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A MULTIDIMENSIONAL VARIATIONAL INTEGRAL AND ITS EXTENSIONS!

Abstract. We define a variational integral in the m—dimensional Euclidean space so
that the Gauss—Green theorem holds for each vector field which is everywhere differen-
tiable (not necessary continuously). The variational integral is then extended by a
transfinite sequence of improper integrals, and the Gauss—Green theorem is proved for
vector fields which are differentiable only outside fairly large exceptional sets. The
variational integral and its extensions are invariant with respect to a continuously
differentiable change of coordinates, and hence suitable for integration on differentiable

manifolds.

0. Introduction. As the divergence of a noncontinuously differentiable vector field
need not be Lebesgue integrable, it is clear that the full-strength Gauss—Green theorem
must be formulated by means of a more general integral than that of Lebesgue. This was
recognized a long time ago by Denjoy (1912) and Perron (1914), who independently and by
different means, defined a suitable extension of the Lebesgue integral in dimension one.

While many higher—dimensional analogs of the Denjoy—Perron integral were subsequently

1This work originated from the PhD thesis of Wei—Chi Yang written under the
supervision of W.F. Pfeffer at the University of California in Davis.
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produced by various authors, none of these integrated the divergence of an arbitrary
differentiable vector field. Consequently, the classical Gauss—Green theorem in higher
dimensions remained essentially unimproved. The situation changed only recently when
following the work of Henstock (see [H]) and Kurzweil (see [K]), more sophisticated
generalizations of the multidimensional Lebesgue integral were obtained in [Ma,], [Maz],
[JKS], [P,], [JK], [P,), and [P5]. However, even these integrals have much to be desired:
they are either coordinates dependent, and hence unusable on manifolds ([Ma,], [Ma,),

[JKS], [P,], and [P,]), or unable to integrate vector fields with larger sets of singularities
([UK] and [P)).

Our goal is to define a coordinate free extension of the Lebesgue integral in the
m—dimensional Euclidean space so that the Gauss—Green theorem holds for every bounded
vector field, continuous outside a compact set of (m—1)—dimensional Hausdorff measure
zero, and differentiable outside a compact set which is a countable union of compact sets
whose (m—1)—dimensional Hausdorff measures are finite (Theorem 5.12). This is

accomplished in several steps.

Elaborating on ideas of Henstock (see [H]), we begin with a simple variational
integral, and the Gauss—Green theorem for continuous vector fields, differentiable outside
compact sets of finite (m—1)—dimensional Hausdorff measure (Theorem 3.12). This is
already an improvement of [P3, Theorem 5.6] where the exceptional compact set is only of
finite (m—1)—dimensional upper Minkowski’s content (see [Fe, Section 3.2.37, p.273]). The
reasons why we chose the variational rather than generalized Riemann integral are partly a
personal preference, and partly our desire to investigate carefully the behavior of
variational integrals defined by means of additive majorants. Naturally, superadditive

majorants could have been employed too, but there appears to be no appreciable advantage

in using them.
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To enlarge the exceptional sets for the differentiability of vector fields, and relax the
continuity requirement, we have extended the variational integral by the method of Marik
(see [M], [HM], [KM], and [MM]). In early sixties, Marik and his collaborators devised a
general two—stage process of forming improper integrals, and used it to extend the
multidimensional Lebesgue integral. In [HM], both stages of the extension are treated
simultaneously in an abstract setting of additive maps from Boolean rings into abelian
groups. This general approach is very elegant, but it often obliterates the underlying
intuition. In particular, it conceals the fact that the first stage of the extension is
transfinite, while the second has only one step. Thus we considered it worthwhile to
reformulate Marik's method for our specific purpose, and use the transfinite induction and
recursion whenever convenient. We believe that prbceeding in this way makes our

treatment more intuitive.

Our presentation is local (e.g., in a Euclidean space equipped with a fixed
coordinate system), however when a new integral is defined, we always prove its invariance
with respect to a continuously differentiable change of coordinates (Theorems 3.14, 4.28,
and 5.16). Thus using standard techniques, the integrals can be lifted to differentiable

manifolds, and appropriate Stokes theorems can be obtained (see [P3, Section 7}).

Our exposition is organized as follows. After some necessary preliminaries in
Section 1, we prove in Section 2 the basic lemma (Lemma 2.2) about lower continuous
additive functions of sets. The importance of this lemma for variational integrals is the
same as that of Cousin's lemma (see [P5, Proposition 2.5]) for generalized Riemann
integrals; in fact, it is not hard to see that both results are actually equivalent. Section 3 is
devoted to the development of the variational integral. The transfinite extension of the

variational integral is presented in Section 4, and the final, nontransfinite, extension in

Section 5.
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The authors are obliged to Professor Jan Marik for many clarifying comments and

suggestions.

1. Preliminaries. By R we denote the set of all real numbers. Unless stated
otherwise, all functions considered in this work are real—valued. The algebraic operations,

partial order, and convergence among functions on the same set are defined pointwise.

On several occasions we shall employ arguments by transfinite induction and
recursion in which the ordinal numbers are used extensively. As usual an ordinal is
identified with the set of all smaller ordinals, and cardinals are the initial ordinals. The

first uncountable cardinal is denoted by wy -

Throughout, m2>1 is a fixed integer, and R™ denotes the m—dimensional
Euclidean space. For x= ({1,...,§m) and y= ("1"“’"n;) in R™, we let
xy=&m+ o+ ey, and set [l = X% and x| = max(|€ ]l €) -
Unless specified otherwise, in R™ we use exclusively the metric induced by the norm
|x| . The distance between a point x € R™ and a set E cR™ is denoted by dist(x,E) .
If ECR™, then E ,E°, E , and d(E) denote, respectively, the closure, interior,
boundary, and diameter of E .

An interval l'IIin=1[ki2—n,(ki+1)2_n) , where n20 and k;,...k = are integers, is

m
called a dyadic cube. Often we shall use the simple observation that any family of dyadic

cubes contains a disjoint subfamily which has the same union as the original family.
By o we denote the (m—1)—dimensional outer Hausdorff measure in R™ as

defined in [Fe, Section 2.10.2]. If k 21 is an integer, then ), denotes the k—dimensional

outer Lebesgue measure in R . We write A instead of A;,and |E| instead of A (E)
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for each E cR™. The words "outer measure", "measure", and "measurable", as well as

the expressions "almost all", "almost everywhere", always refer to ’\m .

Note that the measure ¢ is defined so that H(E) = ’\m—l(E) for each set
EcR™ . m particular, 5% is a constant multiple (by a constant different from one) of

the measure #™ ! defined in [Fa, Section 1.2] — cf. [Fa, Theorem 1,12, p.13].

A compact set T cR™ with H#(T) < 4w is called thin. In view of [Fe, Section
3.2.40, p. 276], our thin sets are larger than the thin sets defined in [P5]. A bounded set
ACcR™ s called admissible if its boundary is thin. Admissible subsets form a ring,
denoted by 2, which is central to all our further work. The collection of all thin subsets
of R™ isa subfamily of 2, which is closed with respect to finite unions. If A ¢ R™, we

set AA)={BeA:BCcA} and A (A)={BeUA:B CA}.

It follows from [KM, Theorem 26] and [M, Theorem 18] that if A € 2, on A" there

is a unique finite Borel measure p and a p—almost everywhere unique vector field v such

that

j:\div vdd = j:\.v-l/dp

for each vector field v continuously differentiable in a neighborhood of A~ . According to
[Fe, Chapter 4], to each A €2 we can also associate an & —measurable vector field n A

on R™ (usually referred to as the Federer exterior normal) such that

fAdiv vda = j;.v-nA do¥
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for each vector field v continuously differentiable in a neighborhood of A . If
(7*A ={x€ A°:||nA|| =1}, then a?(ﬁ*A) =p(A") and ny, =v 7 —almost everywhere
on (?*A . For a proof of this well-known but nontrivial fact, we refer the reader to [De
G,] and [De G,]. The number [|A]l = Jé’(ﬁ*A) is called the perimeter of A . Note that

if A isa cube, then [JA]| is the surface area of A . Following [Pg], we set

|A]
—_— if d(A)JIAl >0,
1.(A)={ Al
0 otherwise.

We close this section by proving a simple lemmma, which will be needed later.

1.1. LemMA. There is a constant «, depending only on m , with the following
property: for every sct E C R™  with #(E) < 4o, and for each 7> 0, there is a

countable disjoint family € of dyadic cubes such that E c (U€)°, |u€| < 7, and

Y lcl <ok (B) + 7.
CeC

Proor. It follows from [Fa, Theorem 5.1, p. 65] that there is a constant a >0,
depending only on m , such that for cach 6> 0, we can find a countable family & of

dyadic cubes such that E ¢ (UR)®,

Y " cag(B) + 4,
Kek

and d(K)<é for each KefR. Let a=2ma, and choose 6é€(0,1) so that

a(E)6 < /2. Then
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Y IKi=2nY [@01 <o (B)
Kes Ker

and

US| ¢ %ﬁm < 5%;(1(1()]"“1 < 6[aJ€’(E) R gﬁ] <.

Now it suffices to select a disjoint family € c & with U =URK. D

2. Lower continuous additive functions. A division of an admissible set A is a

finite disjoint family D c % with UD = A.

2.1. DEFINITION. Let A €%, andlet F be a function on 2A(A). We say that F
is :
(i) edditiveif F(A) = EDebF(D) for each division D of A
(i) lower continuous if given € > 0, there isa é> 0 such that F(B) > —e for
each B € A(A) with |B| < § and ||B|| < 1/e.

(iii) continuousif both F and —F are lower continuous.

