorem 29, p.53] and the equality

 ($[E])' = *[E'] . Ū

 3.14. Theorem. Let A e 21 , and let $: A -» IRm be a regular map. If

 f € J^($[A]) , then fo$^|det$| belongs to V{k) and

 Iv(fot.|det»|,A) = Iv(f,#[A]).

 Proof. There are positive real numbers a,b,b' , and c such that the following

 inequalities hold:

 (i) c > 1 and b'/ac < 1/2 ;

 (ii) |$(x) - $(y)| < a|x - y| for each x , y e A- ;

 (iii) b' I B I < I $[B] I < b I B I for each measurable set B c A- ;

 (iv) ||$[B]|| < c||B|| for each B e 21(A) .

 Inequality (ii) is a direct consequence of the regularity of $ . Inequalities (iii) and

 (iv) follow from [Ru, Theorem 7.26, p. 153] and [M, Theorem 50], respectively. Finally, by

 enlarging c , we obtain (i).

 For each B e 21(A) , let F(B) = Iv(f,$[B]) . Clearly, F is an additive function on

 21(A) , and we show that it is also continuous. To this end, choose an e > 0 , and using

 the continuity of I (f,*), find a ¿>0 suchthat |Iv(f,C)| < e/c for each C G 2l($[A])
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 with |C| <bS and ||C|| < c/e . Now if B G 21(A) , |B| < S , and ||B|| < l/e , then by

 (iii) and (iv), respectively, |$[B]|<b|B| < and ||$[B]|| < c||B|| < c/e .

 Consequently,

 |F(B)MIv(f,»[B])|<e/c<e,

 and the continuity of F is established.

 We prove the theorem by showing that F is the indefinite v- integral of

 fo$- ļdet $| in A . Select an e > 0 , and let c' = eb'/ac . There is a thin set

 T c $[A- ] such that the pair (f,Iv(f,-)) has an e'- majorant, say M , in $[A] - T . Set

 S = A' U ^ [T] , and for each B e 21(A) , let

 e|B|
 N(B) = M($[B]) +

 2 ( I A I +1)

 Then S is a thin subset of A- , and N is a nonnegative additive function on 21(A) with

 N(A) < e (see (i)). Choose an x 6 A - S , let y = $(x) , and find a 6 > 0 so that

 f (y) I C I - Iy(f ,C) I < M(C)

 for each C e 2lo($[A] - T) for which y 6 C- , d(C) < a 6 , and r(C) > e' . By making S

 smaller, if necessary, we may also assume that

 I B| 2[|f (y) 1+1] ( I A I +1 )

 for each B e 21q(A°) with x e. B~ and d(B) < S ; for ļ det $| is a continuous function
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 on A° , and |$[B]| = /g|det$| dAm (see [Ru, Theorem 7.26, p.153]).

 Fix a B e 2íq(A - S) with x e B- , d(B) < 6 , and r(B) > e , and let C = $[B] .

 Then y € C , and by (i)- (iv), we have d(C) < a 6 and

 r(C)>|¿r(B)>e'

 Thus

 fo$(x)-|det $(x)|-|B| -F(B) <|f(y)| |det $(x) | • |B| - |$(B) |

 f|B|
 + f(y)|C| -I (f,C) < - - - + M(C) = N(B) ,

 2(|A|+1)

 and we see that N is an e- majorant of the pair (fo$ • ļ det $|,F) in A - S . Ū

 Let A e 21 , fe ^(A) , and e > 0 . We say that an x e A is an e- point of f if

 there is a disjoint sequence {Bn} in 21(A) such that r(Bn U {x}) > c for n = 1,2,... ,

 lim d(Bn U {x}) = 0 , and

 00

 XlMM,)!- -
 n=l

 The set of all e-points of f is denoted by Vf(f,A) , or simply by Vc .

 The next proposition gives a useful necessary condition for v- integrability in terms

 of e- points .
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 3.15. Proposition. Let A e 21 and fe T(A) . Then the set V is thin for each

 e > 0 .

 Proof. Proceeding towards contradiction, suppose that Vf is not thin for some

 e > 0 . Let F = Iy(f, • ) , and find a thin set T c A- and an e- majorant M of the pair

 (f,F) in A - T. Since V~ is not thin, there is an xeVf - (A'uT). Let {Bß} bea

 sequence in 21(A) associated with the e- point x. The open set A - (A UT) contains

 disjoint countable sets with x e C~ , n = 1,2,... , and we let = (Bfl U C ) - T .

 As |TuCn| = 0, it follows from Proposition 3.5 and Corollary 3.10 that

 F(Dn) = F(Bn) . Moreover, by making the Cn's sufficiently small, we may assume that

 d(Dn) = d(Bn U {x}) , and hence also r(Dn) = r(Bn U {x}) . Consequently, there is an

 integer N > 1 such that

 f(x)|Dnļ -F(Dn)| <H(Dn)

 for each n > N . From this we obtain that

 P P P P

 5>(l.)l - £|ř(D,)ISíW£lD.l + ¿»(»n)
 n=N n=N n=N n=N

 P i / P '

 = fw U D»r ' M U Dn p fw I*I + *(*) < f w IjI ł ť n=N ' ^n=N '

 for all p > N , which is a contradiction, for ļ F(Bn) ļ = +œ .

 3.16. Remark. Let A e 21 and f: A -> IR . We say that f is weakly integrable , or

 simply w -integrable, in A if there is an additive continuous function F on 21(A) and a
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 thin set T c A- such that the pair (f,F) has an e- majorant in A- T for each e > 0 .

 By repeating verbatim the arguments of this section, it is easy to show that the w- integral

 has properties identical to those of the v- integral. It follows directly from the definitions

 that the v- integral is an extension of the w- integral. Whether the v- or w- integral (or

 their extensions which will be described in Sections 4 and 5) actually coincide appears

 unknown.

 3.17. Remark. Let f be a w- integrable function in an admissible set A . Then the

 proof of Proposition 3.15 reveals that (ue>gV£)- ÌS a ^11 set- Whether the same can be

 proved for each v- integrable function in A is unclear, and it is likely related to the more

 general problem stated in Remark 3.16.

 4. The integral. We say that a sequence {An} in 21 converges to a set A e 21 , in

 writing {Afl} -» A , if Aqc A for n = 1,2,... , supn|| An|| < +oo , and lim | A - Aß| = 0 .

 A family (£ c 21 is called closed if E e <£ for each E e 21 for which there is a sequence

 {En} in <S with {En} -* E . The closure of a family (E c 21 , denoted by cl <E , is the

 intersection of all closed subfamilies of 21 containing € . It is easy to verify that for each

 (£ c 21 , the closure of (H is a closed subfamily of of 21 .

 4.1. Remark. If <£ c 21 is closed and E g (E , then also E e ; indeed, as

 Am(E ) = 0 , the constant sequence {E} converges to each set B with E c B c E~ . In

 particular, the family 21(A) with A € 21 is closed if and only if A is a closed set.

