Sandra Meinershagen, Northwest Missouri State University, Maryville, MO 64468.

> "A Lower Bound for the Packing Measure which is a Multiple of the Hausdorff Measure"

Claude Tricot, Jr. has solved S. James Taylor's conjecture that when the Hausdorff dimension of a set E is equal to the packing dimension of the set E, then the Hausdorff measure of E is equal to the packing measure of E only when the dimension is an integer. Tricot's solution affirmed Taylor's conjecture. So the question now changes to how much larger is the packing measure of E in relation to the Hausdorff measure of E when the dimension is not an integer. For symmetric sets on the real line, and under certain conditions, a lower bound for the packing measure that is a multiple of the Hausdorff measure is given. <u>Definition 1: A symmetric set</u> is defined as follows:

93

Let N = 1. Take an interval B_1^1 of length b_1 from the center of [0, 1] leaving intervals on the left, A_1^1 , and on the right, A_1^2 , of [0, 1] each of length a_1 . Take intervals $\{B_{k+1}^i\}_{i=1}^{2^k}$ each of length b_{k+1} from the center of each of the 2^k intervals $\{A_k^i\}_{i=1}^{2^k}$ of length a_k leaving 2^{k+1} intervals $\{A_{k+1}^i\}_{i=1}^{2^{k+1}}$ of length a_{k+1} . Then E, the symmetric

set, is the intersection of the sets $E_n = \bigcup_{i=1}^{2^n} A_n$.

The lower bound for the packing measure that is a multiple of the Hausdorff measure is given in the following theorem. In this theorem, $\mu^{\alpha}(E)$ will denote the Hausdorff measure and $(\alpha - p)(E)$ will denote the packing measure, where α is the dimension.

<u>Theorem 1</u>: Let E be a symmetric set. If the Hausdorff dimension of E is equal to the packing dimension of E and if $\overline{\lim}_{n \to \infty} (a_{n+1}/a_n) < (1/2)$, then $(\alpha - p)(E) \ge [1 + \beta]^{\alpha} \mu^{\alpha}(E)$ where $\beta = \underline{\lim}_{n \to \infty} (b_{n+1}/a_n)$. An upper bound for the packing measure of a symmetric set E can also be found in relation to the Hausdorff measure of E.

<u>Theorem 2</u>: If $E = \bigcup_{n=1}^{\infty} E_n$ where $\{E_n\}_{n=1}^{\infty}$ are disjoint, if $\lim_{r \to 0} \mu^{\alpha} [E_n \cap (x - r, x + r)]/(2r)^{\alpha} \ge d_n > 0$, and if $\int_{n=1}^{\alpha} d_n^{-1} \mu^{\alpha} (E_n) < \infty$, then $(\alpha - p)(E) \le \int_{n=1}^{\infty} d_n^{-1} \mu^{\alpha} (E_n)$.

Symmetric sets with Hausdorff dimension equal to packing dimension have the following property: <u>Theorem 3</u>: Let E be a symmetric set on the real line. If the Hausdorff dimension of E is equal to the packing dimension of E, then E is porous.

However, their are a class of symmetric sets which are porous and have Hausdorff dimension strictly less then their packing dimension.

95