2.2. LEMMA. Let Ae®A,let TCA be thin, and let F be an additive lower
continuous function on 2A(A). If F(A) < 0, then there is a strictly decreasing sequence

{C,} of dyadic cubes such that C c A°—T and F(C ) <0 for n=1.2,...

ProoF. We may assume that A" C T. Select 7> 0, so that F(B) > F(A) for
each Be2A(A) with |B| <3™p and |B|| < ||A|| + 3™ [a#(T) + 7] ; here a is the
constant defined in Lemma 1.1. Now by Lemma 1.1, there is a sequence {Tn} of dyadic

cubes such that Tcu T ,¥ |T | <n,and E|T || <aH(T)+n. For n=12,..,
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let T be the collection of those dyadic cubes C for which d(C) = d(Tn) and
CnT 0. If T; = (U‘In)o , then {T;} is an open cover of T. As T is compact,

N T* for some integer N> 1, and welet ¥ = UN T and B =UT. Since ‘In

Tc Un=1 n n=1"n

contains 3™ cubes congruent to T, , we see that

[AnBl <3™Y |T | <3",

n

and by [M, Theorem 35],

[IA N BI| < ANl + 1IBIf < [IA[l + 3'"ZIITRI| <[IAl + 3"[ad% (T) + 1] .
n

It follows that F(A n B) > F(A), and consequently
F(A—B)=F(A) —F(AnB)<O0.

Now A —B is the union of finitely many disjoint dyadic cubes each of which is
congruent to a cube in ¥ of the smallest diameter. By the additivity of F, for one of
these cubes, say C, , we have F(C;) <0. As C;nB =190 and A’ c T cB°, it follows
that C]CA®—T. Since C, is the disjoint union of dyadic cubes whose diameters are
equal to d(Cl) /2, by the additivity of F, for one of these cubes, say 02, we have
F(C2) < 0. An obvious induction completes the proof. D

2.3. LEMMA. Let A€, let f be a measurable function on A with

/ A|f| dA <+, and let v be a continuous vector field on A™ . For each B € 2(A)

set F(B)=J fdr  and G(B)=/ v-ngd# . Then F and G are additive
B B
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continuous functions on 2(A) .

ProoF. The additivity of F and G is easy to show, and the continuity of F
follows from the absolute continuity of the indefinite Lebesgue integral. To prove the
continuity of G, we proceed as in [KM, Section 12]. Choose an ¢ > 0, and using the

Stone—Weierstrass theorem, find a vector field w  with polynomial coordinates

and such that [|jv(x) — w(x)|| < €2/2 for each x € A”. Let

M=sup {|divw(x)| : xeA},

and finda 6> 0 with M < ¢/2. Now if B e %(A), ||B|| <1/e¢,and |B| < §, then

+

IG(B)I - Ijl;.(v—w)-nB dx J];.w-anJJI

¢’|IB|

— +M[B| <. 0

2 .
SZ—_/];,"HBH de’+JI;|d1v Wl i <

3. The variational integral. Let A €2, andlet f and F be functions defined on
A and 2(A), respectively. Given ¢ >0 and EC A, an ¢—majorant of the pair (f,F)
in E is a nonnegative additive function M on 2(A) which satisfies the following
conditions:

(i) M(A) <¢;

(ii) for every x € E thereisa 6> 0 such that

f£(x)|B| —F(B) | <M(B)
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foreach B e (E) with xe B, d(B) < §,and 1(B) > ¢.

3.1. DerINITION. Let A €2 and f: A-R. We say that f is variationally
integrable, or simply v—integrable, in A if there is an additive continuous function F on
2A(A) which satisfies the following condition: for each ¢ > 0 there is a thin set T C A~

such that the pair (f,F) has an e—majorantin A —T .

The family of all v—integrable functions on a set A € 2 is denoted by ¥ (A). If
fe 7(A), then each function F on 2(A) which satisfies the conditions of Definition 3.1
is called an indefinite v—integralof f in A . Our first aim is to show that every fe€ 7 (A)

has precisely one indefinite v—integral.

3.2. LemMA. Let Ae®A, and let F, be an indefinite v—integral in A of

fe¥(A), i=12. If f, <fy,then F <F,.

ProoF. Since for each B €A(A), the restriction F,IA(B) is an indefinite
v—integral in B of fIB, i=12, it suffices to show that F,(A) < Fo(A) . Working
towards contradiction, suppose that Fo(A) <F;(A), and choose an €¢>0 so that
¢<1/2m and Fy(A) +2¢<F (A). For i=1,2, thereis a thin set T,c A", and an
e-majorant M, of (f,,F.) in A—T,. The function

F=F2—F1+M1+M2

is additive and lower continuous on %A(A). As T = T,UT, isa thin set and

F(A) <Fy(A) —F;(A) +2¢ <0,
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it follows from Lemma 2.2 that there is a strictly decreasing sequence {Cn} of dyadic
cubes such that C_ CA-T and F(C ) <0 for n=12,.. If nG-1C, = {x}, then

x € A—T and thereis 51 > 0 such that
fi(x)lBI “Fi(B) SMi(B)

for each Be®A (A-T) with xeB , d(B)<é,i=12, and r(B) > ¢. Find an
integer N >1 sothat d(Cy) < min(6,6,) . As r(Cy) = 1/2m > €, we have

Fl(CN) —Ml (CN) < fl(x) ICNI < f2(x) ICNI < F2(CN) + M2(CN) )
and hence F(Cy) 2 0; a contradiction. D

3.3. CoroLLARY. If A€2 and fe€ 7 (A), then all indefinite v—integrals of f in

A are equal. D

Let Ae2 and fe ¥(A). In view of Corollary 3.3, we can talk about the
indefinite v—integral of f in A, denoted by I (A;f,-). The number I (Aif,A) is called
the v—integral of f over A. Since I (Bsf,-) =1 (Af,-)!U(B) for each Be A(A) , no
confusion will arise if instead of I (Asf,-) and I (Af,A), we write simply I (f,-) and

Iv(f,A) , respectively.

3.4. ProrosiTION. If A €2, then ¥#(A) is a linear space, and the map fw Iv(f,A)

is a nonnegative linear functional on ¥ (A) .

Proor. If fe 7(A) and £20, then it follows from Lemma 3.2 that I (f,A) 20.
The rest of the proposition follows easily from Definition 3.1. D
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3.5. ProposiTION. Let Ae®A, f: A-R, and let D be a division of A. Then
fe ¥(A) ifand only if fID € (D) foreach De®D.

Proor. If fe ¥ (A), F=1I(f,-),and DeD, then it is clear that FIA(D) is
the indefinite v—integral of fID in D, andso fID € ¥(D).

Conversely, suppose that flD € (D) for each D €D, and let Fp= Iv(f ID,-) .
For every B € 2(A) , we set

F(B) = 2 Fy(BND),
DeD

and we show that F is the indefinite v—integral of f in A . It is easy to see that F is an
additive continuous function on 2(A). Given €¢>0,let ey =¢[D|/(1+ |A]) for each
DeD, and find a thin set Ty c D for which the pair (f 'D,F) has an ep—majorant
Mp in D—Tp . Forevery Be2(A), set

M(B) = 2 My(B N D)
De®

and let T=UDEQ(D' UTD). Fixan x€ A—T. Then x e D° for some De®, and
we can find 7> 0 sothat E CD whenever x€ E and d(E) < . Moreover, there is

a 6> 0 such that
£(x) B — Fp(B) | < Mp(B)

for each BeA (D-Tp) with xeB , d(B)<4, and 1(B)>ep. Thus if
Be2A (A-T), xéB , 1(B)>e2 ¢y, and d(B) < min(n,6) , then Be2A (D—-Tp)

122



and we have
£x) B —F(B)| =| £ 1B] —Fp(B)| < Uy (B) =W (B) .

Since T is a thin set, and

€|A|

M(A)zZ MD(D)<2 I RERTTRLE
DeD De®D

the proposition is proved. D

If EcR™ is a measurable set, we denote by .#(E) the family of all measurable

functions f on E for which the finite [pfdA_ exists.

3.6. ProposiTioN. If A€, then £(A)cC 7(A) and I (f,A)=[,fdA ~for
each fe Z(A).

ProoF. Let fe #(A), and set F(B) = [gfdA ~foreach Be®A(A). According
to Lemma 2.3, F is an additive continuous function on 2(A) , and we show that F is the
indefinite v—integral of f in A. Given ¢ > 0, there are extended real—valued functions
g and h on A which are, respectively, upper and lower semicontinuous, and such that
g<f<h and f,(h—g)dA < ¢/2 (see [Ru, Theorem 2.25, p.56]). For every B e 2(A),

set

€|B|

M(B) =
2(1+]A)])

+jl;(h—g)d/\m,

123



and fixan x€ A. Thereisa 6 > 0 such that

f(x) + —&— x) ——€¢
g(y) <f(x) 2 A and  h(y) > f(x) — 2(1 D

foreach y € A with |x—y| < §. Thusif Be® (A), xe B, and d(B) < §, then

€|B| €|B|
——<f(x)|B hdd + ——r
2(1+ IAI) LBl f 2(1+[A])

j]; gdd —
Since also
j];gdAmgF(B) gj];hdxm,
we have
f(x)|B| —F(B)| <M(B) .
As M(A) < €, we conclude that M is an e—majorant of the pair (f,F) in A. D

Aset C= llr;lzl[ai,a#h] , where a,,..,a ,and h are positive real numbers, is

m’
called a closed cube. Let A€, xe€A®, andlet F be a function on A(A). We say
that F is derivable at x if a finite lim[F(C )/|C_|] exists for each sequence {C_} of
closed subcubes of A such that xe C n for n=1,2,...,and lim d(Cn) = 0. If all these

limits exist, they have the same value, denoted by F'(x) .

