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 Remarks on Laczkovich's Circle-Squaring Proof

 This paper, as advertised, contains none of my own work, but is an attempt to relay

 some of the flavor of the remarkable solution my friend Miklós Laczkovich has given to a

 1925 problem of Alfred Tarski. As most of my knowledge of the history of this problem

 is directly attributable to Mik, I'll quote him rather liberally throughout this paper. I'll

 begin with the introductory remarks to his paper Equidecomposability and discrepancy;

 a solution to Tarski 's circle squaring problem which will appear (or perhaps already has

 appeared) in Crelle's Journal.

 Tarski's circle-squaring problem asks whether a disc is equidecomposable to a square;
 that is, whether a disc can be decomposed into finitely many parts which can be rearranged
 to obtain a partition of a square. The problem was motivated by the well known Banach-
 Tarski theorem stating that in R3 two sets are equidecomposable provided that they are
 bounded and have nonempty interior. In particular, any ball is equidecomposable to any
 cube. On the other hand, the existence of a Banach measure on the plane shows that a
 disc and a square can be equidecomposable only if they have the same area. (As for the
 proofs of these theorems, the further development of the theory and also for the history
 of Tarski's problem we refer to S. Wagon's book [The Banach-Tarski paradox , Cambridge
 Univ. Press, 1986]). .

 It is known that the answer to Tarski's problem is negative if we impose some restric-
 tions either on the pieces of the decompositions or the isometries of the rearrangement.
 L. Dubins, M.H. Hirsch and J. Karush proved that the disc is not "scissor-congruent" to
 the square; that is, if the pieces are restriced to be Jordan domains (topological discs)
 then the disc and the square are not equidecomposable. The other result is due to R.J.
 Gardner.According to his theorem, the "circle-squaring" is impossible if the pieces are to
 be moved by isometries generating a locally discrete group (there are no restrictions on
 the pieces themselves).

 In this paper we show that in spite of these negative results, the disc is equidecompos-
 able to a square. Moreover, we only vise translations in the rearrangement of the pieces.

 Our proof is based on a sufficient condition for the equidecomposability of two bounded,
 measurable sets in terms of the discrepancy of certain special sequences (Theorem 5.1).
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 If T is a finite set, T is said to decompose two sets E' and if there is a bijection

 (¡> : Ei~ > E2 with <f>(x) - X e T for each xeEy, T decomposes the intervals of length d if T

 decomposes every pair of intervals of length d. The "parts" into which E' is decomposed

 are obtained by fixing te T and considering those eeE' such that ^(e) - e = t.

 To understand some of the fundamental ideas governing the main proof, we follow

 Laczkovich and describe a one dimensional mathematical metaphor. The metaphor is this:

 Find a set T which decomposes the intervals of length d for every 1/2 <

 d < 1.

 Fortunately, we are not without help.

 THEOREM (1948 Hall-Rado) The finite set T decomposes intervals I and J if

 and only if whenever A G I and B C J are finite, then

 1. I (A + T) n J| > I A I, and

 2. '{B-T)nl' > 'B', and

 TRY 1. Suppose T = {no : n = 0, ±1, ...}fl[0,l). In this case, if d is not in

 T it is rather easy to locate two intervals I and J of length d with 1 1 fl T| > | J D T'.

 This, however, violates the Hall-Rado conditions and we conclude that such T are

 not sufficiently rich for our purpose. In the next attempt, we use a slightly more

 sophisticated set, T.

 TRY 2. Suppose T ={na + k : n,k = 0, ±1, ..., |n|, |A;| < K, a irrational} For

 this investigation we need several definitions.
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 Definition 1. The discrepancy of a finite set S with respect to a second set H is

 D(S,H) = _ X(B)

 Definition 2. D(S) = sup{D(S,I) : I is an interval}

 Definition 3. {x} will denote the fractional part of x.

 Now suppose NeN and I, J are intervals. Define

 Sjv = {{na} : 0 < n < N}

 and set An = Sn n I and Bn = Sn fi J. Then

 An I - 'Bn 1 1 = II-Sjv n I' - 'Sn n J|| =

 _ A(/)ļ _ ļl£ivnjļ _ A(J)ļ|

 N'D(Sn,I) - D(Sh,J)'.