 If <S c 21 , we denote by cl^(<£) the collection of all E G 21 for which there is a

 sequence {En} in (E with {En} -» E . As the constant sequence {A} in 21 converges to

 A , we see that (E c clj(<£) for each <£ c 21 . However, the following example shows that

 clļ((E) need not be closed.
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 4.2. Example. For n = 1,2,... , let = (2 n, 2 n+1) , and let E = (0,1] . If

 (B = 2lo(U®=1En) , then cl^C) = 2lQ(E) is not closed; for E~=[0,1] belongs to

 cl[2lo(E)] .

 We show that the closure of a family (E c 21 can be described by a transfinite

 construction .

 Let <£ c 21 , and let c1q((E) = (E . Assuming that clft((S) has been defined for each

 ordinal a < ß < , we define cl^(<£) as follows:

 (i) if ß is a limit ordinal , let cl^((E) = ua<^a(^) >

 (ii) if ß = a + 1 , let cl ß(<E) = cl^cljč)] .

 4.3. Proposition. For each (S c 21 , we have cl <£ = cl ((E) .
 u>i

 Proof. Since (E c cl ((£) v 7 c cl (£ , it suffices to show that cl , (<E) ' is closed. Let
 CiJļ v 7 , , '

 {En} be a sequence in cl^ ((B) which converges to an E e 21 . For n = 1,2,... , there is

 an č*n < u> i with En 6 clft ((£) . If a = supn <*n , then {En} is a sequence in clft((E) ,
 n

 and so E e cla_|_j((S) . As a + 1 < , the proposition follows. Ū

 4.4. Lemma. Let A and B belong to 21 , and let {An} and {Bn} be sequences

 in 21 which converge to A and B , respectively. Then {Afl U Bn} -> A U B and

 n Bn^ A n B •

 Proof. Since A U B - (Aß U Bn) and AflB - (An n Bfl) are both contained in

 (A - An) U (B - Bn) , the lemma follows from [M, Theorem 35]. Ū

 4.5. Proposition. If 3 is an ideal in 2 1 , then so is cl 3 .
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 Proof. By Lemma 4.4, clj(3) is closed with respect to unions. Let A e 21 and

 B e clļ(3) . Then there is a sequence {Bn} in 3 with {Bn} -» B . By Lemma 4.4,

 {A n Bn} -> A D B ; for the constant sequence {A} converges to A . As {An Bfl} is a

 sequence in 3 , we have A il B e cljp) . Thus clj(3) is an ideal in 21 . Since the union

 of any increasing collection of ideals in 21 is also an ideal in 21 , the proposition follows

 from Proposition 4.3 by transfinite induction. Ū

 Let A e 21 and f: A -» IR . We denote by 23(A,f) the family of all B € 21(A) on

 which f is v- integrable. By Proposition 3.5, the family 3?(A,f) is an ideal in 21 .

 4.6. Definition. Let A G 21 and f: A -» 1R . We say that f is integrable in A if

 A e cl[Q3(A,f)] and there is a continuous additive function F on 21(A) such that

 F(B) = Iy(f,B) for each B 6 9J(A,f) .

 The family of all integrable functions on a set A 6 21 is denoted by J(A ) . The

 following fact is an immediate consequence of Propositions 3.5 and 4.5.

 4.7. Proposition. If A e 21 and f e .7(A) , then f fB e .7(B) for each

 B e 21(A) . Ū

 4.8. Remark. If A G 21 , then each additive continuous function F on 21(A) has a

 unique additive continuous extension to 2l( A- ) . Indeed, as Am(A ' ) = 0 , the extension

 F of F is obtained by setting F(B) = 0 for each B e 2l(A- - A) . From this and

 Remark 4.1, it follows that any extension to A- of an integrable function f in A is

 integrable in A- .

 If A e 21 and f e .7(A) , then each function F on 21(A) which satisfies the
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 conditions of Definition 4.6 is called an indefinite integral of f in A . As with the

 variational integral, our task is to show that every f e J(A) has precisely one indefinite

 integral. The proof requires three lemmas.

 4.9. Lemma. Let A e 21 , and let F be an additive function on 21(A) . Then F is

 continuous if and only if lim F(Bn) = F(B) for each sequence {Bn} in 21(A) which

 converges to B e 21(A) .

 Proof. Let F be continuous, B e 21(A) , and let {Bn} be a sequence in 21(A)

 which converges to B . Choose an e > 0 with 1/e > ||B|| + supn||Bn|| , and find a 6 > 0

 so that I F(C) I <e for each C G 21(A) for which |C| < Ô and ||C||<l/e. There is an

 integer N > 1 such that |B - Bn| <6 for each n > N . By [M , Theorem 35],

 IIB - Bn|| < ||B|| + ||Bn|| < 1/e

 for n = 1,2,... , and so

 |F(B)-F(Bn)| = |F(B-Bn)| <e

 for each n > N .

 Conversely, if F is not continuous, then there is an e > 0 and a sequence {Bn}

 in 21(A) such that 1BJ < 1/n , ||Bn|| < 1/e , and

 (< |F(On)l = |F(A) -F(A-Bn)|

 for n = 1,2,... . Yet, it follows from [M, Theorem 35] that {A - Bß} -> A . Ū
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 4.10. Leuua. Let 3 and 3 be two ideals in 21 . Then cip fl 3) = (cl 3) n (cl 3) •

 Proof. As 3 n 3 c cl 3 , we have cl(3 fi Z) c cl 3 , and by symmetry, also

 cl(3 n 3) c (cl 3) n (cl 3) . Let ß < , and assume that for each a < ß , clft(3) and

 cla(3) are ideals in 21 with clft(3) n cl^(O) C cl(3 n 3) ; this is indeed true for ß = 1 . If

 ß is a limit ordinal, then cl^(3) = ua<^aP) d ÁZ) = ua<^a(3) • Since

 a< ax < ß implies cl^(3) c cla,(3) and clft(3) C clft,(3) , it is easy to verify that cl^(3)

 and cl^(3) are ideals in 21 with cl ß(3) n cl ÀZ) C cl(3 fl 3) • Now let ß = a + 1 , and let

 A G cl^(3) fi cl^(3) . Then there are sequences {Afl} in cla(3) and {BR} in clft(3)

 with {Afl} -> A and {Bn} -> A . By Lemma 4.4, {Aß D Bn} -» A , and as cla(3) and

 clft(3) are ideals, {Afl n Bn} is a sequence in clft(3) fi cl^(3) c cl(3 fl 3) • Thus

 A € cl(3 fl 3) which proves again that cl^(3) il ci^Z) C cl(3 n 3) • The lemma follows
 from Proposition 4.3. D

 4.11. Lemma. Let A € 21 , and let F^ be an indefinite integral in A of f j G S(A) ,

 i = 1,2 . If < fg , then Fj < F2 .