3.7. LemMA. Let Ae2, fe 7(A), andlet F=1I(f,-). Then for almost all
x € A® the function F is derivable at x and F'(x) = f(x) .
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ProOF. Let E be the set of all x € A° for which either F is not derivable at x,
or F'(x) #f(x). Then given x € E, we can find a A(x) > 0 so that for each § > 0 there
is a closed cube Cc A with xe C, d(C) < §, and

ﬂ_f(x)

> B(x)
|C|

Fix integers n2 1 and k> 2m, andlet E = {x€E: f(x)21/n}. There is a thin set
T, C A" suchthatin A —T, the pair (f,F) has a (1/nk)—majorant M. Thus for each
x€ A—T, thereisa 6(x) >0 so that

£(x)[C] —F(C) | <M(C)

for each closed cube CcCA- T, with xeC and d(C)<¥(x); for

1(C) =1/2m > 1/nk. Let € be the family of all closed cubes Cc A — T, such that
d(C) < §(x,) for some x, € C,and

Ic]
F(C) —£(x,)[C]| > —.

It is easy to see that € covers En—Tk in the sense of Vitali. By [Sa, Chapter IV,
Theorem 3.1, p.112], there are disjoint cubes C{:Cqy. in €  such that

p p p
Y161 €0y (o) —xg ) 16;1| <n Y H(Cy)
i=1 i=1 ! i=1
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p
= nM[UCi] <nM(A) <1/k

for each p = 1,2,..., and hence

[¢ ]

Ue;

i=1

0
= Y165 <1/k.
i=1

Since |T)| =0, we obtain that |E | <1/k for all k>2m, and consequently

- —® -
|[E,|=0. As E=U _E_,also |E|=0. g

3.8. CoroLLARY. If A €2, theneach fe 7 (A) is measurable.

Proor. Since |A'| =0, the corollary follows from Lemma 3.7 by standard

arguments (see, e.g., [Sa, Chapter IV, Theorem (4.2), p.112]). D
Next we establish a fairly general result concerning a broad class of integrals.

If (X)) is a measure space, we denote by .Z’l(,u) the family of all
M—measurable functions f on X with fx|f| dp < +o .

3.9. ProposITION. Let (X,9M,u) be a o—finite measure space, and let F be a
linear space of 9—measurable functions on X which contains .Z’l(p) . Further, let L
be a nonnegative linear functional on & such that L(f) = [ Xf- dp for each fe .Zl(p) .
Then a function f on X belongs to .¢;(u) whenever both f and |f| belong to & .
Moreover, if fn €F,n=12,..,and lim fn =f, then fe & and L(f) =lim L(fn)

whenever either of the following conditions holds:
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(i) fn < fn+1 ,n=12,..,and lim L(fn) <+ ow;

(ii) g<f <h forsome g,h in & and n=1,2,...

PROOF. Since p is o—finite, .z’l(,u) contains a strictly positive function w (see

[Ru, Lemma 6.9, p.121]). If f and |f| belongto & ,then
g, = min(|f[,m)

belongs to .Sfl(p) ,and hence to & ,for n=1,2,.... As w(x) >0 foreach x€ X, we

have
j)'(lfl du = limj;(gn dp=1limL(g ) SL(|f]) € +o0 .
Since f is 9M—measurable, it belongs to .z’l(p).

Now the rest of the proposition follows from the monotone and dominated

convergence theorems applied to the sequences {f 0 fl} and {fn —g} , respectively. D

In view of Proposition 3.6 and Corollary 3.8, Proposition 3.9 applies to the
variational integral I (-,A) on 7(A), where A€2. We also have the following

corollary.

3.10. CoroLLARY. Let f be a function A € 2. Then f=0 almost everywhere if

and only if fe 7 (A) and I (fB) =0 for each B € ®(A).

Proor. If fe 7(A) and I (f,-) =0, then it follows directly from Definition 3.1
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that |f| € #(A) and I,(If],+) = 0. Now it suffices to apply Proposition 3.9. u

NotE. In view of previous corollary, if a function f is defined almost everywhere on
aset A in R™, then the function can be extended to A and the v—integral of the
extended function depends only on f and not on the way f is extended.

The next lemma is proved in [P3 , Lemma 5.5]. We quote it here for completeness.

3.11. LEMMA. Let v be a continuous vector field in an open set U C R™ which is

differentiable at x € U. Then given ¢ > 0, thereisa é > 0 such that

div v(x) |B| —j];.v-nB dJ{l < €|B|

for each B €2 (U) with x€ B~, d(B) < §, and r(B) > ¢. []
If v=(f},.f) isavector field defined in E CR™, we let

 0f (%)

div v(x) = 2

=1 9%,

for each x € E® at which v is differentiable.

NoTE. We use the usual definition of a differentiable map (see, e.g. , [Ru, Definition 7.22,

p.150]). In particular, differentiable does not mean continuously differentiable.

3.12. THEOREM. Let A €2 ,andlet TC A bea thinset. Let v be a continuous

128



vector field in A~ which is differentiable in A° —T. Then divv(x) is defined for

almost all x € A, is v—integrablein A and
I (divv, A) =j;’v-nA d# .

ProoF. For each B e (A),let F(B)=[g.v-ngds¥ . By Lemma 2.3, F is an
additive continuous function on 2(A), and we show that it is an indefinite v—integral of
f=divv in A. To this end, choose an ¢ > 0, and let M(B) = ¢|B|/(1+|A]) for each
Be2(A). Clearly, M is nonnegative and additive, and M(A) <e. If xe A°—T,
then by Lemma 3.11, thereis a é > 0 such that

£(x)[B] —F(B)| < Y |B| = M(B)

for each B € (A°—T) with xe B, d(B) < 6, and

r(B) > e> ——.
1+]A]

Thus M isan e-majorant of the (f,F) in A°—T,andsince A" UT is thin subset of
A, the theorem is proved. D

Let EcR™ and ®: E-R™. We say that ® is a regular map of E if it can be
extended to a Cl—diffeomorphism (also denoted by @ ) of an open neighborhood of E~ .
For a regular map @, we denote by det ® the determinant of its Jacobi matrix. Note
that if ®: E-R™ is regular, then @ is defined uniquely on E , and det ® is defined
uniquely on E° whenever E° is nonempty. Since |E'| =0 , we see that det ® is

defined uniquely almost everywhere in E~ . If ® is regular, then ® and det ® are both
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extended continuously to a neighborhood of E™ .

3.13. LEMMA. Let ® be aregular map of ECR™. If E is thinor E € 2, then so
is ®[E] , respectively.

ProoF. This follows immediately from [Ro, Theorem 29, p.53] and the equality

(@[E) =o[E]. O

3.14. THEOREM. Let A€®, and let &: A-R™ be a regular map. If
fe ¥ (®[A]), then fod-|det ®| belongs to ¥ (A) and

I (fod-|det 8] ,4) =T (f,3[A]) .

Proor. There are positive real numbers a,b,b', and ¢ such that the following
inequalities hold:
(i) ¢21 and b'Jac < 1/2;
(i) |®(x)—®(y)| <a|x—y| foreach x,y€e A ;
(iii) b'|B| < |®[B]| <b|B| for each measurable set BC A~ ;
(iv) ||®[B]|l < c||B]|| for each B € A(A) .

Inequality (ii) is a direct consequence of the regularity of ® . Inequalities (iii) and
(iv) follow from [Ru, Theorem 7.26, p.153] and [M, Theorem 50], respectively. Finally, by

enlarging c , we obtain (i).
For each B € 2A(A),let F(B) =1 (f,2[B]). Clearly, F is an additive function on

2A(A) , and we show that it is also continuous. To this end, choose an € > 0, and using

the continuity of I (f,-),find a 6> 0 such that |I (f,C)| < ¢/c for each Ce A(®[A])
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with |C| <bd and ||C|| <c/e. Nowif BeA(A), |B| <§,and ||B|| <1/e, then by
(iii) and (iv), respectively, |®[B]| <b|B| <b§ and ||®[B]|| <c|B|l <c/e.

Consequently,
I[F(B)| = |I,(f,®[B])| <e/c<e,
and the continuity of F is established.

We prove the theorem by showing that F is the indefinite v—integral of
fod-|det ®| in A. Select an ¢>0, and let € = eb'/ac. There is a thin set
T c ®[A ] such that the pair (fI (f,)) has an ¢'—majorant,say M, in ®[A] —T . Set
S=A U@ I[T], and for each B € A(A), let

¢|B|

N(B) = M(®[B]) T

Then S is a thin subset of A~ , and N is a nonnegative additive function on (A) with

N(A) < € (see (i)). Choose an x € A —S,let y = ®(x), and finda § > 0 so that
£(y)|0] — I,(£,0)| <M(C)

for each C €A (®[A] —T) for which ye C, d(C) < ad, and r(C) > ¢'. By making §

smaller, if necessary, we may also assume that

|@[B] |
B

3

2[[£(y) [+1] (|A]+1)

— |det ®(x)|] <

for each B € QlO(AO) with x € B and d(B) < §; for |det ®| is a continuous function
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on A°, and |®[B]| = /gldet @] dA_~ (see [Ru, Theorem 7.26, p.153]).

Fixa Be? (A—S) with xeB™, d(B) < é, and r(B) > ¢, andlet C= [B].
Then y € C , and by (i)—(iv), we have d(C) < ad and

r(C) > g—ér(B) >¢€'.

Thus

o0 (x) - |det 20| |B] ~F(B)| < |£(y) || 1det 20| - B] — |2(B)|
+ |f( yIo| =1 (f 0)‘ <__e_|EL_+M(C)=N(B)
d v 2(]A]+1) ’

and we see that N is an e—majorant of the pair (fo®- |det ®|,F) in A—S. D

Let Ae?2A, fe ¥(A),and ¢>0. Wesay that an x€ A is an e—point of f if
there is a disjoint sequence {B } in (A) such that r(B U{x})>e€ for n=12,..,
limd(B, U{x})=0,and

o]

Z|Iv(f,Bn)| = 4.

n=1

The set of all e—points of f is denoted by Vf(f,A) , or simply by V.

