LEONARD Y. H. YAP, DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE 0511, REPUBLIC OF SINGAPORE

ON A CERTAIN CONVERSE OF HÖLDER'S INEQUALITY FOR LORENTZ SPACES

In this talk I shall discuss some results obtained jointly with T. S. Quek. Our work is motivated by our interest in the Fourier-Stieltjes transforms of measures μ in M(G), the measure algebra defined on a locally compact Abelian group G. Since every non-discrete locally compact Abelian group G that is not σ -compact contains a locally null non-null subset, it is not sufficient, for our purposes, to consider only σ -finite measure spaces (X,4, μ) in our formulation of the converse of Hölder's inequality for Lorentz spaces.

We recall the following definitions.

<u>Definition 1</u>. Let (X, A, μ) be a measure space. A set $A \in A$ is said to be a *locally null* set if $A \cap F$ is a null set (i.e., $\mu(A \cap F) = 0$) for every measurable set F with $\mu(F) < \infty$.

<u>Definition 2</u>. Let f be a measurable function defined on a measure space (X, \mathfrak{a}, μ) . For $y \ge 0$, we define

$$\mu(f,y) = \mu\{x \in X : |f(x)| > y\}.$$

30

Note that $\mu(f, \cdot)$ is a non-increasing, right-continuous function. For $x \ge 0$, we define

$$f^{*}(x) = \inf\{y : y > 0 \text{ and } \mu(f,y) \le x\}$$

= sup $\{y : y > 0 \text{ and } \mu(f,y) > x\},$

with the conventions $\inf \emptyset = \infty$ and $\sup \emptyset = 0$. We note that f^* is a non-increasing, right-continuous function and it is called the *non-increasing rearrangement* of f. For $1 and <math>1 \le q \le \infty$, we define

$$\|f\|_{pq} = \begin{cases} \left[\int_{0}^{\infty} (f^{*}(t)t^{1/p})^{q} \frac{dt}{t} \right]^{1/q} & \text{if } 1 \leq q < \infty; \\ \\ \sup_{t>0} f^{*}(t)t^{1/p} & \text{if } q = \infty. \end{cases}$$

By the Lorentz space L $_{pq}(X)$ we mean the space { f : $\|f\|_{pq} < \infty$ } endowed with the norm $\|\cdot\|_{pq}$.

For $1 < r < \infty$, let r' denote the number such that 1/r + 1/r' - 1. For 1 < p, $q < \infty$, let

$$K_{pq} = \begin{cases} 1/p & \text{if } q < p, \\ 1 & \text{if } p = q, \\ 1/p' & \text{if } p < q. \end{cases}$$

<u>Theorem 1</u>. Let (X, \mathbf{a}, μ) be a measure space and let $1 < p, q < \infty$.

(a) The following statements are equivalent:

(i) (X, \mathfrak{a}, μ) has no locally null non-null sets;

(ii) if f is a measurable function on (X, A) such that (*) $fg \in L_1(X)$ for every $g \in L_{p'q'}(X)$, then $f \in L_{pq}(X)$. (b) If (X, \mathbf{a}, μ) has no locally null non-null sets and f is a measurable function on (X, \mathbf{a}) satisfying condition (*) above, then

$$\begin{split} K_{\mathbf{p}} \| \mathbf{f} \|_{\mathbf{pq}} &\leq \sup \left| \int \mathbf{f} \mathbf{g} d\mu \right| \leq \| \mathbf{f} \|_{\mathbf{pq}}, \\ \mathbf{X} \end{split}$$

where the supremum is taken over all measurable functions g such that $\|g\|_{p'q}, \leq 1.$

<u>Remark 1</u>. The case p = q in Theorem 1(a) is proved in Leach [1]; part (b) of Theorem 1 is suggested by O'Neil [2, Theorem 6.13], but it should be noted here that O'Neil's theorem fails to hold whenever the measure space (X, A, μ) contains a locally null non-null set.

<u>Theorem 2</u>. Let (X, \mathfrak{s}, μ) be any measure space and let 1 < p, $q < \infty$. Let f be a measurable function defined on X such that

$$\left| \int_{\mathbf{x}} \mathbf{fg} \right| \leq C \left\| \mathbf{g} \right\|_{\mathbf{p}'\mathbf{q}},$$

for all $g \in L_{p'q'}(X)$, where C is a constant. Then there exists $h \in L_{pq}(X)$ such that $\|h\|_{pq} \leq CK_{pq}$ and h = f locally almost everywhere.

The proofs of Theorems 1 and 2 together with some applications will appear in a joint paper with T. S. Quek.

REFERENCES

- E. B. Leach, On a converse of the Hölder inequality, Proc. Amer. Math. Soc. 7(1956), 607-608.
- R. O'Neil, Integral transforms and tensor products on Orlicz spaces and L(p,q) spaces, J.D'Anal. Math. 21 (1968), 1-276.