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 1. Preamble.

 Let P(t) = (ay*) be any n x n real symmetric matrix, where ay £ 0 and tž 1. We consider the

 following conjecture.

 Conjecture. If P( 1 ) is positive definite then P(t) is also positive definite for all t £ 1 . (C)

 This conjecture is relevant to the study of positive definite similarity matrices, such as correlation

 matrices, which arise in the analysis of psychological data. For such matrices, monotonie

 transformations of the coefficients are sought whose properties include the preservation of both the

 ordering of the coefficients and the positive definiteness of the matrices.

 The conjecture (C) is always true when n = 2 or 3 and, in certain special cases, for all n. It is in

 general untrue when n = 4, and it is thus in general untrue when n Ž 4 since a real symmetric matrix

 is positive definite if and only if all of its principal minors are strictly positive.

 Remark. Since P(t) = (ay1) is positive definite if and only if the real quadratic form x^COx is

 positive definite, where x = (x¡), the substitution xļ = yjWaü shows that it will suffice to assume that

 i{[ = 1 for all i, and that 0 £ a¡j < 1 when i * j. (1.1)

 2. Cases when the conjecture (Ci is true.*

 Let P(t) = (ay1) be any n x n real symmetric matrix which satisfies (1.1), let t > 1 and let P(l)

 be positive definite. Then P(t) is also positive definite in the following cases:

 1. for all t £ 1 when n = 2 and when n = 3;

 2. for all n when t is any positive integer;

 3. for all n provided that t S T, where the value of T depends upon the particular matrix;

 4. for all t ¿ 1 and for all n when a¿j = ajOCj and a¡ > 0, for i * j and i,j = l,2,....,n;

 5. for all t and any given n if and only if P(t) is positive definite whenever 1 < t < 2. (2.1)

 Proofs. All of the proofs are elementary. In some of them use is made of the facts that a real

 symmetric matrix is positive definite if and only if all of its principal minors are strictly positive and

 that the Hadamaid product of two positive definite matrices is also positive definite.

 # University of New Brunswick,

 t University of Melbourne.

 * Some woik in this section is due to AM Russell.
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 2. Conditions for the conjecture (C) to be false.

 Let n ■ 4, let P(l) be positive definite and satisfy (1.1), and let t £ 1. Then, by (2. 1), (C) will

 be untrue if and only if it is untrue for some t such that 1 < t < 2. Now (C) is true for n = 3, so that

 all proper principal minors of P(t) are strictly positive. Since |P(1)| > 0 and P is a continuous

 function of t, (C) will therefore be untrue if and only if there exists a smallest number t, t' say, such

 that 1 < ť < 2, |P(ť)| = 0, (3.1)

 and d|P(t)|/dtlt_f Ś 0. (3.2)

 We define ť by (3.1) and seek conditions for (3.2) to hold. Let 0 < a12, a13, a14 and put

 <*i = ai4*2ť. = ai3"2ť> «3 = a12-2ť, 5j= (a23/a12a13)ť, ô2= (a24/a12a14)ť, 63 = (a34/a13a14)ť

 and s = t/ť. Then > 1 and 8¿ > 0 for all i, 8j < V(a2a3), 6j < V(a3otj), 83 < V(ata2) and t = t'

 when s « 1. It is easy to show that |P(t)| = |P(sť)| = (1 - ctj-s)(l - o^-sXl - a3-s)A(s), where

 A(s) = 1 - Xļ2(s) - X22(s) - X32(s) + 2X1(s)X2(s)X3(s),

 Xļ(s) = (8ļS - 1)/V[(a2s - l)(a3s - 1)], X2(s) = (82s - 1 )W[(a3s - l)(a^ - 1)] and

 X3(s) = (83s - l)/V[(ajS - l)(a2s - 1)]. Then |X¿(s)| < 1 for all i, and |P(ť)| = 0 when A(l) = 0 or

 1 - Xi2 - X22 - X32 + 2X3X2X3 = 0,

 where X¿ denotes X¡(1) for all i. Now d|P|/dt|t=ť = (t')"1 11(1 - a¿"s)dA/ds|s=1, so that

 d|P|/dt|t=t' 5 0 if and only if dA/ds|s_i £ 0. If 8j,82 or 83 = 1, it can easily be shown that (3.2) is

 not satisfied. Let 8ļ, 82, 83 * 1. Then it will follow that

 dA/dsls-! = x*(Xļ2 - XļX2X3) + y* (X22 - XjX2X3) + z* (X32 - XjX^).