The next proposition gives a useful necessary condition for v—integrability in terms

of e—points .
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3.15. ProposiTION. Let A €2 and fe ¥ (A). Then theset V_ is thin for each

c¢>0.

Proor. Proceeding towards contradiction, suppose that V; is not thin for some
€>0. Let F= Iv(f,') , and find a thin set T c A~ and an ¢—majorant M of the pair
(F) in A—T. Since V_ is not thin, thereisan x€V _—(A"UT). Let {B_} bea
sequence in A(A) associated with the e—point x. The open set A — (A" UT) contains
disjoint countable sets Cn with x € C;, n=12,.., and we let Dn = (Bn U Cn) -T.
As ITUC,| =0, it follows from Proposition 3.5 and Corollary 3.10 that
F(Dn) = F(Bn) - Moreover, by making the C_'s sufficiently small, we may assume that
d(D,) =d(B, U {x}), and hence also r(D_)=r1(B, U {x}). Consequently, there is an
integer N > 1 such that

£(0) [, —F(D,) | <MD,
for each n > N. From this we obtain that

p p

p p
Y IE®) 1= Y IFO) | <£(x) Y 1D+ Y HO,)
n=N

n=N n=N n=N

p
= £(x) U D,

n=N

P
s M[U Dn] <CE(x)|A] +M(A) <£(x)|A| + ¢
n=N

for all p 2 N, which is a contradiction, for £°_,|F(B )| = +».

3.16. REMARK. Let A€® and f: A-R. We say that f is weakly integrable, or

simply w—integrable, in A if there is an additive continuous function F on (A) and a

133



thin set T C A~ such that the pair (f,F) has an e—majorant in A—T for each €¢>0.
By repeating verbatim the arguments of this section, it is easy to show that the w—integral
has properties identical to those of the v—integral. It follows directly from the definitions
that the v—integral is an extension of the w—integral. Whether the v— or w—integral (or

their extensions which will be described in Sections 4 and 5) actually coincide appears

unknown.

3.17. REMARK. Let f be a w—integrable function in an admissible set A . Then the

proof of Proposition 3.15 reveals that (U Vc)— is a thin set. Whether the same can be

0
proved for each v—integrable function in A is unclear, and it is likely related to the more

general problem stated in Remark 3.16.

4. The integral. We say that a sequence {A } in 2 convergestoaset A€®,in
writing {A }-A,if A CA for n=12,.., sup [|A Il < +w,and lim |A—A |=0.
A family & c U is called closed if E € € for each E € 2 for which there is a sequence
{En} in & with {En} -+ E . The closure of a family & C 2, denoted by cl &, is the
intersection of all closed subfamilies of 2 containing & . It is easy to verify that for each

€ Cc A, the closure of & is a closed subfamily of of .

4.1. REMARK. If € c2 is closed and E €€, then also E™ € €; indeed, as
,\m(E') = 0, the constant sequence {E} converges to each set B with ECBCE . In

particular, the family 2A(A) with A € 2 is closed if and only if A is a closed set.

If €c2, we denote by cl;(€) the collection of all E €2 for which there is a
sequence {E_} in € with {E_} - E . As the constant sequence {A} in % converges to

A , we see that €cCcl (€) for each €c . However, the following example shows that

cl;(€) need not be closed.
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42. Exawpie. For n=12..,let E =@ 2™]) andlet E=(01]. X
@=Qlo(Uz=1En), then ¢l (€) =2 (E) is not closed; for E =[0,1] belongs to
c[2 (E)] .

We show that the closure of a family € c % can be described by a transfinite
construction .

Let ¢ c®A, and let clO((’E) = €. Assuming that cl a(QE) has been defined for each
ordinal a < f< w) , we define cl ﬂ(@) as follows:

(i) if B is a limit ordinal , let cl ﬂ(é) =U e ﬂcl a(@) :

(ii) if f=a+1,]let clﬂ(QE) = cll[cla(@)] .

4.3. ProPoSITION. Foreach €C 2, wehave cl€=cl (®).
1

Proor. Since €ccl (&) ccl & , it suffices to show that cl w (&) is closed. Let
1 1

{E,} De a sequencein cl . (€) which converges to an E€2. For n=12,.., there is
1

an a <w, with E ed aﬂ(@) . If a=sup a ,then {E } isa sequencein cl (€),

andso Eecdl _H(QE) - As a+1<w,, the proposition follows. D

44. LEmMA. Let A and B belongto %, andlet {A } and {B } be sequences
in 2 which converge to A and B, respectively. Then {A UB }-AUB and

{A,nB }-ANB.

Proor. Since AUB—(A UB ) and ANB—(A nB_) are both contained in
(A—A )U(B-B,), the lemma follows from [M, Theorem 35]. 0

4.5. PropoSITION. If TJ is anidealin ®A, thensois clJ.
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Proor. By Lemma 4.4, cll(’J) is closed with respect to unions. Let A €2 and
Becl(J). Then there is a sequence {B } in J with {B }-B. By Lemma 4.4,
{AnB_}- AnB; for the constant sequence {A} convergesto A. As {AnN B } isa
sequence in J, we have ANBecl(J). Thus cl;(J) is anidealin 2. Since the union
of any increasing collection of ideals in 2 is also an ideal in 2, the proposition follows

from Proposition 4.3 by transfinite induction. D

Let Aec2A and f: A-R. We denote by B(A,f) the family of all B € A(A) on
which f is v—integrable. By Proposition 3.5, the family 2B(A,f) is an ideal in A .

4.6. DEFINITION. Let A€ and f: A-R. We say that f is integrablein A if
A e cl[B(A,f)] and there is a continuous additive function F on 2(A) such that
F(B) = I(f,B) for each B e T(A) .

The family of all integrable functions on a set A €2 is denoted by J(A). The

following fact is an immediate consequence of Propositions 3.5 and 4.5.

4.7. ProposiTioN. If Ae®A and fe J(A), then fIBe J(B) for each
BeA).

4.8. REMARK. If A € A, then each additive continuous function F on 2(A) hasa
unique additive continuous extension to 2A(A) . Indeed, as /\m(A') = 0, the extension
F of F is obtained by setting F(B)=0 for each BeA(A™ —A). From this and
Remark 4.1, it follows that any extension to A~ of an integrable function f in A is

integrable in A" .

If Ae?2 and fe J(A), then each function F on 2A(A) which satisfies the
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conditions of Definition 4.6 is called an indefinite integral of f in A . As with the
variational integral, our task is to show that every fe€ J(A) has precisely one indefinite

integral. The proof requires three lemmas.

4.9. LEMMA. Let A €, andlet F be an additive function on 2A(A). Then F is
continuous if and only if lim F(B )= F(B) for each sequence {B,} in 2(A) which
converges to B € A(A) .

Proor. Let F be continuous, B €2(A), and let {B } be a sequence in A(A)
which converges to B . Choose an ¢ >0 with 1/¢> ||B|| + sup |[IB ||, and finda 6> 0
so that |F(C)| < € for each C € 2(A) for which |C| < § and ||C|| < 1/e. Thereis an
integer N > 1 such that |B — Bnl < ¢ foreach n> N. By [M, Theorem 35,
B =B < Bl + 3, < 1/¢
for n=1,2,..., and so
|F(B) —F(B,)| = [F(B—B )| <e

foreach n> N.

Conversely, if F is not continuous, then there is an ¢ > 0 and a sequence {Bn}

in 2A(A) such that |Bn| <1/n, lIBnH <1/e,and
e <|F(By)| = [F(A) —F(A-B))|
for n=1,2,.... Yet, it follows from [M, Theorem 35 that {A — B}-A. O
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4.10. LEMMA. Let J and J be twoidealsin 2. Then cl(INnJ) = (c1I)Nn(clJ).

ProoF. As JInJcclJ, we have cl(INJ)cclI, and by symmetry, also
d@nIc(edI)n(clI). Let B¢ w) , and assume that for each a<p, cl a(’.‘l) and
cl (J) areidealsin 2% with cl LI nd a(;}) C cl(3 N J) ; this is indeed true for f=1. If
f is a limit ordinal, then clﬂ(’J) =U e ﬂcl oJ) and clﬂ(;}) =Uge ﬂcl a(J). Since
a< a < f implies cl a(J) ccl,(3) and cl (J)ccl a.(;}) , it i easy to verify that cl ﬁ(J)
and cl ﬂ(J) are ideals in % with cl ﬂ(’J) Necl 5(3) ccl(In). Nowlet f=a+ 1, and let
Aec ﬂ(ﬂ) Necl ﬂ(;]) . Then there are sequences {A_} in cl oJ) and {B,} in ¢l (3)
with {A }-A and {B }-A. By Lemma 44, {A,NB_ }-A,andas cl (J) and
cl () are ideals, {A NB_ } is a sequence in «cl LI ne (3)cel(dny). Thus
Aecl(InJ) which proves again that cl ﬂ(j) Ncl 5(3) ccl(3nyJ). The lemma follows
from Proposition 4.3. D

4.11. LemMA. Let A €2, andlet F, be an indefinite integral in A of f, € J(A),

i=12. If f{ <f,then F <F

1-°2-

Proor. By Lemma 3.2,
Fy(B) = I,(£1,B) < I (£y,B) = Fy(B)

for each B in J= iU(A,fl) NB(Af,) . By Remark 4.8, we may assume that A is a
closed set. It follows from Remark 4.1, Proposition 4.5, and Lemma 4.10 that
clI=2AA). By Lemma 4.9, F; <F, on cll(’J) , and by transfinite induction F; <F,
on cl wl(J) =cl J (see Proposition 4.3). 0 |
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4.12. CoroLLARY. If A €2 and fe€ J(A), then all indefinite integrals of f in A
are equal. D

Let A€ and fe J(A). In view of Corollary 4.12, f has a unique indefinite
integral in A, denoted by I(A;f,-). The number I(A;f,A) is called the integral of f
over A. Since I(B;f,-) =I(A;f,-)!2A(B) for each B € 2(A), no confusion will arise if
instead of I(A;f,-) and I(A;f,A), we write simply I(f,-) and I(f,A) , respectively. It is a
direct consequence of Definition 4.6 that %/(A) c J(A) and I(g,A) =1 (g,A) for each
g€ ¥(A) . We shall see later (Examples 4.29 and 4.30) that the inclusion ¥ (A) c J(A)
is proper. Now we show that the integral has properties similar to those we established for

the variational integral in Section 3.