 If T decomposes I and J we can use the Hall-Rado result to give a second estimate.

 an' = 'sN n i' < |(A^ + r)n J|

 < 'Sn DJ| + 2 K = I -Bjv I + 2 K.

 That is,

 -AJVI - I-Hjv 1 1 < 2Ä".

 It follows that

 IK

 (♦) |£>(S*,/) - B(W)I < -ņ
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 We again defer to Mik.

 Now, one of the basic facts of the discrepancy theory is that the sequence of
 numbers ND(Sff) cannot be bounded. This implies that we can choose a large N and
 an interval I C [0,1) such that ND(Sff',I) > 2 K + 2. We may also choose I with
 Ai (/) > 1/2. On the other hand, it is easy to see that, among the intervals of any given
 length, there must be one satisfying D(Sn' J) < 2 /N. Hence, there is an interval J
 such that Ài (I) = Ai(J) and (*) is not satisfied.

 TRY 3. Suppose T = {k + na + mb : k,n,m = 0, ±1, ..., 'k', |n|, |m| < K}. Could

 such a set serve as the solution to our one dimensional problem? Analyzing as above

 we obtain that there is a constant C such that for each NeN,

 N2'D(S*n,I)-D(S*n,J)' < CN.

 Here, S ^ - {{na + mb} : 0 < n,m < N}. Now, N2D(Sļf,J) can be as small as "2" so

 that there are restrictions on the magnitude of N2D(S} ^). These restrictions, however,

 do not contradict the fact that N2D(S^f) is unbounded; it could grow logarithmi-

 cally for example. Such a set, T, then is a candidate solution to our one dimensional

 metaphor and indeed, Laczkovich affirms an appropriate candidate in his THEOREM

 5.1. To continue we need three additional definitions.

 Definition 4. < x > = min{{x}, 1 - {x}}.

 Definition5. If x=(xi, X2)cR-2) then (x) = ({xi}, {X2}).

 Definition 6. 5//(u,x,y) = {(u + nx + y) : 0 <n,k< N}.

 With this background, let me make two absolutely obvious observations.

 Observation 1 .Let V be a nonnegative function such that 'P(n) < log n and

 let H i and H2 be measurable subsets of [0, l]2xvith Á2(íři) = > 0. Suppose

 Xo,yo,i,jeR2 are linearly independent over the rationals and
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 N2 £>(S„(u,x0,y0),tft) < V(N)

 for every N cN, i=l,2, ueR2. Then there exists a bijeetive

 <ļ> : Si (u) -> S2(u)

 where S»(u) = {(n, k) : u + nx0 + ky0 e H{} i = 1, 2.

 (As both Si (u) and ^(u) are countably infinite, there is really nothing to this.)

 Observation 2. Suppose the hypotheses of Observation 1 hold and let G be the

 group generated by XojYojij and j.

 Then define

 Zi ~ Z2 iff Zi - ZļCG.

 Let E be an equivalence class under ~ and suppose u eE If zeE there are unique

 interger coeficients n,m,k,p with

 z = u + nxo + my o + A;i + pj

 If, in addition, zeHi, then (u + nx0 + my0)eHi so that (n,m)c5i(u). It follows that

 <f>{n,m) = (n', m')e52(u) and so there are k' and p' such that

 z' - u + n'x o + m'y o + k' i + p'jeHļ
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 It is now easy to see that F(z) = z' is a bijection from E fi Hi to E n Hļ such that

 F( z) - zeG for each zeEC'Hi. As E is arbitrary, F is a bijection from Hi to Hļ- That

 is, G decomposes Hi and Hļ.

 Note that as G is not finite this use of " decompose * is technically incorrect. Un-

 fortunately, G is countably infinite making Observation 2 a triviality. However, if

 <f>( z) - z were bounded then a finite subset of G would decompose H 1 and H2 because

 |F(z) - z| < 21'2 for each ztH'. It is this property of the mapping <f> : Si(u) - ► ^(u)

 which is critical in the proof of THEOREM 5.1 stated below.