 Proof. By Lemma 3.2,

 F1(B)=Iv(f1,B)<Iv(f2,B)=F2(B)

 for each B in 3 = 2J(A,fļ) n 2}(A,f2) . By Remark 4.8, we may assume that A is a

 closed set. It follows from Remark 4.1, Proposition 4.5, and Lemma 4.10 that

 cl 3 = 21(A) . By Lemma 4.9, Fj < F2 on clj(3) , and by transfinite induction Fj < F2

 on cl (3) = cl 3 (see Proposition 4.3). D
 u>l
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 4.12. Corollary. If A € 21 and f e .7(A) , then all indefinite integrals of f in A

 are equal. Ū

 Let A € 21 and f € «7(A) . In view of Corollary 4.12, f has a unique indefinite

 integral in A , denoted by I( A;f, • ) . The number I(A;f,A) is called the integral of f

 over A . Since I(B;f, - ) = I(A;f,-)f2l(B) for each B e 21(A) , no confusion will arise if

 instead of I(A;f,*) and I(A;f,A) , we write simply I(f, > ) and I(f, A) , respectively. It is a

 direct consequence of Definition 4.6 that V(k) c .7(A) and I(g,A) = Iy(g,A) for each

 g 6 V{k) . We shall see later (Examples 4.29 and 4.30) that the inclusion V(k) c .7(A)

 is proper. Now we show that the integral has properties similar to those we established for

 the variational integral in Section 3.

 4.13. Proposition. If A e 21 , then .7(A) is a linear space , and the map

 f h I(f,A) is a nonnegative linear functional on .7(A) .

 Proof. The nonnegativity of the map f h I(f,A) follows from Lemma 4.11. The

 remaining properties are established transfinitely by arguments similar to that employed in

 the proof of Lemma 4.11. D

 If <E and f) are families of sets, we set

 (E V J) = {E u H : E e (B ¿ H e í)} .

 A transfinite induction argument, similar to the proof of Lemma 4.10, yields the following

 lemma.

 4.14. Lemma. If (E and Ą are subfamilies of 21 , then we have
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 (cl (E) V (cl Ą) C cl((E V*). Ū

 4.15. Proposition. Let A e 21 , f: A -» IR , and let D be a division of A . Then

 f G ^(A) if and only if f I'D G ./(D) for each De®.

 Proof. We may assume that V = {E,H} . As the converse follows from

 Proposition 4.7, suppose that f , properly restricted, belongs to «/(E) and ^7(H) , and let

 (£ = 2J(E,f) and S) = 2J(H,f) . By Proposition 3.5, (£ V f) C 93(A,f) , and it follows from

 Lemma 4.14 that A 6 cl[2J(A,f)] . Setting

 F(B) = I(f ,B n E) + I(f ,B n H)

 for each B e 21(A) , it is easy to check that F is the indefinite integral of f in A . D

 4.16. Lemma. Let (E c 21 , and let E G cl (S . Then there are Efl e <S such that

 En C E , n = 1,2,... and |E-UnEn|=0.

 Proof. Let 0 be the family of all sets A G 21 for which there are Efl G (5 such

 that En c A , n=l,2,..., and | A - UEn| = 0. It is easy to see that ÎC0 and that (5 is

 closed. Hence cl <3 c 0 . D

 4.17. Corollary. If A e 21 and fe ^(A) , then f is measurable.

 Proof. By Corollary 3.8, ffE is measurable for each E G 2J(A,f) . Since

 A G cl[2J(A,f)] , the corollary follows from Lemma 4.16. Ū

 4.18. Remark. By Corollary 4.17, we see that Proposition 3.9 applies to the integral
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 I( • ,A) on «/(A) , where A e 21 . We also see that an almost everywhere statement

 completely analogous to Corollary 3.10 holds for the integral I(f,A) .

 4.19. Lemma. Let E c IRm , and let 0 be the family of all open sets G C IRm for

 which Sl0(G) C cl[2l0(E)] . Then Gq = U 0 belongs to 0 .

 Proof. For each xeGQ find a Gx 6 0 containing x , and a closed neighborhood

 U of x for which U e 21 (G )• If A e 2l(G„) , 7 then there are xlv..,x„ in A- such x x ov x' ov o' , 7 i7 n

 that A- c u^_ļUx ; for A- is compact, and {U° : x e A-} is an open cover of A- .

 By our choice of the U 's , we see that A fi U belongs to 21 (G ) , and hence to
 X , Xj Xj

 cl[2lQ(E)] for i = l,...,n . Since cl[2lQ(E)] is an ideal in 21 , (see Proposition 4.5), we

 conclude that A = U?_j(A fl Ux ) belongs to cl[2lQ(E)] . The lemma follows. Ū

 4.20. Lemma. If A e 21 and T c A- is thin, then A e clj[2lo(A - T)] .

 Proof. By Lemma 1.1, for each integer k > 1 , there is a sequence {T, } of
 K^n n

 dyadic cubes such that A ' U T c UT, , Ķ 11 I T, I < 1/k , and 11 Kļll 11 Jv^ll

 X"1!.,»11 <«<*(*' uT) *1
 n

 where a is the constant defined in Lemma 1.1. Fix an integer k > 1 , and for n = 1,2,... ,

 let n be the collection of those dyadic cubes C for which d(C) = d(T^ n) and

 C If t£ n = (UX^ n)° , then {T^ n}n is an open, cover of A' UT. As T
 nk + nlf

 is compact, A U T c Un_jTļ, n for some integer n^ > 1 . Letting = Un_ n and

 B^ = mk , wc see that A ' U T c b£ , and
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 n

 l|Bkl| < 3m^||Tk n|| < 3m[o^(A' U T) + 1] ;
 n

 for n contains 3m cubes congruent to n . It follows that {A - BļJ is a sequence

 in 2lQ(A - T) and {A - BjJ -» A (see [M , Theorem 35]).

 4.21. Corollary. Let H c IRm be an open set, and let T be a thin set. Then

 21(H) c clj[2lo(H - T)] .

 Proof. If B g 2í(H) , then B G cljJ2lo(B - T)] by Lemma 4.20. Since B - T c

 H - T , we have cljplJB - T)] c cl^QlJH - T)] , and hence B e cljßl^H - T)] . ū

 A compact set T c IRm is called a- thin if it is a countable union of thin sets.

 4.22. Proposition. Let A e 21 , and let T c A- be <r- thin. Then

 A G cl[2lo(A - T)] .

 Proof. Let GQ be the union of all open sets G c IRm for which

 21q(G) c c1[21q(A - T)] . Then GQ is an open subset of IRm , and by Lemma 4.19,

 '(G0)CC'['(A~T)}.

 Suppose that A0 is not contained in GQ . Then E = A° - GQ is a nonempty

 locally compact subspace of IRm (see [D, Chapter XI, Theorem 6.5(2), p. 239]). Since

 A0 - T c GQ , we have E c T . If T = UnTn where TpT2,... are thin sets, then by the

 Baire category theorem (see [D, Chapter XI, Theorem 10.3, p.250), there is an integer
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 N > 1 such that the interior of E n relative to E is nonempty. This means that

 there is an open set G C IRm such that G fi E ^ 0 and G fi E c TN * In particular ,

 H = G n A° is a nonempty open set which is not a subset of GQ . Moreover,

 H - tn c G n A° - G n E = Ģ n (A° n Go) c G0 ,

 and so by Corollary 4.21,

 a0(H) c cij [ao(H - tn)] c cij [ao(0o)] c ci^ci [a0(A - t)] } = ci [at0(A - t)] .