4.13. ProrosiTion. If A€ 2, then J(A) is a linear space, and the map

f+ I(f,A) is a nonnegative linear functional on J(A) .

Proor. The nonnegativity of the map fw I(f,A) follows from Lemma 4.11. The

remaining properties are established transfinitely by arguments similar to that employed in

the proof of Lemma, 4.11. D
If & and $ are families of sets, we set
evH={EuUll: EecCtle9n}.

A transfinite induction argument, similar to the proof of Lemma 4.10, yields the following

lemma.
414. Lemva. I ¢ and § are subfamilies of 2A, then we have
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(de&)v(dH ceeEvs). O

4.15. ProposITION. Let A€ A, f:A-R, and let © be a division of A. Then
fe J(A) if and only if fID € J(D) foreach De®D.

Proor. We may assume that D= {EH}. As the converse follows from
Proposition 4.7, suppose that f, properly restricted, belongs to J(E) and J(H), and let
¢ =9(Ef) and $H=B(H[S). By Proposition 3.5, €V $C B(A,(f), and it follows from
Lemma 4.14 that A € cl[U(A,f)] . Setting

F(B) =I(f,BnE) + I(f,BnH)

for each B € A(A) , it is easy to check that F is the indefinite integral of f in A . []

4.16. LEMMA. Let ¢ Cc2A, and let E € cl&. Then there are En € € such that
E CE,n=12,. and lE_UnEnl =0.

ProoF. Let ® be the family of all sets A € 2 for which there are E €& such
that En CA,n=12...,and |A —UEnl = 0. It is easy to see that € C & and that & is
closed. Hence clE€C & . D

4.17. CoroLLARY. If A€ and fe J(A), then f is measurable.

Proor. By Corollary 3.8, {lE is measurable for each E € U(Af). Since
A € cl[U(A,f)] , the corollary follows from Lemma 4.16. D

4.18. REMARK. By Corollary 4.17, we see that Proposition 3.9 applies to the integral
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I(-,A) on J(A), where A€®2. We also see that an almost everywhere statement

completely analogous to Corollary 3.10 holds for the integral I(f,A) .

4.19. LemMa. Let EcR™, and let & be the family of all open sets G C R™ for
which 2 (G) c cl[ (E)]. Then G, =U® belongsto &.

Proor. Foreach x€ G, find a G, € & containing x, and a closed neighborhood
U of x for which U_e Qlo(Gx) - If Ae? (G,), then there are X{ Xy D A~ such

that A" C U?=1Ux_ ; for A~ is compact, and {U; :x€ A"} is an open cover of A .
i

By our choice of the U's, we see that An U, belongs to Qlo(Gx.) , and hence to
i i

c{A (E)] for i=1,.,n. Since clf% (E)] is an ideal in %, (see Proposition 4.5), we
conclude that A = U]il=1(A NU_) belongs to clf (E)]. The lemma follows. 0
i

4.20. LemMA. If A€ and TC A is thin, then A€ cl, [A (A =T)].

Proor. By Lemma 1.1, for each integer k21, there is a sequence {T) '} =~ of
)

dyadic cubes such that A UT ¢ UnTk,n , Zn|Tk,n| < 1/k,and

ZMTk N<a(d uT) +1
n

where a is the constant defined in Lemma 1.1. Fix an integer k > 1, and for n = 1,2,... ,
let Tk,n be the collection of those dyadic cubes C for which d(C) = d(Tk,n) and
cn Ti(',n $0. If T’l:,n = (U‘Ik,n)o , then {T;(',n} is an open.cover of A'UT . As T

nkT* f int >1. Letti ic—unkic d
n=1 k,D Or some 1n eger Ilk_ . e lng k— n=1 k,n an

n
is compact, A" UT cU
By = UT, , we see that A’ uTcBﬁ,and
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|B, | 53‘“2|Tk,n| < 3™k,
n
1Bl <3™ Y IITy 4l < 3 [ack (A" UT) + 1]
n

for Ty p contains 3™ cubes congruent to Ty, It follows that {A — Bk} is a sequence

in 24 (A—T) and {A—-B;}~A (see [M, Theorem 35]).

4.21. COROLLARY. Let HCR™ be an open set, and let T be a thin set. Then
2A(H) ¢ cll[Qlo(H -T)].

Proor. If Be2(H), then Be cll[Qlo(B —T)] by Lemma 4.20. Since B—T C
H—T, we have cl;[% (B~ T)] cecl[% (H~T)],and hence Becl [ (H-T). [

A compact set T C R™ is called o—thin if it is a countable union of thin sets.

4.22. ProposITION. Let Aef®, and let TCA  be o—thin. Then
Aecd (A-T).

Proor. Let G_ be the union of all open sets G cR™  for which

2 (G) ccl[A (A—T)]. Then G, is an open subset of R™, and by Lemma 4.19,
2 (G,) cdl@ (A-T).

Suppose that A° is not contained in. G,. Then E= A°-aG o 18 a nonempty
locally compact subspace of R™ (see [D, Chapter XI, Theorem 6.5(2), p. 239]). Since
A°—Tc G0 ,wehave EcT. If T= UnTn where Tl,T2,... are thin sets, then by the
Baire category theorem (see [D, Chapter XI, Theorem 10.3, p.250), there is an integer
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N >1 such that the interior of EN Ty relative to E is nonempty. This means that
there is an open set G C R™ such that GNE#0 and GNEC TN . In particular ,

H=GnA° is a nonempty open set which is not a subset of G o - Moreover,
H—TycGnA°—GNE=Gn (A°NnG ) cG,
and so by Corollary 4.21,
A () cely (A H-Ty] ccly [A (G)] cely{cI[™A (A —T)]}=cl[A (A-T)] .

As H is not contained in G o » this contradicts the definition of G 0" and we conclude

that A°C G_ . It follows that
cl (24, (A%)] c el [, (6,)] cel {cl[A, (A-T)]} =cl [, (A-T)] .

Since A is thin, Lemma 4.20 implies that A belongs to
cl [, (A - A= cll[Qlo(Ao)] , and the proposition follows. D

The next example shows that for no ordinal a < w; can cl a[Qlo(A —T)] replace

cl[2 (A —T)] in Proposition 4.22.

4.23. EXAMPLE. As we agreed in Section 1, we identify an ordinal with the set of all
smaller ordinals, and we give w; the order topology. Let (< wy and suppose that for
each a < and each nonempty interval (a,b) we have defined an order preserving
homeomorphism piat1- (a,b) ; if =1, this can be done by letting ch(O) =x for
any x € (a,b). If f=a+ 1, we can define g B+ 1- (a,b) by letting goﬁ('y) = cpa(7)
for each 7< e, and gpﬂ(ﬂ) =x for any x€(yp,(a)b). If B is alimit ordinal, find
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ordinals a; < a, <..<f with sup, o = g, and points X <Xy <. <Yy in (a,b)
with sup, X =y . By the induction hypothesis, for n = 1,2,..., there is an order
preserving homeomorphism ¢ : o +1-(x _,.x ). Setting goﬂ('y) = ¢1(7) if 1<,
‘95(7) = gbn('y) if a1 <7r¢e ,n=23,.., and goﬂ(ﬂ) =y, it is easy to check that
Vg B+ 1- (a,b) is an order preserving homeomorphism.

Now given an ordinal @ < w;, we define w?

according to the usual rules for
ordinal arithmetic (see [Si, Chapter XIV, Sections 8 and 9, pp. 287 — 290]). As W< w,
by the previous paragraph, there is an order preserving homeomorphism ¢ from w¥+1
into the interval A = (0,1). Theset T = g(w®+ 1) isa o—thin subset of A ,and it is

not difficult to verify by transfinite induction that A ¢ cl a[Q(O(A —T)] (cf. Example 4.2).

4.24. THEOREM. Let A€®, and le¢ TCA be a o—thin set. Let v be a
continuous vector field in A~ which is differentiable in A° —T . Then divv(x) is

defined for almost all x € A , is integrablein A and

I(div v,A) = fA_v-nA d% .

ProoF. For each B € 2(A),let F(B)=[g.v-ngdd . By Lemma 2.3, F isan
additive continuous function on 2A(A). Let f=divv and B e U(A,f). By Theorem
3.12, F(C) = Iv(f,C) for each Ce¥ (B—T). Using Lemma 4.9 and Propositions 4.3
and 4.22, a simple transfinite induction yields that F(B) = Iv(f,B) . From Theorem 3.12
it also follows that 2 (A —T)cB(A,f). Thus A € cl[B(f,A)] by Proposition 4.22, and
the Theorem is established. D

Let Ae?f and f: A-R. We denote by J(A,f) the family of all B € %(A) on
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which f is integrable. By Proposition 4.15, the family J(A,f) is an ideal in 2A(A) .

