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 At the annual AMS meeting in January of 1988, L.D. Pitt

 proposed during an informal conversation over coffee with

 Mauldin an example of a dimensionless Cantor set, K. In

 D (.teens ton und ä t»ßeres [2], Hausdorff defined the

 dimension of a set A to be the class of all Hausdorff

 functions such as for which 0 A function y>

 is a Hausdorff function if (i) v>: [0,5] -♦ R for some 5 > 0,

 (ii) ^ is non-decreasing, (iii) '*>(0) = 0, and (iv) <f>(t).[o as

 t.[0. Here, K is dimensionless means, if <fi is a Hausdorff

 function, X € K and r > 0, then KÍÍB fx) is either
 r

 non- a- finite or of zero measure with respect to 1*. It is

 not known if such a Hausdorff function exists.

 Pitt proved that if x is not isolated from the left in

 K, then dinvj Kfi[0,x] = a(x) with, for x in (0,1], sr(x) =
 ln( 2 )/( ln( 2/x) ) and a(0) = 0. Extending this we show

 Theorem. If x t K and r > 0, then KflB (x) is either
 r

 non- v- finite or of zero measure with respect to for which

 y>(t) = t^*L(t) where y > 0 and L is slowly varying (L is

 slowly varying if lim^i,-, L(ct)/L(t) = 1 for any c > 0).
 u Ļ U

 Start the construction of K by setting = [0,1J.

 Assume on the p^*1 level that, for ¡7 € {0,1}P, J = [a ,b7J

 67



 has been constructed with midpoint and length 1{J. For o
 a finite sequence and r any sequence, let o+r denote the

 concatenation of ? and r. Remove the open interval

 (m -I (1-m )/2, m +i (1-m )/2) from J . Denote by J n and (J (J O u (J (J (j (7 •>* n 'J

 J ,, respectively, the left and right intervals that
 ■J *** -i.

 CD OD

 remain. For 6 € 1^J{0,l}n, define = fi U and K =
 n= 0 p=l it€{0 , 1 }P

 K 0. To prove our theorem, we use three lemmas.
 Lemma 1. For $ £ {0,1}^, lower and upper bounds of the

 Hausdorff dimension are

 T • log 2P ^ / j . ¿r / , . log a 2P ^
 T lim • . .

 - log s^(j) J - log u^(j)
 where, for i > p, u^(i) = max{/^.: ( 6 -CO, 1 } 1 , J ^ Ç J^} and

 3^(i) = min{ ¡g ■ ( 6 {0,l}i, Ļ J^}.
 Lemma 2. Suppose $ is an element of {0,1 }p. If b^ <

 z, then la(z)(K^) = 0 and, if z < b^, then ?a(z)(K^) = <o.
 Suppose that ^ is a Hausdorff function and 0 £ x < y S

 1. Assume y is a limit point of K from the left. There are

 three cases to consider.

 3 - 1

 (a) For any 0 < ß ■ -r(y), lim, ^ t i?(t) > 0.
 <y - 1

 (b) For some 0 < y < a{y) , lim^ļg t'y>(t) = 0.

 (c) For any 0 < 7 < a(y), lim^g ťV(t) ^ > 0
 and

 for some 0 < ß < a(y), lim^ t^<p(t) ^ = 0.
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 Lemma 3. If (a) holds, then KÍ1[x,y] has zero i*

 measure. If (b) holds, then Kii[x,y] is of non-7-f inite

 measure with respect to ■v.
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