Don Spear, Department of Mathematics, University of North Texas,

Denton, TX 76203-5116

Pitt's dimensionless Cantor set

Don Spear

At the annual AMS meeting in January of 1988, L.D. Fitt proposed during an informal conversation over coffee with Mauldin an example of a dimensionless Cantor set, K. In *Dimension und äußeres Muß* [2], Hausdorff defined the dimension of a set A to be the class of all Hausdorff functions such as φ for which $0 < \mathcal{X}^{\varphi}(A) < \varpi$. A function φ is a Hausdorff function if (i) φ : $[0,\delta] \rightarrow \mathbb{R}$ for some $\delta > 0$, (ii) φ is non-decreasing, (iii) $\varphi(0) = 0$, and (iv) $\varphi(t) \downarrow 0$ as $t \downarrow 0$. Here, K is dimensionless means, if φ is a Hausdorff function, $x \in K$ and r > 0, then $K \cap B_r(x)$ is either non- σ -finite or of zero measure with respect to \mathcal{X}^{φ} . It is not known if such a Hausdorff function exists.

Pitt proved that if x is not isolated from the left in K, then dim_{χ} K \cap [0,x] = α (x) with, for x in (0,1], α (x) = $\ln(2)/(\ln(2/x))$ and $\alpha(0) = 0$. Extending this we show

Theorem. If $x \in K$ and r > 0, then $K \cap B_r(x)$ is either non- σ -finite or of zero measure with respect to \mathcal{R}^{φ} for which $\varphi(t) = t^{\gamma} \cdot L(t)$ where $\gamma \ge 0$ and L is slowly varying (L is slowly varying if $\lim_{t \ge 0} L(ct)/L(t) = 1$ for any c > 0).

Start the construction of K by setting $J_{ij} = [0,1]$. Assume on the pth level that, for $\sigma \in \{0,1\}^p$, $J_{\sigma} = [a_{\sigma}, b_{\sigma}]$ has been constructed with midpoint \mathbf{m}_{σ} and length l_{σ} . For σ a finite sequence and τ any sequence, let $\sigma * \tau$ denote the concatenation of σ and τ . Remove the open interval $(m_{\sigma}^{-l} (1-m_{\sigma})/2, m_{\sigma}^{+l} (1-m_{\sigma})/2)$ from J_{σ} . Denote by $J_{\sigma*0}$ and $J_{\pi \star 1}$, respectively, the left and right intervals that remain. For $\theta \in \bigcup_{0,1}^{\infty} \{0,1\}^n$, define $K_{\theta} = \bigcap_{\infty}^{\infty} \bigcup_{\theta \neq \sigma} J_{\theta \neq \sigma}$ and K = $p=1 \sigma \in \{0,1\}^p$

 $K_{\rm ch}$. To prove our theorem, we use three lemmas.

n=0

Lemma 1. For $\theta \in \{0,1\}^p$, lower and upper bounds of the Hausdorff dimension are

$$\frac{\lim_{j \to \infty} \frac{\log 2^{p-j}}{-\log s_{\theta}(j)} \leq \dim_{\boldsymbol{\chi}} K_{\theta} \leq \underline{\lim}_{j \to \infty} \frac{\log 2^{p-j}}{-\log u_{\theta}(j)}}{-\log u_{\theta}(j)}$$

where, for $i \geq p$, $u_{\theta}(i) = \max\{l_{\zeta} \colon \zeta \in \{0,1\}^{i}, J_{\zeta} \subseteq J_{\theta}\}$ and $s_{\theta}(i) = \min\{l_{\zeta} \colon \zeta \in \{0,1\}^{i}, J_{\zeta} \subseteq J_{\theta}\}.$

Lemma 2. Suppose θ is an element of $\{0,1\}^p$. If $b_{\theta} <$ z, then $\mathcal{X}^{\alpha(z)}(K_{\theta}) = 0$ and, if $z < b_{\theta}$, then $\mathcal{X}^{\alpha(z)}(K_{\theta}) = \varpi$.

Suppose that φ is a Hausdorff function and $0 \leq \mathbf{x} < \mathbf{y} \leq$ 1. Assume y is a limit point of K from the left. There are three cases to consider.

(a) For any
$$0 < \beta < \alpha(y)$$
, $\underline{\lim}_{t \neq 0} t^{\beta} \varphi(t)^{-1} > 0$.

(b) For some
$$0 < \gamma < \alpha(y)$$
, $\lim_{t \downarrow 0} t^{\gamma} \varphi(t)^{-1} = 0$.

(c) For any
$$0 < \gamma < \alpha(\mathbf{y})$$
, $\overline{\lim_{t \downarrow 0} t^{\gamma} \varphi(t)^{-1}} > 0$
and
for some $0 < \beta < \alpha(\mathbf{y})$, $\underline{\lim_{t \downarrow 0} t^{\beta} \varphi(t)^{-1}} = 0$

Lemma 3. If (a) holds, then $K\cap[x,y]$ has zero \mathcal{X}^{φ} measure. If (b) holds, then $K\cap[x,y]$ is of non- σ -finite measure with respect to \mathcal{X}^{φ} .

References

- 1. H.G. Eggleston, A measureless one-dimensional set, Proc. Camb. Phil. Soc. 50 (1954), 391-3.
- 2. F. Hausdorff, Dimension und äußeres Naß, Math. Ann. 79 (1919), 157-79.
- 3. L.D. Pitt, personal communication.
- 4. F. Schweiger, Kapasstät und Dimension verallgemeinerter Cantorsheer Mengen, Acta Arithmetica XX (1972), 125-132.
- 5. E. Seneta, Regularly Varying Functions, Lectures Notes in Nathematics, volume 508, Springer-Verlag, New York, 1976.
- 6. D. Spear, Hausdorff, packing and capacity dimensions, Ph.D thesis, University of North Texas, August 1989.