4.25. PropoSITION. Let A€ and f: A-R. Then fe J(A) if and only if the
following conditions are satisfied:

(i) thereis asequence {A } in J(A,f) convergingto A;

(if) afinite lim I(,B ) exists for each sequence {B_} in J(A,f) which converges

to A.

PRrROOF. Suppose that conditions (i) and (ii) are fulfilled, and for B € J(A,f), set
F(B) = I(£,B) .

First we observe that if {Xn} and {Yn} are sequences in J(A,f) converging to
A, then limF(X )=1limF(Y ). Indeed, if lim F(X)) #limF(Y ), we let
Zogp 1 =X, and Z, =Y for n=12,... Then {Zn} -+ A, and contrary to (ii),

lim F(Zn) does not exist.

Let Ce%(A), D=A—-C, and let {X,} Dbeasequencein J(A,(f) converging to
A. If lim sup F(X, N C) = 4w, then for each integer k> 1 there is an integer n 21
such that

F(xnk nC) 2 —F(X ND) +k.

Thus letting B, = (Xnk NC)u(X, ND), we see that lim F(B,) = +~. This

contradicts (ii) , for {B,} - A by Lemma 4.4 . From this and symmetric arguments, we

conclude that the sequences {F(X nC)} and {F(X,nD)} are bounded. Now suppose
that
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lin inf F(X N C) < lim sup F(X nC)
or

lim inf F(X ND) < limsup F(X NnD),

and choose subsequences {CIil} and {Dril} , i=12,0o {X NC} and {X NnD},
respectively, so that

Lin inf F(X_n C) =1inF(C),  limsupF(X nC) = linF(C2)
liminf F(X_nD) =1inF(D}), linsup F(X_nD) = linF(D2) .
Then {ClUDI}-A, i=12,and
LinF(Cl uDl) = 1inF(cl) + 1in F(D}) < LinF(C2) + 1inF(D2) = 1inF(C2 uD?)

contrary to our previous observation. Thus a finite lim F(Xn N C) exist. Moreover, by
arguing as before, we observe that lim F(XIl N C) does not depend on the choice of the
sequence {X } convergingto A. If C€3J(A(), then it follows from Lemma 4.9 that
F(C) =1lim F(X_ N C). We conclude that F can be extended from J(A,f) to A(A) by
setting F(B) = lim F(A o N B) for each B € %(A) . This extension is clearly additive, and

we complete the proof by showing that it is also continuous.

Let {B,} be a sequence in 2A(A) which converges to a set B e 2(A), and let
C= A-B. By the definition of F(B,), there is an integer ny 21 such that

oy

belong to J(A,f) , and {X,} -~ A by Lemma 4.4. Thus
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F(B) = lin F(X, N B) = Lim F(Ank nB,) = LinF(B,)

and the continuity of F is established.
The converse follows directly from Lemma 4.9. D

The previous proposition shows that the integral I is closed with respect to the
formation of improper integrals. We show next that the integral I is actually the smallest

extension of the variational integral I, which has this property.

Let Ae2 and f: A-R. Welet J;=2(AJ[),and for each B €T, set F(B) =
Iv(f,B) . Assuming that J o and F —have been defined for each ordinal a < < w; so
that Jacﬂa. and Fa= Fa.rja whenever a < o' < B, we define Jﬂ and Fﬂ as
follows:

(i) If g is alimit ordinal, let J B= Une ﬁﬂ o and let F 8 be the unique function
on jﬂ such that Fa = Fﬂfja foreach a< f.

(ii)) If f=a+1,]let jﬂ consist of all B € cl;(J,) such that a finite lim Fa(Bn)

exists for each sequence {B } in J o converging to B. It is easy to see that all such

limits have the same value, and we declare it equal to F ﬂ(B) .

A simple transfinite argument shows that any extension of the variational integral
Iv(f,') on U(Af) which is closed with respect to the formation of improper integrals (in

the sense of Proposition 4.25) also extends F w.
1

4.26. PRoPOSITION. Let A€2 and f:A-R. Then J =J(A ,f) and
1

I(fB) = F“’I(B) for each B € J(A f) .
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Proor. In view of Remark 4.8 , we may assume that A is closed . By Proposition

4.25, a straightforward transfinite induction shows that I, cJ(A) and
1

le(B) = I(f,B) for each B € ’le .

Now let BeJ(Af). Then Becl[U(B,f)], and we show inductively that

cl CY[QI(B,f)] c3J, foreach a<w . Thisistrueif a=0, and we assume that it is true
1
for all a< < w) - If f is a limit ordinal, then trivially clﬂ[m(B,f)] cJ w. Let
1
f=a+1,and let Cecl ﬂ[QI(B,f)] . By the inductive hypothesis, there is a sequence
{C,} in T, which converges to C. Thereisa y<w, suchthat {C } isa sequence
1

in 37, and hence C e cl;(J If {D } is a sequencein J y which converges to C,

7)'
then

lim F7(D11) = lim I(f,Dn) =I1({,0) $ 0.

It follows that C €3 y+1 and we see again cl ﬂ[m(B,f)] C ’le . D

4.27. LEMMA. Let Ae®, and let & A- R™ be a regular map. Then the
following statements are true.
(i) I {B_} is asequence in 2A(A") converging to a set BeA(A™), then
{8[B,]} -~ 2[D] .
(i) If €C A7), then cI({8[E]:Eee}) = {3[E]:Eecle}.

Proor. (i) Clearly, ¢[B ]c &[B], and there are positive real numbers b and ¢

such that
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|2[C]| <b|C| and |IR[C]I| < cliC]
for each C € A(A™) (see [Ru, Theorem 7.26, p.153] and [M, Theorem 50]). Thus
0<1im |#[B] —2[B ]| =1im |2[B—B ]| <blim |IB—B_ [=0
and
sup  [I2[B_ ]Il < c sup,[IB [ < +o .

(ii) Applying (i) to g1 , we see that the family € = {3[E]: E€cl &} is closed.
As € contains {3[E]: E € €}, it contains also D = cl{®[E]: E € €} . To establish the
reverse inclusion, let € = {2[E]:Eec (€)} for a<w;. Clearly €,CD, and we
assume inductively that € e D for all a< < wy . If B is a limit ordinal, we see
immediately that Qiﬂ CD. Let f=a+1,andlet Be Gﬂ. Then B = §(E) for some
Eecl ﬂ(es) , and we can find a sequence {En} in cl a(QS) which converges to E. By our
assumption {&(E )} is a sequence in D, which converges to B by (i) . As D is closed,
Be D and we have again that Qiﬂc’D. Now the inclusion Qlﬂc'D follows from

Proposition 4.3. []

4.28. THEOREM. Let A €2, and let &: A - R™ be a regular map. If fe J([A]),
then fod-|det &| belongsto J(A) and

I(fod- |det 8|,4) = I(f,8[A]) .

Proor. By Theorem 3.14, we have
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B(A,fod-|det 8|) = {#1[B] : B e B(@[A],f)} .
As ®[A] € cl[B(2[A],f)] , it follows from Lemma 4.27, (ii) applied to ¢! that A belongs
to cl[B(A,fod- |det ®|] . For each B € U(A,fod-|det &|), let F(B) = I(f,#[B]) . Then by
Lemma 4.27, (i), F is an additive continuous function on 2(A) , and by Theorem 3.14,
F(B) =1 (fo2- |det &|,B)

for each B € U(A,fod- |det ®|) . The theorem follows. D

4.29. ExampLE. We shall construct a function f: R - R, which is integrable but not

v—integrable in A = [0,1] .

For each nonempty open interval U C R, we fix a continuous function oy R - [0,x)

such that gaU(s) =0 foreach seR—U, and fgaUd/\ =1.
U

Given a nondegenerate compact interval C = [a,b] , we set
C,(n)=(a+ 2_2n+1|C| ,a+ 2—2n+2|0|) ,
C_(n) = (a+2720|C| , a+ 272 iq)),

n=12,...,and let
o0
-1
=101 20 [ %0, (n) ~ ¥e_n) ]
n=1
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The function f is continuous in R — {a} ,and f+(s) =0 foreach se€R~— (a,b) . If
b
Fo(s) = fs fodd

for s e (a,b), and FC(s) = 0 otherwise, then 'FC is continuous in R, F('J(s) - fC(s)

for each s € R—{a}, and
IFo(s)| < Fglarzh]C]) = |C]

for each s €R. Interpreting FC as a vector field in R, we obtain from Theorem 3.12

that f; is v—integrablein C,and I (f5,C) =0.
CraM. The point a is an e—point of f for each €€ (0,1/2) .

Proor. Recall that e—points were defined in the paragraph preceding Proposition

3.15. Fix an odd integer p 21, and for n = 1,2,... , let
B = (a+27™P|C|, a+2 (" VP|g)).
Since
dB,ufa) =2 Py, B U {a)| = PR gy

and [|B U {a}l| = 2, we see that limd(B_ U {a}) =0 and r(B_ U {a})=(1-27P)/2.

Moreover, it is easy to verify that
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2'1 (B, _2|0|2 (2n_1)p+1 4o .

As {Bn} is a disjoint sequence in 2(C) , the claim is established. D

Nowlet A =[0,1],andlet C = [27X27¥H] k=12, Set

—k

Since IFC | < |Ck| =2 ~, we see that F is continuous in R ; note that only the
k

continuity of F at 0 requires a proof. If S= {0} U {2_k :k=1.2,.}, then F'(s) =
f(s) for each se R—S. As S is a o—thin subset of A (see the the paragraph preceding
Proposition 4.22), it follows from Theorem 4.24 that f is integrable in A, and
I(f,A) =0; for F vanishes outside (0,1). On the other hand, [V1 /3(f,A)]_ =S is not

thin, and consequently, f is not v—integrablein A by Proposition 3.15.