 As H is not contained in GQ , this contradicts the definition of GQ , and we conclude

 that A° c G .It follows that
 O

 cljpl0(A0)] cclj [»„(«<,)] ccljtcieyA - T)]} = cl[a0(A-T)] .

 Since A' is thin, Lemma 4.20 implies that A belongs to

 cllPlJA - A')] = cl]J2lo(A0)] , and the proposition follows. D

 The next example shows that for no ordinal a < can cla[2l0(A - T)] replace

 cl[2lQ(A - T)] in Proposition 4.22.

 4.23. Example. As we agreed in Section 1, we identify an ordinal with the set of all

 smaller ordinals, and we give the order topology. Let ß < and suppose that for

 each a < ß and each nonempty interval (a,b) we have defined an order preserving

 homeomorphism a + 1 -» (a,b) ; if ß = 1 , this can be done by letting </?q(0) = x for

 any x 6 (a,b) . If ß = a + 1 , we can define tpßi ß + 1 -♦ (a,b) by letting <p^y) = <pQ(i)

 for each 7 < a , and <Pß(ß) = x for any x e (</>ft(a),b) . If ß is a limit ordinal, find

 143



 ordinals < ••• < ß with supn <*n = ß , and points Xq < < ... < y in (a,b)

 with supn xn = y • By the induction hypothesis, for n = 1,2,... , there is an order

 preserving homeomorphism ^n: % + 1 (xn_pxn) • Setting = ^(7) if 7 < ,

 <Pļ£i) = i>n{i) if «n_1 <'7 < ť*n , n = 2,3,... , and tp^ß) = y , it is easy to check that

 <Pß ß+ 1 -» (a,b) is an order preserving homeomorphism.

 Now given an ordinal a < , we define oja according to the usual rules for

 ordinal arithmetic (see [Si, Chapter XIV, Sections 8 and 9, pp. 287 - 290]). As ua < Wj ,

 by the previous paragraph, there is an order preserving homeomorphism <p from u + 1

 into the interval A = (0,1) . The set T = <p(ujQ +1) is a a- thin subset of A , and it is

 not difficult to verify by transfinite induction that A £ clft[2l0(A - T)] (cf. Example 4.2).

 4.24. Theorem. Let A 6 21 , and let T c A- be a a- thin set. Let v be a

 continuous vector field in A- which is differenti able in A° - T . Then div v(x) is

 defined for almost all x € A , is integrable in A and

 I(div v,A) = f vn. A dc# . A' A

 Proof. For each B e 21(A) , let F(B) = /g.v-ng d<& . By Lemma 2.3, F is an

 additive continuous function on 21(A) . Let f = div v and B G 3J(A,f) . By Theorem

 3.12, F(C) = Iy(f,C) for each C 6 2lQ(B - T) . Using Lemma 4.9 and Propositions 4.3

 and 4.22, a simple transfinite induction yields that F(B) = Iy(f,B) . From Theorem 3.12

 it also follows that 2lQ(A - T) c 23(A,f) . Thus A 6 cl[93(f,A)] by Proposition 4.22, and

 the Theorem is established. Ū

 Let A e 21 and f : A -> IR . We denote by 3(A,f) the family of all B 6 21(A) on
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 which f is integrable. By Proposition 4.15, the family 3(A,f) is an ideal in 21(A) .

 4.25. Proposition. Let A € 21 and f: A -» IR . Then f e .7(A) if and only if the

 following conditions are satisfied:

 (i) there is a sequence {An} in J(A,f) converging to A ;

 (ii) a finite lim I(f>Bn) exists for each sequence {Bn} in 3(A,f) which converges

 to A .

 Proof. Suppose that conditions (i) and (ii) are fulfilled, and for B e 3(A,f) , set

 F(B) = I(f,B) .

 First we observe that if {Xfl} and {Y } are sequences in 3(A,f) converging to

 A , then lim F(Xn) = lim F(Yn) . Indeed , if lim F(X ) # lim F(Y ) , we let

 Z 2n_j = Xn and Z2n = Yn for n = 1,2,... . Then {Zn} -> A , and contrary to (ii),

 lim F(Zn) does not exist.

 Let C e 21(A) , D = A - C , and let {Xn} be a sequence in 3(A,f) converging to

 A . If lim sup F(Xn n C) = +00 , then for each integer k > 1 there is an integer n^ > 1
 such that

 F(X n C) > -F(Xn n D) ♦ k .
 K

 Thus letting B^ = (Xn n C) U (Xn fi D) , we see that lim F(Bjt) = +oo . This k

 contradicts (ii) , for {BjJ -» A by Lemma 4.4 . From this and symmetric arguments, we

 conclude that the sequences {F(Xn D C)} and {F(Xn n D)} are bounded. Now suppose
 that
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 lim inf F(Xn n C) < lim sup F(Xn D C)

 oř

 lim inf F(Xn Cl D) < lim sup F(Xn n D) ,

 and choose subsequences {Cļ} and {D^} , i = 1,2 , of {Xfl D C} and {Xfl D D} ,

 respectively, so that

 lim inf F(Xn n C) = lim F(cjļ) , lim sup F(Xfl (1 C) = lim F(C¡1) ,

 lim inf F(Xn n D) = lim F(d1) , lim sup F(Xfl n D) = lim F(dJ) .

 Then {cļ U d1} -» A , i = 1,2 , and

 lim F(C* U DJ) = lim F(Cjļ) + lim F(dJ) < lim F(cjļ) + lim F(D¡1) = lim F(C^ U D¡1) ,

 contrary to our previous observation. Thus a finite lim F(Xfl fl C) exist. Moreover, by

 arguing as before, we observe that lim F(Xn n C) does not depend on the choice of the

 sequence {Xn} converging to A . If Ce 3(A,f) , then it follows from Lemma 4.9 that

 F(C) = lim F(Xn n C) . We conclude that F can be extended from 3(A,f) to 21(A) by

 setting F(B) = lim F(An D B) for each B e 2Í(A) . This extension is clearly additive, and

 we complete the proof by showing that it is also continuous.

 Let {BļJ be a sequence in 21(A) which converges to a set Be 21(A) , and let

 C = A - B . By the definition of F(B^) , there is an integer n^ > 1 such that

 lF(An n Bfc) - F(Bk) I < 1/k , k = 1,2,... . The sets Xfc = (Afl D Bk) U (An fi C)
 k k k

 belong to 3(A,f) , and {X^} -» A by Lemma 4.4. Thus
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 F(B) = lim F(Xk n B) = lira F(An fi Bk) = lim F(Bk) ,
 k

 and the continuity of F is established.

 The converse follows directly from Lemma 4.9. D

 The previous proposition shows that the integral I is closed with respect to the

 formation of improper integrals. We show next that the integral I is actually the smallest

 extension of the variational integral I which has this property.