 4. Main Theorem-

 Theorem Let 4<x) = [xlog x]/(x-l) for X * 1, let <K1) = 1, and let

 X* = (d/ds)Dog X1-2(s)]s=1 = «Ko^) + <Ka3) -2^8^,

 y* = (d/ds)[log X2-2(s)]s=1 = «{<03) + -2<K82),

 and z* = (d/ds)[log X3-2(s)]Sssl = «Ko^) + -2^83).
 Then x*, y*, z* > 0 and the conjecture (C) will be false for a continuum of values of ajj if any one of

 the following inequalities is satisfied when X{2 » 1 for all i.

 Vx* + Vy* < Vz*, (4. 1)
 Vz* + Vx* < Vy*, (4.2)
 4y* + Vz* < Vx*. (4.3)
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 Proof. It suffices to suppose that 8ļ * 1 for all i and that

 (81-1)(82-1)>0 or (o3-1)Ž(1-61)(52-1)>0. (4.4)

 The other cases will follow by similar arguments. We first write A(s) as

 A(s) = Xļ2(s) X22(s) [(Aj(s) - l)(A2(s) - 1) - (H(s) - 1)2],

 where Atfs) = Xf2(s) for all i, and H(s) = X3(s)/[X!(s)X2(s)]. Since |P(ť)| = 0, A(l) = 0, and it

 follows that

 H - 1 = X(A! - 1 )M(A2 - 1)1/2 = Xp(Aļ - 1) = Xp-^Aj - 1),

 where H denotes H(l), A¡ denotes A¡(1) for all i, X = sgn (H - 1) and p = [(A2 - l)/(Aj - 1)]1/2,

 (p * 1 when H > 1). Then Aļ and A2 can be expressed in terms of H and p. Now

 dAļ(s)/ds = Aļ(s)x*, dA2(s)/ds = A2(s)y*, and -2dH(s)/ds = H(s)(z* - x* - y*),

 so that dA(s)/ds|s=i = Xj2X22(H -1)L, (4.5)

 where L = (z* - x* - y*)H + X(Aļpx* + A2p"^y*), (4.6)

 Now L = L(x*, y*, z*, p, Aj, A2, H), and it can be shown that L = LÍOj, 51( 62, p, H), where

 the variables H, Oj, 8j, and ^ satisfy the inequality ( 8j - 1)(S2 - 1)H + ctj > 1.

 If (Ô! - lXSj - 1) > 0, then - (oc3 - l)/[(5j - - 1)] < H <

 and, if (8j - 1)(82 - 1) < 0, then - «• < H < (ctj - 1)/[(1 - 8^(82 - 1)] . (4.7)

 We fix the variables Oj, 8lt 82 and p. Then it can be shown from (4.6) that

 dL/dH = logtajaySj2) and thus that L increases monotonically with H, since ata2 > ô32.

 Now d|P(t)|/dt|t=ť has the same sign as dA(s)/ds|s=1 and, by (4.5), it has the same sign as XL.

 Let H > 1. Then X > 0, d(XL)/dH > 0 and

 inf{XL): H > 1} = lim h-m+ XLic^, 8^ 82, p, H) = XLíOj, 8lt 82» p, 1+) .

 Thus d|P|/dt|t=ť < 0 in some interval 1 < H < H* if and only if

 Li<*3, 8j, 82, p, 1+) < 0.

 That H can attain the value 1+ follows from (4.4) and (4.7).

 Next, let H < 1. Then X < 0, d(XL)/dH < 0 and

 inf{XL): H < 1} = lim XL^, 8^ 83, p,H) = XL^, 8^ 82, p, 1-).

 Therefore d|P|/dt|t_ť < 0 in some interval H* < H < 1 if and only if



 L(otj, 8ļ, 8j, p, 1-) > 0.