4.30. ExampLe. If K cR™ is a cube, we say that g: K - R™ is R—integrablein K
if it is integrable in K according to [P,, Definition 3.1]. By [P4, Proposition 8.3], the
function f from Example 4.29 is R—integrable in A =1[0,1]]. Let g=f®1, ie
g(s,t) = f(s) for each (s,t)€ R>. We show that in K=AxA , the function g is
integrable, but it is neither v— nor R—integrable. For the R—integral, this provides a

negative answer to the Problem 6.4 in [P ,].

We shall use freely the notation of Example 4.29. If v(s,t) = [F(s),0] for each

(s,t) € R? , then v is a continuous vector field in [R2, which is differentiable in
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RZ - (SxA). As Sx A is a o—thin subset of K and g = div v, by Proposition 4.24, we
see that g is integrablein K and I(g,K)=0.

If g is, respectively, v— or R—integrable, then it follows from Theorem 3.12 or [P3,
Theorem 5.6] that the indefinite v— or R—integral G of g in K coincides with the
function Bw [g.v-ng dJ for each interval B C K for which B c(0,1]]xA.

Assume first that g is v—integrable. For ¢=1/9, find a thin set T C K, and an

e—majorant M of the pair (g,G) in K—T. Then for each x€ K- T, thereis a
&(x) > 0 such that

g(x)[B] —G(B)| <M(B)
foreach Be 2 (K—T) with xe B, d(B) < é(x),and r(B) > ¢.

As ¥ [U°l:=1({2_k} x A)] = +o and H(T) < +w, there is an integer k > 1 such
that & [({2_k} xA)—T]>0. Since  isa Radon measure in {Q-k} x A (see [GP,
Corollary 6.8]) the set ({2—k} x A) —T contains a perfect subset P . By applying the
Baire category theorem (see [D, Chapter XI, Theorem 6.5(2), p. 239] to P, we obtain an
open set U C |R2 with PNU#0 anda a > 0 such that the set

0={xePnU: §(x)>a}

isdensein PNU.As P and T are disjoint compact sets, there is an interval [c,c+h]

such that 0 <h <4, {2_k} x [c,e+h] PN U, and

2, 07X n) «[c,ceh] cKO—T.
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Without loss of generality, we may assume that h = o %2N+2 £ some integer N> 2.

To simplify the the notation, we set q=2N-2, and for n=q,q+1,.., let
I, = 92041 4,4

Each D is the disjoint union of r_ squares

n

—k— 2n+1)
n,i ’

, C+12

for i=1,.,r, . In ({2_k} x [c,c+h]) N, we can find distinct points x . so that
b

r(Dn,i U {x n,i}) =1/8. Since the sets E,;=Dy;V {x are disjoint,

n,i}
d(En,i) < 6(xn,i) ) r(En,i) > €, and g(xn,i) = 0, we have

p n
e > M(K) zm[ U UEn,i] Z ZM(EH )2 2 Zlg(xn DIEy ;1 =6, 1)|
n=q i=1 n=q i=1 n=q i=1

Tn

D p
= | v de’|= | v davl
Z':’; 2 (PR Ig Jop "

P p
- El gcu2| Zh 6,0 )f d,\=h|Ck|I§]1/n.

for p = q,q+1,... . This a contradiction, for Z‘;l°= q(1 /n) =

Now assume that g is R—integrable. Then there is a thin set TCK and a
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& K - (0,+w) such that with e=1/9,
o
Y |e0e) 1451 =604 | <
i=1

for each 6-fine e—partition {(Al’xl)"“’(Ap’xp)} in A—T (see [P4, Section 2] for the
definition of a 6—fine e—partition in A —T ). Proceeding exactly as before, we define

the points Xp i and the sets En T and observe that for each p = q,q+1,... , the collection
b ’
{(En,i’xn,i) 1q&np,1<isr}

is a éfine e—partitionin K —T . Since

Tn

P D
Z 2|g(xn i n 1I _G(E I =h|Ck|21/n,
n=q 1=1 n=q

a contradiction follows.

5. The star—integral. We say that a sequence {An} in A star—converges to a set
A e, in writing {An} 3A,if A CA for n=12,.,and lim A —An" =0. A
family € c 2 is called star—closed if E € € for each E € 2 for which there is a sequence
{En} in & with {En} 35 E. The star—closure of a family & c 2, denoted by cI* &, is
the intersection of all star—closed subfamilies of 2 containing . It is easy to verify that
for each & c U, the star—closure of & is a star—closed subfamily of 2 , which contains E—
for every E €€ (cf. Remark 4.1). Instead of star—convergence, star—closed, and

star—closure, we shall usually write x—convergence, »—closed, and *—closure, respectively.
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The following lemma indicates the relative simplicity of the +—closure operation (cf.

Examples 4.2 and 4.23).

51. LEMMA. Let € C A, andlet E€A. Then E € cl™ & if and only if there is a
sequence {E } in € with {E } 3E.

PRrOOF. Let €* be the family of all sets E € 2 for which there is a sequence {E_}
in € with {E }3E. Clearly, € €"ccl*€, and the lemma will be proved by showing
that & is a «—closed family. To this end, let {An} be a sequence in &* which
*—converges to a set A € 2. Foreach A there is a sequence {En,k}k in & with

{En,k) 3 A, - For n=12,.. find an integer k _ so that [[A — En,kn“ < 1/n, and set

E = En,kn . Then E €€, E cA CA,andby [M, Theorem 35],
JA—E = (A=A) U (A, —E ) < IA=A |+ A, —EJl <JA—A]l +1/n.
Thus {E_} ¥ A, and Aee*. []

5.2. DEFINITION. Let A €2, andlet F be a function on A(A). We say that F

is star—continuous (or simply *—continuous) if given ¢ > 0, thereis a §> 0 such that

|F(B)| < € foreach B e A(A) with ||B|| < é.

5.3. LEMMA. Let A €, and let I be an additive function on 2A(A) . Then F is
*—continuous if and only if lim F(B ) = F(B) for each sequence {Bn} in 2(A) which

*—converges to B € ™A(A) .

Proor. Let F be x—continuous, and let {B } be a sequence in A(A) which
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*—converges to B € %(A). Choose an ¢ >0, and find §>0 so that |F(C)| < e for
each Ce2(A) with ||C|| < §. There is an integer N >1 such that ||B —Bn|| < §é for

each n > N . Hence
|[F(B) —F(B)| = |[F(B—-B )| <e

for each n> N, and we see that lim F(B ) = F(B) .

Conversely, if F is not *—continuous, then there is an ¢ >0 and a sequence

{Bn} in A(A) such that "Bn” < 1/n and
€< |F(B,)| = [F(A) ~F(A-B))|
for n=1,2,.... Yet {A— Bn} XA, for
Lin [[A — (A=B,)] = Lin B, ] = 0. []
5.4. LEMMA. The following statements are true.

(i) Eachsequence {A } in 2 which *—convergestoaset A €2 also converges
to A.

(ii) Each closed subfamily of 2 is *—closed; in particular, ¢I* € ccl & for every
ecA.

(iii) Each continuous function on 2(A) with A € 2 is »—continuous.

ProoF. Properties (i) and (iii) follow from [MM, Section 10] , and property (ii) is a

direct consequence of (i). D
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5.5. LEMMA. Let A €%, and let v be a bounded J¥—measurable vector field on
A". If F(B)=[g.v-ngdd¥ foreach B €A(A), then F is an additive +—continuous
function on A(A) .

ProorF. The additivity of F is clear, and if ¢ = sup {||v(x)||: x € A"}, then
|F(B)] < fB.1v~nB| d¥ < ch.nan do¥ = c||B|
for each B € (A). The s—continuity of F follows. L]

5.6. LEmMA. Let A and B belong to 2, andlet {A } and {B_} be sequences
in A which +——converge to A and B, respectively . Then {A,UB_} 3AUB and
*
{A,nB }3ANB.
ProoF. Letting C = A UB , we have
AUB— (A UB )=[AuB—(A UB)JU[A UB—(A UB )] =
[(A=A)Nn(C—B)JU[(C—A)Nn(B-B)]=
[(A=4) N (C=B)JU[(C—A)n (B—B)]U[(A—=A)n (BB )]

and

[AnB—(A NB)=[AnB—(A NB)JU[A NnB—(A NB )] =
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[(A—A)NnBJU[A N (B-B))] =

[(A—A)nBlU{[An (B—B)] - [(A—A) N (B=B))]}.

According to [MM , Section 13], if {D_} is a sequence in 2 with lim ID,|l =0, then
lim||[Dn D Il|| =0 for each De@. Using this, the lemma follows from [M, Theorem

351. [

5.7. CoroLLARY. If J is an ideal in ¥, then so is o*3. If J is another ideal in

A , then
*ANnI) =(c*IHNn(cl*3) and (c1*I) Vv (c1*I) ccl*(IVYI).

PrOOF. In view of Lemmas 5.1 and 5.6, the proof is analogous to the proofs of
Proposition 4.5 and Lemmias 4.10 and 4.14, except that no transfinite induction is needed.
Moreover, the inclusion (c1* J) v (cI* 3) c c*(3 v J) is actually valid for any subfamilies
Jand Jof 2. [

5.8. DEFINITION. Let A€ and f: A-R. We say that f is star—integrable (or
simply x—integrable) in A if A e cl*[J(A,f)], and there is a *—continuous additive
function F on 2A(A) such that F(B) = I(f,B) for each B € J(A,f).

The family of all *—integrable functions on a set A € 2 is denoted by J*(A) .