 Let A G 21 and f: A -> IR . We let 3q = 23(A,f) , and for each B G 3q , set F(B) =

 Iv(f,B) . Assuming that 3Q and have been defined for each ordinal a< ß < so
 that 3 c 3, and F =F .fCJ whenever a < a' < ß ^ ' , we define 3ň and Ffl as a a a a a ^ ' , ß p

 follows:

 (i) If ß is a limit ordinal, let 3 ß = ^a<fp a and let F^ be the unique function
 on 3 o such that F„ = F/,t3 for each a < ß ^ . p o a p a ^

 (ii) If ß = a: + 1 , let 3ß consist of all B e clļPa) such that a finite lim Fa(Bn)

 exists for each sequence {Bn} in 3q converging to B . It is easy to see that all such

 limits have the same value, and we declare it, equal to F^(B) .

 A simple transfinite argument shows that any extension of the variational integral

 Iy(f, • ) on 93(A,f) which is closed with respect to the formation of improper integrals (in

 the sense of Proposition 4.25) also extends F^ .

 4.26. Proposition. Let A e 21 and f: A -» 1R . Then 3 = 3(A~.f) ' » / and
 CJj ' » /

 I(f,B) = F , (B) for each B G 3(A~ f) .
 n
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 Proof. In view of Remark 4.8 , we may assume that A is closed . By Proposition

 4.25, a straightforward transfinite induction shows that 3 c 3(A,f) and
 n

 F, , (B) = I(f,B) for each B e 3 , .
 U/ļ '

 Now let B G 3(A,f) . Then B G cl [Q3(B,f)ļ , and we show inductively that

 cl^p^Bjf)] c 3^ for each a < . This is true if a - 0 , and we assume that it is true

 for all a < ß < . If ß is a limit ordinal, then trivially cl^[QJ(B,f)] c 3^ . Let

 ß = a + 1 , and let C 6 cl^[93(B,f)] . By the inductive hypothesis, there is a sequence

 {Cn} in 3^ which converges to C . There is a J < u)^ such that {Cn} is a sequence

 in 3^ , and hence C 6 cl1(CT^) . If {Dn} is a sequence in 3^ which converges to C ,
 then

 limF7(Dn) = limI(f,Dn)=I(f,C)#±oo.

 It follows that C G , and we see again cl^[Q3(B,f)] c 3^ . Ū

 4.27. Lemma. Let A G 21 , and let $ : A -* IRm be a regular map . Then the

 following statements are true.

 0) If {B } is a sequence in 2i(A ) converging to a set Be 2l(A~ ) , then

 {§[Bn]H$[B],
 (ii) If <£ C 2l(A~) , then cl({*[E] : E G <E}) = {í[E] : E G cl (E } .

 Proof, (i) Clearly, $[Bn] c $[B] , and there are positive real numbers b and c

 such that
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 I*[C]| <b|C| and ||§[C]||< c||C||

 for each C G 2l(A~ ) (see [Ru, Theorem 7.26, p.153] and [M, Theorem 50]). Thus

 0 < lim |*[B] -*[Bn]| = lim |í[B-BJ| < b lim |B - Bn| =0

 and

 supnÍ|* [Bn] II < c supn||Bn|| < +00 .

 (ii) Applying (i) to ^ , we see that the family £ = {$[E] : E 6 cl <E } is closed.

 As € contains {$ [E] : E G <£} , it contains also D = cl{$[E] : E G <£} . To establish the

 reverse inclusion, let <£ = {$[E] : E G clft((S)} for a < . Clearly £q C D , and we

 assume inductively that for all a < ß < Wj . If ß is a limit ordinal, we see

 immediately that €ß c D . Let ß = a + 1 , and let B 6 £ß . Then B = $(E) for some

 E € cl^((E) , and we can find a sequence {En} in cla(<£) which converges to E. By our

 assumption {i(En)} is a sequence in D , which converges to B by (i) . As D is closed,

 Be D and we have again that î^cD. Now the inclusion follows from
 Proposition 4.3. Q

 4.28. Theorem. Let A G 21 , and let $: A -» IRm be a regular map. If f G ,/($[A]) ,

 then fo* • I det $ | belongs to ^(A) and

 I(fo$. |det $| ,A) = I(f ,$[A] ) .

 Proof. By Theorem 3.14, we have
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 ®(A,fo*.|detł|) = {$"" 1 [B] : B e 9J(*[A] ,f)} .

 As $[A] e cl[QJ($[A],f)] , it follows from Lemma 4.27, (ii) applied to * that A belongs

 to cl[9J(A,fo$. I det $ I ] . For each B G 9J(A,fo*. |det i|) , let F(B) = I(f,*[B]) . Then by

 Lemma 4.27, (i), F is an additive continuous function on 21(A) , and by Theorem 3.14,

 F(B) =Iv(fo§.|detf|,B)

 for each B e 23(A,fo$- ļ det $1) . The theorem follows. Ū

 4.29. Example. We shall construct a function f: IR -» IR , which is integrable but not

 v- integrable in A = [0,1] .

 For each nonempty open interval U c IR , we fix a continuous function IR -> [0,oo)

 such that <pļj(s) = 0 f°r each s e IR - U , and J dA = 1 .

 Given a nondegenerate compact interval C = [a,b] , we set

 C+(n) = (a + 2-2n+1 |C| , a+2~2n+2|C|) ,

 C_(n) = (a + 2 2n I C | , a + 2"2n+1 |C|) ,

 n = 1,2,... , and let

 00

 fC= lC'Xn 1 [ (n) - ^C_(n) ]
 n=l
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 The function fç is continuous in IR - {a} , and fç(s) = 0 for each s G IR - (a,b) . If

 Fc<s> = -/ fc dA
 s

 for s G (a,b) , and Fq(s) = 0 otherwise, then Fç is continuous in IR , Fç(s) = fçi(s)

 for each s G IR - {a} , and

 |Fc(s)| <-Fc(a*2-')C|) = |C|

 for each s G IR . Interpreting Fç as a vector field in IR , we obtain from Theorem 3.12

 that fc is v- integrable in C , and Iv(fç,C) = 0 .

 Claim. The point a is an e- point of f^ for each e G (0,1/2) .

 Proof. Recall that e- points were defined in the paragraph preceding Proposition

 3.15. Fix an odd integer p > 1 , and for n = 1,2,... , let

 Bn= (ft + 2_np I c I , a+2~(n-1)p|C|) .

 Since

 d(Bn u {a}) = 2~<n-1>P|C| , I Bn u {a} | = [2 1 ^ - 2 nl>] ] C ļ ,

 and ||Bn U {a}|| = 2 , we see that lim d(Bfl U {a}) = 0 and r(BQ U {a}) = (1 - 2~p)/2 .

 Moreover, it is easy to verify that
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 As {Bn} is a disjoint sequence in 21(C) , the claim is established. D

 Now let A = [0,1] , and let , k = 1,2,... . Set

 00 00

 f . £fc and F . £fc .
 k=l k k=l K

 Since I Fç, | < |CjJ = 2- ^ , we see that F is continuous in IR ; note that only the
 lv

 continuity of F at 0 requires a proof. If S = {0} U {2- ^ : k = 1,2,...} , then F'(s) =

 f(s) for each s e IR - S . As S is a a- thin subset of A (see the the paragraph preceding

 Proposition 4.22), it follows from Theorem 4.24 that f is integrable in A , and

 I(f,A) = 0 ; for F vanishes outside (0,1). On the other hand, [Vļ^(f,A)]- = S is not
 thin, and consequently, f is not v- integrable in A by Proposition 3.15.