 THEOREM 5.1 Let V be a nonnegative function such that

 E-jr1 < °°-
 k=l

 Let H 1 and Hļ be measurable subsets of [0,l]2 with 'ļ(H') = Xļ(Hļ) > 0. Suppose

 x0,y0, i, and j are linearly independent over the rationals and that

 N2D(Sff(u,Jc0,y0),Hi) < *{N)

 for every jV6N,ueR2,î = 1,2. Then Hi and Hļ are (translation) equidecomposable.

 Remark. The question remains: given such sets Hi and Hļ, where does one find

 the appropriate x0 and y0? The answer comes via an existence argument which uses

 techniques not available until the midsixties.

 Using techniques of W. Schmidt one can prove the following estimates.

 THEOREM 6.2 For o.e. ( xfy)tHL 2 and for every e > 0 there is a C > 0 such

 that

 Y: - -, j- < kx>< -, ky r > v '
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 Y-, k < kx >< ky ; > ~

 k2 < kx >< ky > ~ n

 The one dimensional version of the Erdõs-Turán Theorem gives the following es-

 timate for every me N.

 D(SN(u,x,y)) < ± + £Í| * £
 h=l 0<n,k<N

 But then,

 ç2icih{u+nx+ky} ļ _ ļ y ' g2jrťh(nz+fcy) | _
 0 <n,k<N 0 <n,k<N

 ļe2wihNx _ 1||g2irł'hjVy _ j|

 ļe2ir«hi _ ļ||c2ir»7iy _ ļļ -

 ^

 ^ |sín(7r/ix)||sm(7r/iy)| < hx >< hy >

 We then take x and y as in THEOREM 6.2 and let m=N to obtain:

 THEOREM 6.3 For o.e. x,yeR and for every £ ^ 0, i/l6T6 IS CL C ^ 0 SUch thcLÍŽ

 d{SM) < 20)

 for every ueR and every Ne N.

 he two dimensional version of this theorem is as follows. In the next result,

 D(Sff( u,x,y)) denotes the sup{D(<S'^(u,x,y), I) : I is a two dimensional rectangle}

 THEOREM 8.4 For a.e. x,ycR2 and for every £ ^ 0j ¿Aere t s Q C ^ 0 such that

 D(Sn( u,x,y)) < Cl°9N2 ^
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 for every ueR2 and every N cN.

 What remains (other than the proof!) is to compute discrepancies of nonrectangu-

 lax regions for sequences 5^(u,x,y) and then to apply THEOREM 5.1. The required

 estimates use Fourier series for perturbations of discrepancies similar to that used to

 prove the Erdõs-Turán Theorem. In the next theorem, Hf denotes the region under

 the graph of f.

 THEOREM 9.1 Let f be twice differentiate on [0,1], f(0)=0,f(l)=l, and suppose

 there exist a,b,c,d > 0 such that for every xe[0,l]

 a < |/'(x)| <6 c < ' f"[x)' < d.

 Then, for o.e. x,ycR2 and for every e > 0, there is a C > 0 with

 D{SN{u,x,y),Hf) < Cl09N3/}N ^

 for every ueR2 and each Ne N.

 Finally, let C be a circle. To prove the circle-squaring theorem it is sufficient to

 show that a wedge of C with central angle 7r/4 is translationally equidecomposable

 to a square having the same area. It is easy to see, however, that if A is an affine

 transformation then Hi and Hļ are equidecomposable if and only if A.(Hi) and A(H2)

 are equivalent. By transforming the wedge with the appropriate îr/4-shear, it is enough

 to show that the area beneath the transformed circular arc is equidecomposable to a

 square of the same area. By THEOREM 5.1, it is sufficient to find x,„y0 such that the

 associated discrepancies grow sufficiently slowly. The existence of these points is then

 guaranteed by THEOREMS 8.4 and 9.1.
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 It was neither my intent to prove the circle-squaring theorem here nor to even

 outline the proof in any detail. Rather, my pupose was to give a flavor of the proof

 and a few of the ideas it contains. The proof itself is even more remarkable than the

 result and if I have whetted your appetite for the real thing, this short note will have

 found it's mark. Bon appétit!
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