5.9. ProposiTIoN. Let A€ and fe J*(A). Then fIBe J*(B) for each
Be,and e J(AT) for any extension { of f to A™.
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Proor. This follows from Proposition 4.7, Corollary 5.7, and a remark analogous to
Remark 4.8. []

Proceeding as in Section 4, it is easy to show that each *—integrable function f on a
set A €2 determines uniquely the »—continuous additive function F from Definition 5.8.
We call it the indefinite »—integral of f in A, denoted by I*(A;f,-). The number
T*(A;f,A) is called the »—integral of f over A. Since I'(Bif,-) = I*(A;f,-)!%(B) for
each B € 2(A), no confusion will arise if instead of I*(A;f,-) and I*(A;f,A) , We write
simply I*(f,-) and I*(f,A) , respectively. Clearly, J(A)C J*(A) and I*(g,A) = I(g,A)
for each ge J(A). In the dimension one, i.e. , for m = 1, the »—convergence is trivial:
by [M, Theorem 33] a sequence {E } in 2 x—converges to a set E €2 if and only if
|E—E | =0 for all sufficiently large n. Thus J(A)= J*(A) if m=1. However,

Example 5.17 shows that the inclusion J(A) C J*(A) is proper whenever m > 2.

The next proposition summarizes the basic properties of the +—integral. Its proof is
analogous to the proofs of Propositions 4.13, 4.15, and Corollary 4.17, except that no

transfinite induction is required.

5.10. ProposITION. Let A €2. Then J"(A) is a linear space of measurable
functions on A, and the map f» I*(f,A) is a nonnegative linear functional on J*(A) .
Moreover, if D is a division of A, then a function f on A belongs to J*(A) if and

only if f1D € J*(D) foreach De®D. []

A compact set S cR™ with o#(S) =0 is called slight. Again, it follows from [Fe,
Section 3.2.40, p.276] that the slight sets we consider here are larger than those defined in

[P,
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511. Lewmma. Let A€, let SCA™  be slight, and let A (A) =
{Be(A): B nS=0}. Then Aecl*[2g(A)].

ProoF. By Lemma 1.1, for each integer k > 1, there is a sequence {Sk,n} 0 of
dyadic cubes such that Sc UnSk,n and anlsk,nll < 1/k. Fix an integer k> 1, and for
n=12..,let Gk,n be the collection of those dyadic cubes C for which d(C) = d(Sk,n)
and CT NS #0. If sﬁ,n= (usk,n)° , then {Sﬁ,n}n is an open cover of S. As S is
compact , SC UELSE,I] for some integer n) 21. Letting &) = Uzilgk,n and

B, = UGS, , we have ScBﬁ,and

LNEEDWENNRS s
n

for &,  contains 3™ cubes congruent to SN follows that {A — Bk} is a sequence

. *
in Ag(A) and {A—B;}3A ;for
lim |JA—- (A= Bk)ll = lim ||A N Bkll =0
by [MM, Section 13] . []
5.12. THEOREM. Let A €2, andlet T and S be, respectively, a o—thin and a
slight subset of A~ . Let v be a bounded vector field which is continuous in A~ — S and
differentiable in A° —T . Then v is J#—mecasurable, div v(x) is defined for almost all

x € A ,is »—integrable in A , and

I*(div v,A) ='f;‘v~nA d# .
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PrOOF. As v is continuous J#—almost everywhere, it is ¥ —measurable. For
each Be AA), let F(B)=JgvngdH# . By Lemma 55, F is an additive
*»—continuous function on 2A(A). Let f=divv and Be€J(Af). By Theorem 4.24,
F(C) = I(f,C) for each Ce Ug(B) (see Lemma 5.11) . It follows from Lemmas 5.1, 5.3,
and 5.11 that also F(B) =I(f,B) . Since A€ cl*[QlS(A)] by Lemma 5.11 , we see that F
is the indefinite »—integral of f in A . D

Let Ac® and f: A-R. We denote by 7°(A,f) the collection of all B € 2(A) in
which f is »—integrable. By Proposition 5.9 , the collection J*(A,f) is an ideal in 2A(A) .

Replacing convergence by x—convergence, the proof of the next proposition is

identical to that of Proposition 4.25 .

5.13. PRoPOSITION. Let A €2 and f: A-R. Then fe J*(A) if and only if the
following conditions are satisfied:
() Aed A

(ii) a finite lim I*(f,Bn) exists for each sequence {Bn} in 5*(A,f) *—converging

toA.D

Thus the »—integral T* is closed with respect to the formation of improper integrals
(by means of +—convergence). We show next that I* is actually obtained from I by

adding all such improper integrals.

Let A€ and f: A-R. We denote by 7* the family of all B € cI*[J(A,f)] such
that a finite lim I(f,B ) exists for each sequence {B_} in J(Af) with {B_} XB. Itis
easy to verify that all such limits have the same value (see the proof of Proposition 4.25),

denoted by F*(B) .
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5.14. ProposITION. Let A€® and f:A- R. Then F*=7A"f) and
I*(f,B) = F*(B) for each B e J*(A™f).

ProoF. In view of Remark 4.8, we may assume that A isclosed. If Be€ T*(Af)

then B € c*[J(B,f)] , and consequently B € cI*[J(Af)]. If {B,} is asequencein J(A,f)

which »—converges to B , then by Lemma 5.3,
lin I(f,B ) = lim I*(f,B ) = I*(f,B) # % .

Thus B €7 and F*(B) =I%(f,B). On the other hand, 7" c 3%(A,f) by Proposition

5.13. [

5.15. LEMMA. Let A€ 2, andlet & A-R™ bea regular map. Then the following

statements are true.

(i) If {B_} isasequencein A(A") s—convergingto aset B € 2(A"), then we
have {3[B ]} 3$[B].
(i) If €CcAA7), then cI*({B[E: Ec¢}) = {J[E: Eccl* ¢} .

Proor. (i) By [M, Theorem 50], there is a ¢ > 0 such that ||®(C)| <c||C|| for
each C € A(A). Thus

0<lim [|@[B] —&(B ]|l = Lim |2[B—B ]|l <c lim [B—B | =0,
and as &(B) c (B) , we see that {2[B ]} 3 8[B].

(ii) In view of Lemma 5.1, this follows easily from (i) . []
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The next theorem follows from Lemma 5.15 in the same manner in which Theorem

4.28 was obtained from Lemma 4.27.

516. THEOREM. Let A €2, and let & A- R™ be a regular map. If
fe J*(8[A]), then fod-|det &| belongsto J*(A) and

I*(fod- | det 8],A) = I*(18[A]) . []

5.17. EXAMPLE. We shall construct a function g in R% which is *—integrable, but

neither integrable nor R—integrable (cf. Example 4.28).

Given a nondegenerate compact interval C = [a,b] , we let

[o¢]

fo=vg (1) * 2,7 [*’q(n) ~96_(w)

n=2
where C,(n) and ¢ (n) 2re defined as in Example 4.27. We set
+
b
Po(s) = —fs £ dA

if s€(ab), FC(S) =0 if s>b, and FC(S) =-1 if s<a. Then F is continuous on
R, and F(s) =1n(s) for each seR- {a} ; for fo is continuous in R - {a} and

vanishes outside (a,b) . Furthermore,

[Fg(s)| $Fgla+270[0]) =1
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foreach seR.
For k =1,2,... , let

-1 ,-1 _ —

- FC .
2k—-1 2k 2k—-1 2k

Each F, is continuous in R, vanishes outside (Cop U C2k—1)o , and |Fp|<1.
Moreover, Fy(s) =1f;(s) forall seR - {(2k+1)_1,(2k)_1} L f

[0.0] [0.0]
f= sz and F-= sz ,
k=1 k=1

then F is continuous in R — {0} , vanishes outside (0,1), |F| <1, and F'(s) =1f(s) for
each s€R—S where S= {0} U{l/k:k=23,..}. The function F is not continuous at
0, for

|Cop |
PllLy 1 - F, Lokl oy
9k  4k(2k—1) 2k—1| 2k 2

k=12,...,and F(0)=0.
For (s,t) € R , let g(s,t) =1(s) and v(s,t) =[F(s),0]. Then v is a bounded
vector field in IR2, which is continuous in IRQ—({O} xR), and differentiable in

R — (S x R) . Moreover, g =divv in R>.

If A={(s,t)eIR2:05tgs$1}, then AN(SxR) is a o—thin set, and
An ({0} xR) = {(0,0)} is a slight set. It follows from Theorem 5.12 that g is
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*—integrable in A . An argument analogous to that employed in Example 4.28 shows that
g is neither v— nor R—integrable in A . We show next that g is not integrable in A

either.

-1 2
Let B, =C, _, x[0,(2k) '] and D = Ukian . We have

P U R O R
K" okt ok ok ak?(2k-1)’

11 1 9
IB || =2| ———| +2~—=—"-¢<2/k,
k — : 9%k  2k—1

for k=1,2,...,and so lim |Dn| = 0, and since

2n 21 2n—1
n2= [t dt< Z(l/k) < f t7hae=1m 2L
n k=n n—1

we see that lim ]IDnll <2:In2.

If g isintegrablein A, and G is the indefinite integral of g in A, then using

Theorem 3.12, a simple calculation shows that

n

2n 2 2n
6(D,) = ZG(Bk) = 2];’.v~n8k d¥ = 2(1/2k) > (1n 2)/2
k=n k

=n k <=1

for n=1,2,.... Letting e¢=1/In8, for each §> 0, we can find an integer n> 1 with

|ID,| <& and "Dn" <1/e. As G(D,) > e, this contradicts the continuity of G .
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NoTE. The previous example is modeled on [MM, Section 34, Example 1]. The

added complexity is due to the extra requirement that g must not be R—integrable.

[D]
[De G]

[Fa]

[Fe]

[G]

[GP]
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