 4.30. Example. If K c IRm is a cube, we say that g: K -» IRm is R- integrable in K

 if it is integrable in K according to [P^, Definition 3.1]. By [P^, Proposition 8.3], the

 function f from Example 4.29 is R- integrable in A = [0,1] . Let g = f ® 1 , i.e. ,
 o

 g(s,t) = f(s) for each (s,t) e IR . We show that in K = A*A, the function g is

 integrable, but it is neither v- nor R- integrable. For the R- integral, this provides a

 negative answer to the Problem 6.4 in [P^].

 We shall use freely the notation of Example 4.29. If v(s,t) = [F(s),0] for each
 2 9
 (s,t) e IR , then v is a continuous vector field in IR" , which is differentiable in
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 o

 IR - (S * A) . As S X A is a a- thin subset of K and g = div v , by Proposition 4.24, we

 see that g is integrable in K and I(g,K) = 0 .

 If g is, respectively, v- or R- integrable, then it follows from Theorem 3.12 or [Pg,

 Theorem 5.6] that the indefinite v- or R- integral G of g in K coincides with the

 function B h /g-v*ng d<# for each interval BcK for which B- c (0,1] x A .

 Assume first that g is v- integrable. For e = 1/9 , find a thin set T c K , and an

 e- majorant M of the pair (g,G) in K - T . Then for each x e K - T , there is a

 ¿(x) > 0 such that

 g(x)|B| - G(B) I < 11(B)

 for each B € 2lQ(K - T) with x 6 B- , d(B) < ¿>(x) , and r(B) > e .

 As £# [U^_ļ({2 k} x A)] = +00 and <^(T) < +oo , there is an integer k > 1 such

 that £# [({2 k} x A) - T] > 0 . Since Jé is a Radon measure in {2- x A (see [GP,
 - k

 Corollary 6.8]) the set ({2 - }*A)-T contains a perfect subset P . By applying the

 Baire category theorem (see [D, Chapter XI, Theorem 6.5(2), p. 239] to P , we obtain an
 o

 open set U c IR with P D U # 0 and a a > 0 such that the set

 Q = {x G P n U : 6(x) > A}

 is dense in P n U . As P and T are disjoint compact sets, there is an interval [c,c+h]

 such that 0 < h < a , {2_k} x [c,c+h] cPflU, and

 [2 k , 2- k + h] x [c , c + h] c K° - T .
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 le 2N I 2
 Without loss of generality, we may assume that h = 2 for some integer N > 2 .

 To simplify the the notation, we set q = 2N - 2, and for n = q,q+l,... , let

 rn = 22"-<l-1 and

 Dn = [2~ ^ + 2-k"2n+1 , 2"k * 2-k-2n+2) » [c , c ♦ h) .

 Each Dn is the disjoint union of rn squares

 D n i . = [2- k ♦ 2-k-2n+1 , 2-k ♦ 2-k-2n+2) » [c t (i-l)2-k-2n+1 , c + i2 k 2n-*-1 ) , n , i

 for i = l,...,rn . In ({2~~ x [c,c+h]) fi Q , we can find distinct points xfl j so that

 r(D . U {x .}) = 1/8. Since the sets E . = D • U {x .} are disjoint,
 lljl 9 ) ) /

 d(En,i) < ^(xn,i) ' r(En,i) > f ' and g(xn,¡) = °> we have

 / p rn v p rn p rn

 e >M(K) >M ' (J U E„,i ' - I XM(En,i) ž I X W(xn , i> ' En, i '
 ' n=q i=l ' n=q i=l n=q i=l

 P rH P

 n=q i=l n,i' ' n=q ^ n'

 = Í|/DSdA2|=Íh/(c) ' "A = h|Ck|fl/n. n=q n n=q vk;+v ' n=q

 for p = q,q+l,... . This a contradiction, for ^=q(l/n) =•+<».

 Now assume that g is R- integrable. Then there is a thin set T c K and a
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 & K -» (O, +00) such that with e = 1/9 ,

 P

 X g(xi)|Ai) -G(A¡) < €
 i=l

 for each ¿-fine e- partition {(ApX^),...,(Ap,Xp)} in A - T (see [P3, Section 2] for the

 definition of a ¿-fine e- partition in A - T ) . Proceeding exactly as before, we define

 the points xn j and the sets En j , and observe that for each p = q,q+l,... , the collection

 is a ¿-fine e- partition in K - T . Since

 p rn p

 n=q i=l n=q

 a contradiction follows.

 5. The star- integral. We say that a sequence {An} in 21 star- converges to a set

 A G 21 , in writing { A^} * A , if AfiC A for n = 1,2,... , and lim ||A - An|| = 0 . A

 family (S c 21 is called star-closed if E e <B for each E e 21 for which there is a sequence

 {En} in <E with {Efl} * E . The star-closure of a family <£ C 21 , denoted by ci* <E , is

 the intersection of all star- closed subfamilies of 21 containing <E . It is easy to verify that

 for each <£ c 21 , the star-closure of (E is a star- closed subfamily of 2t , which contains E-

 for every E e <£ (cf. Remark 4.1). Instead of star-convergence, star- closed, and

 star- closure, we shall usually write *- convergence, *- closed, and *- closure, respectively.
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 The following lemma indicates the relative simplicity of the ^-closure operation (cf.

 Examples 4.2 and 4.23).

 5.1. Lemma. Let (E c 21 , and let E e 2Í . Then E G cl* (S if and only if there is a

 sequence {En} in £ with {En} * E .

 Proof. Let (E be the family of all sets E e 21 for which there is a sequence {Efl}

 in (£ with {En} * E . Clearly, (£ c (S* c ci* (S , and the lemma will be proved by showing

 that <H is a *- closed family. To this end, let {An} be a sequence in <E which

 ★-converges to a set A e 21 . For each An there is a sequence {En in <S with

 {En -> An . For n = 1,2,... , find an integer so that ||An - Efl ^ || < 1/n , and set
 ' ' n

 E = E , . Then E e (S , E c A c A , and by [M, Theorem 35],
 11 ll^iV^ 11 11 li

 IIA - EJ = II (A - An) U (An - En) II < ||A - AJ| + ||An - EJ < ||A - AJI + 1/n .

 Thus {En}*A,and A e £* . D

 5.2. Definition. Let A e 21 , and let F be a function on 21(A) . We say that F

 is star- continuous (or simply ★- continuous) if given t > 0 , there is a 6 > 0 such that

 I F(B) I < e for each B G 21(A) with ||B|| < 6.

 5.3. Lemma. Let A 6 21 , and let F be an additive function on 21(A) . Then F is

 ★-continuous if and only if lim F(Bn) = F(B) for each sequence {Bn} in 21(A) which

 ★-converges to B e 21(A) .

 Proof. Let F be *-continuous , and let {Bn} be a sequence in 21(A) which
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 *- converges to B e 21(A) . Choose an f > 0 , and find S > 0 so that | F(C) | < e for

 each C G 21(A) with ||C|| < 6 . There is an integer N > 1 such that ||B - Bn|| < 6 for

 each n > N . Hence

 |F(B) -F(Bn)| = |F(B-Bn)l < e

 for each n > N , and we see that lim F(Bn) = F(B) .

