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 RADIAL CLUSTER SET AND INTERPOLATION

 Let D be the open unit disk in the complex plane C and f be

 an analytic function from D into C. Denote by S the unit

 circle in the complex plane. For each a in S, denote the ra-

 dius from 0 to aby R(a) . That is, R(a) = {ta : 0 < t < 1 > .

 We are interested in the behavior of f restricted to R(a) .

 In general, the limit of f(ta) as t tends to 1 does not

 exist. But, as a function into the extended complex plane C*

 (that is, the Riemann sphere), the radial cluster set C(f,a)

 does exist, where C(f,a) is the subset of C* given by

 C(f,a) = Cl({f(xa) : t < x < 1>),

 where Cl(E) is the closure in C* of the subset E of C* . The

 continuity of f assures that C(f,a) is a nonempty subconti-

 nuum of C* . The collection of all nonempty subcontinua of C*

 will be denoted by C(C*). The function f* defined on S into

 C (C* ) given by f*(a) = C(f,a) is called the radial cluster

 set function of f .

 Corresponding to the metric on C*, there is a metric on the

 collection C(C*) called the Hausdorff metric. By 1938, it

 was known that C(C*) with this metric is a Peano continuum (a

 connected, locally connected, compact metric space) . In

 1974, Curtis and Schori ([1] and [2]) proved a long standing

 conjecture of Wojdyslawski [3] on C(X), where X is a Peano

 continuum. As a result of this theorem of Curtis and Schori,

 we now know that C(C*) is homeomorphic to the Hilbert cube.
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 In 1987, there appeared a paper by Brinn [4] concerning the

 radial cluster set function f* of an analytic function f de-

 fined on D. (Actually, her theorem concerned a technical

 modification of radial cluster sets.) Her theorem asserts

 that for each nonempty, nowhere dense , perfect subset K of S

 and each nonempty closed subset A ojf C(C*) there is an analy-

 tic function f on D such that f*[K] = A, f has an analytic

 extension to each point of S'K, and { a : f*(a) = p } is un-

 countable for each p in A. Moreover , this f satisfies the

 condition that the set-valued function g defined on SX[0,1)

 by g(CT,t) =Cl({f(Tcr) : t <t <1>) ( a e S, 0 < t< 1 ) con-

 verges to f* uniformly on K. This theorem was a response to

 the following 1954 conjecture of Bagemihl and Seidel (stated

 only for the radial cluster set version) [5].

 Conjecture: Let K be a nonempty , nowhere dense , perfect sub-

 set of S. For a nonempty subset A of C(C*), there is an

 analytic function f on D such that its radial cluster set

 function f* satisfies f*[K] = A and f has an analytic exten-

 sion at each point of S'K jif and only if A is an analytic

 subset of C (C* ) .

 In their paper, Bagemihl and Seidel established the necessity

 of the condition and proved the sufficiency for the collec-

 tion of all locally connected subcontinua of C*.

 We consider the above existence statements to be interpo-

 lation theorems. Recent developments in analysis and topo-
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 logy permit us to prove the conjecture of Bagemihl and

 Seidel. We have already mentioned the results of Curtis and

 Schori. The Borei measurable selection theorems proved in

 1985 by Himmelberg, Van Vleck and Prikry [6] and the results

 of Rogers [7 J proved in 1988 concerning the coincidence of

 the Borei class 1 and the Baire class 1 functions play

 important roles in the proof. Also, results of dimension

 theory are used to advantage. We also prove that the analy-

 tic function f can be constructed in such a way that the set

 {a : f*(a) = P > is uncountable for each p in A.

 The above results are derived from research done jointly

 with Robert D. Berman.
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