 Conversely, if F is not *- continuous, then there is an e > 0 and a sequence

 {Bn} in 21(A) such that ||Bn|| < 1/n and

 e < |F(Bn)| = |F(A)-F(A-Bn)|

 for n = 1,2,... . Yet {A - Bn} * A , for

 lim||A-(A-Bn)|| = lim||Bn||=0. 0

 5.4. Lemma. The following statements are true.

 (i) Each sequence {Afl} in 21 which *- converges to a set A G 21 also converges

 to A .

 (ii) Each closed subfamily of 21 is •*- closed; in particular, cl* <£ c cl for every

 (S C 21 .

 (iii) Each continuous function on 21(A) with A G 21 is *- continuous.

 Proof. Properties (i) and (iii) follow from [MM, Section 10] , and property (ii) is a

 direct consequence of (i). D
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 5.5. Lemma. Let A e 21 , and let v be a bounded e#- measurable vector field on

 A" . If F(B) = /B.vnB d<& for each B e 21(A) , then F is an additive *- continuous

 function on 21(A) .

 Proof. The additivity of F is clear, and if c = sup {||v(x)|| : x e A-} , then

 |F(8)| < / |vn„| d<* < c/ >B|| d<*T = c||B||

 for each B e 91(A) . The *- continuity of F follows. Ū

 5.6. Lemma. Let A and B belong to 2Í , and let {An} and {Bn} be sequences

 in 21 which ★- converge to A and B , respectively . Then {Aq U Bn} * A U B and

 {AnnBn}ÍArtB.

 Proof. Letting C = A U B , we have

 A U B - (Afi U Bn) = [A U B - (An U B)] U [An U B - (Afl U Bn)] =

 [(A-AI1)n(C-B)]u[(C-An)n(B-Bn)] =

 [(A -An) n (C-B)] U [(C-A) n (B-Bn)] U [(A- AJ n (B - Bn)]

 and

 [A n B - (An n Bn) = [A n B - (An n B)] u [An n B - (An n Bn)] =
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 [(A - An) n B] u [Ann (B-Bn)] =

 [(A - An) n B] U { [A n (B - Bn)] - [(A - An) fl (B - BJ]} .

 According to [MM , Section 13], if {Dn} is a sequence in 21 with lim ||Dn|| = 0 , then

 lim ||D fl Dn|| = 0 for each D € 21 . Using this, the lemma follows from [M , Theorem

 35] . D

 5.7. Corollary. If 3 is an ideal in 21 , then so is cl* 3 . If 3 is another ideal in

 21 , then

 cl*(a fl a) = (cl* a) n (cl* a) and (cl* 3) V (cl* a) c cl*(a V a) .

 Proof. In view of Lemmas 5.1 and 5.6, the proof is analogous to the proofs of

 Proposition 4.5 and Lemmas 4.10 and 4.14, except that no transfinite induction is needed.
 ^ ^

 Moreover, the inclusion (cl ^ CI) V (cl ^ 3) c cl (3 V 5) is actually valid for any subfamilies

 3 and 3 of 21 . Ū

 5.8. Definition. Let A 6 21 and f: A -» IR . We say that f is star-integrable (or

 simply * -integrable) in A if A e cl*[3(A,f)] , and there is a •*- continuous additive

 function F on 21(A) such that F(B) = I(f,B) for each B e 3(A,f) .

 The family of all *- integrable functions on a set A e 21 ia denoted by J'* (A) .

 5.9. Proposition. Let A e 21 and fe^^A). Then f řB e ./*(B) for each
 A A

 B 6 21 , and f e J (A ) for any extension f of f to A
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 Proof. This follows from Proposition 4.7, Corollary 5.7, and a remark analogous to

 Remark 4.8. D

 Proceeding as in Section 4, it is easy to show that each *- integrable function f on a

 set A e 21 determines uniquely the ^-continuous additive function F from Definition 5.8.

 We call it the indefinite *- integral of f in A , denoted by I*(A;f, •) . The number

 I*(A;f,A) is called the +- integral of f over A. Since I*(B;f,*) = I*(A;f, • ) f2l(B) for

 each B e 21(A) , no confusion will arise if instead of I ( A;f, * ) and I (A;f,A) , we write

 simply I*(f,-) and I*(f, A) , respectively. Clearly, ^(A) c </*(A) and I*(g,A) = I(g,A)

 for each g e <7 (A.) . In the dimension one, i.e. , for m = 1, the ★- convergence is trivial:

 by [M, Theorem 33] a sequence {En} in 21 *- converges to a set E e 21 if and only if

 I E - En I = 0 for all sufficiently large n . Thus ./(A) = ./*(A) if m = 1. However,

 Example 5.17 shows that the inclusion J(A) c </*(A) is proper whenever m > 2.

 The next proposition summarizes the basic properties of the *- integral. Its proof is

 analogous to the proofs of Propositions 4.13, 4.15, and Corollary 4.17, except that no

 transfinite induction is required.

 5.10. Proposition. Let A e 21 . Then </*(A) is a linear space of measurable

 functions on A , and the map f h I*(f,A) is a nonnegative linear functional on ^*(A) .

 Moreover, if D is a division of A , then a function f on A belongs to J (A) if and

 only if f 'D e </*(D) for each D e V . D

 A compact set S c IRm with <&(S) = 0 is called slight. Again, it follows from [Fe,

 Section 3.2.40, p.276] that the slight sets we consider here are larger than those defined in

 ip3i •
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 . 5.11. Lemma. Let A e 21 , let Sc A be slight, and let 2lg(A) =

 {B e 21(A): B~ n S = 0} . Then A € cl*[2lg(A)] .

 Proof. By Lemma 1.1, for each integer k > 1, there is a sequence {Sk n}n of

 dyadic cubes such that S C n and nll < 1/k . Fix an integer k > 1 , and for

 n = 1,2,... , let ©k be the collection of those dyadic cubes C for which d(C) = d(Sk n)

 and C~ fi SJ Q ^ 0 . If s£ n = (U©k n)° , then {S£ ' n}n is an open cover of S . As S is
 nk * ' nk

 compact , S C Un=ļSk * n for some integer nk > 1 . Letting ©k = un=i®ļiļn an(*

 Bk = U ©k , we have S C b£ , and

 HBklli3l"Xl|Sk,nll<3"7k;
 n

 for ©k contains 3m cubes congruent to Sk n . It follows that {A - BjJ is a sequence

 in 2lg(A) and {A - B^} *A ; for

 lim ||A - (A - Bk) U = lim ||A D Bk|| = 0

 by [MM, Section 13] . D

 5.12. Theorem. Let A G 21 , and let T and S be, respectively, a a- thin and a

 slight subset of A- . Let v be a bounded vector field which is continuous in A- - S and

 differentiable in A° - T . Then v is í^-measurable, div v(x) is defined for almost all

 X e A , is ^-integrable in A , and

 I*(divv,A)= f vili a . ^A' a
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 Proof. As v is continuous <#- almost everywhere, it is <#- measurable. For

 each B e 21(A) , let F(B) = /g-v-ng d<& . By Lemma 5.5 , F is an additive

 ★-continuous function on 21(A) . Let f = div v and B € 3(A,f) . By Theorem 4.24 ,

 F(C) = I(f,C) for each C e 2lg(B) (see Lemma 5.11) . It follows from Lemmas 5.1 , 5.3 ,

 and 5.11 that also F(B) = I(f,B) • Since A e cl*[2lg(A)] by Lemma 5.11 , we see that F

 is the indefinite ^integral of f in A . Q

 Let A e 21 and f: A -» IR . We denote by 3*(A,f) the collection of all B g 21(A) in

 which f is ★- integrable. By Proposition 5.9 , the collection 3 (A,f) is an ideal in 21(A) .

 Replacing convergence by ★- convergence, the proof of the next proposition is

 identical to that of Proposition 4.25 .

 5.13. Proposition. Let A e 21 and f:A-+IR. Then f€.7*(A) if and only if the

 following conditions are satisfied:

 (i) A € cl*p*(A,f)] ;

 (ii) a finite lim I (f,Bn) exists for each sequence {Bn} in 0 (A,f) ★- converging

 to A . D

 Thus the ★- integral I* is closed with respect to the formation of improper integrals

 (by means of ★-convergence). We show next that I is actually obtained from I by

 adding all such improper integrals.

 Let A e 21 and f: A -> IR . We denote by 3* the family of all B e cl*p(A,f)] such

 that a finite lim I(f>Bn) exists for each sequence {Bn} in 3(A,f) with {Bn} * B . It is

 easy to verify that all such limits have the same value (see the proof of Proposition 4.25),

 denoted by F*(B) .
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 5.14. Proposition. Let A e 21 and f:A-+IR. Then 3* = 3* (A ,f) and

 I*(f,B) = F*(B) for each B e 3*(A~,f) .

 Proof. In view of Remark 4.8, we may assume that A is closed . If B e 3*(A,f) ,

 then B e cl*p(B,f)] , and consequently B G cl*[3(A,f)] . If {Bfl} is a sequence in 3(A,f)

 which converges to B , then by Lemma 5.3,

 lim I(f ,Bn) = lim I*(f ,Bn) = I*(f ,B) # ±oo .

 Thus Be3* and F*(B) = I*(f,B) . On the other hand, 3* C 3*(A,f) by Proposition

 5.13. Ū

 5.15. Lemma. Let A e 21 , and let $: A -> IRm be a regular map. Then the following

 statements are true.

 (i) If {Bn} is a sequence in 2i(A- ) +- converging to a set Be 2l(A~ ) , then we

 have {f[Bn]}*f[B] .

 (ii) If (E c 2t(A~) , then cl*({$[E]: E € <£}) = {f [E]: E e cl* (E } .

 Proof, (i) By [M, Theorem 50], there is a c > 0 such that ||$(C)|| < c ||C|| for

 each C € 2l(A- ) . Thus

 0 < lim ||$ [B] -*[Bn]|| = lim ||$[B-Bn]|| < c lim ||B-Bn|| = 0 ,

 and as *(B ) C ł(B) , we see that {t[B ]} * $[B] .

 (ii) In view of Lemma 5.1, this follows easily from (i) . Ū
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 The next theorem follows from Lemma 5.15 in the same manner in which Theorem

 4.28 was obtained from Lemma 4.27.

 5.16. Theorem. Let A 6 21 , and let A -* IRm be a regular map. If

 f G i7*($[A]) , then fo$-|det$| belongs to ^(A) and

 I*(fo$ • I det $ I , A) = I*(f,$ [A]) . D

 o

 5.17. Example. We shall construct a function g in IR which is ^integrable, but

 neither integrable nor R- integrable (cf. Example 4.28).

 Given a nondegenerate compact interval C = [a,b] , we let

 00

 fC = wX* + + (n) + n=2 +

 where C±(n) and ^ ^ are defined as in Example 4.27. We set

 Vs) =~f fcdA
 s

 if s e (a,b) , Fq(s) = 0 if s > b , and Fç(s) = -1 if s < a . Then Fç is continuous on

 [R , and F¿(s) = fç(s) for each s e IR - {a} ; for fç is continuous in IR - {a} and

 vanishes outside (a,b) . Furthermore,

 |Fc(s) I < -Fc(a + 2_1 |C|) = 1
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 for each s e IR .

 For k = 1,2,... , let

 Ck = ((k+irKk-1] , fk = fC2k_ļ - fC2k , Fk = FCļk ļ - FCa .

 Each is continuous in IR, vanishes outside (^2k U ^2k- 1^° ' ^k^

 Moreover, F£(s) = ^(s) for all s G IR - {(2k-ł-l) ^ ,(2k) ^ } . If

 00 00

 f=£fk «"• F=£Fk,
 k=l k=l

 then F is continuous in IR - {0} , vanishes outside (0,1) , |F| < 1 , and F'(s) = f(s) for

 each s € IR - S where S = {0} U {l/k : k = 2,3,...} . The function F is not continuous at

 0 , for

 Fri , i i _F i | lc2k-il i _ 1
 [2k , 4k(2k- 1) J C2k- 1 [ 2k | 2 J

 k = 1,2,... , and F(0) = 0 .

 For (s,t) G IR2 , let g(s,t) = f(s) and v(s,t) = [F(s),0] . Then v is a bounded
 2 9

 vector field in IR , which is continuous in IR" - ({0} x IR) , and differentiable in

 IR2 - (S * R) . Moreover, g = div v in IR2 .

 If A = {(s,t) elR2:0<t<s<l}, then A ft (S * IR) is a a- thin set, and

 A n ({0} * IR) = {(0,0)} is a slight set. It follows from Theorem 5.12 that g is
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 *- integrable in A . An argument analogous to that employed in Example 4.28 shows that

 g is neither v- nor R- integrable in A . We show next that g is not integrable in A

 either.

 Let Bk = C2k_x * [0,(2k)_1] and DQ = uj^nBk . We have

 ļB k i = J
 k = [ 2k-

 l|Bkll K = 2i J K L 2k- 1 2k J 2k 2k-l

 for k = 1,2,... , and so lim |Dn| = 0 , and since

 2n 2n 2n- 1

 In 2 = f t"1 dt < (1/k) < f t-1 dt = In ,
 n k=n n-1

 we see that lim ||Dnll < 2-ln 2 .

 If g is integrable in A , and G is the indefinite integral of g in A , then using

 Theorem 3.12, a simple calculation shows that

 2n 2n 2n

 G(Dn) = £c(Bk) = £/ v »D k d<* = X(V2k) > (Id 2) /2 k=n k=n Bk k k=n

 for n = 1,2,... . Letting e = 1/ln 8 , for each 6 > 0 , we can find an integer n > 1 with

 I Dn I <6 and ||Dnll < 1/e . As G(Dn) > e , this contradicts the continuity of G .
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 Note. The previous example is modeled on [MM, Section 34, Example 1]. The

 added complexity is due to the extra requirement that g must not be R- integrable.
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