 That H can attain the value 1- follows again from (4.4) and (4.7). Since Oj, 8j, 82 and p (> 0) are

 fixed and H = 1± if and only if Aļ = A2 = 1+, it can be shown from (4.6) that

 lim X.L(tt3, 8ļ, 8j, p, H)

 = (z* - X* - y*)X + px* +p"^y*

 = [V(px*) - V(y*/p)]2 + M a3, 8lf 82, X), (4.8)

 where Lq = Lo( a3, 8p 8j, X) » (Vy* + XVz* - XVx*)(Vx* + Vz* - XVy*).

 Now H = 1± if and only if Xļ2 = X22 = X32 = 1-, so that Xj2 - 1 for all i, as required. Also, if p

 is now allowed to vary, (4.8) shows that, when H = 1±, the infimum of XL is given by

 Lq( a3, 8p S2, ±1), and it will be negative if and only at least one of L^Oj, S1( S2, ±1) is negative.

 Now

 L()(®3' ®I» ^2» "^) ^ 0

 (Vy* - Vz* + Vx*)(Vx* + Vz* + Vy*) < 0

 Vy* + Vx* - Vz* < 0. (4.9)

 Also L^otj, 8|, 82» 1) < 0

 (Vy* + Vz* - Vx*)(Vx* + Vz* - Vy*) < 0,

 which cannot be satisfied when x* = y* . If, then, x* < y* ,

 Loittj, 8j, 82, 1) < 0 Vx* + Vz* < Vy*, (4.10)
 while, if X* > y*, then

 Loiaj, 8j, 82, 1) < 0 « Vy* + Vz* < Vx*. (4.11)
 The inequalities (4.9), (4.10) and (4.1 1) are (4.1), (4.2) and (4.3), respectively. If none of them are

 satisfied, then d|P|/dt|t=ť > 0 for all values of H.

 5. Examples.

 Let aļ* = log (aļ - 1) and 8j* = log (8¿ - 1) for all i. Then examples can be found in the

 following cases when Oj » 8j • 83.

 Case 1. Let ctj* » 8j * « 8j *, let (1 <) a3 < 8t < 8j and 03 < Oj < . Then ctj* < 8j* < 83*.

 Since we require that Xļ2 - X £ m X32 « 1, ( 8j - 1)2 « (a2 - l)(a3 - 1) and
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 (5j - 1)2 - (o^ - l)(OLj - 1), and it follows that at - 04 - 03 « 8j - S2 » 83.

 Similar examples arise when Ci^* m 8j * - 62* and (X3, 8j and 82 are ordered differently.

 Case 2. Let 8j, 82 , 83 > 1, let (X3*, 8j *, 82* « -1, and let H - 1 Then a3 » 8t » 82 = 1 and

 Xi - X2 - X3 - 1. In particular, let 03*, 8j *, ô2* -» -« in such a way that, in the limit,

 Xļ = X2 = X3 = 1- and the corresponding limiting values of ctj* and Oj* both exist and are finite.

 Then the limiting values of (Xj and c*2 will also be finite. For example, if a3, 8j and 82 are chosen

 suitably close to 1 and are such that

 (0C3 - l)/( 8j - 1)2 [ - 1/(02 - 1)] and «X3 - 1)/(82 - 1)2 [- l/«xr 1)]

 are small, then and c ^ are large and the inequality ctj* a2* < Ô3*2 holds approximately. This can

 be attained for large o^and a2 whose closeness is restricted by 83 - 1 = V[(aj - l)(a2 - 1)] when

 Xi2 - 1 for all i .

 6. Numerical examples.

 Let P(t) be a real symmetric matrix with not more than three distinct off-diagonal elements, and

 let a12 = a23 = = p, a13 = a^ « q and a14 = r. Then the conjecture (C) will be false for some

 t € (1,2) if p = 0.875, q = 0.54 and r = 0.09.

 If T(p,q,r) is considered as a point in R3, then a continuity argument shows that T will lie in

 some region S in R3 such that the conjecture is false at all points of S. The boundary of S is not

 known, but T certainly lies inside the parallelpiped (within S) whose vertices are the points

 (0.875 ± 0.001, 0.5392 ± 0.0001, 0.087 ± 0.004).

 It can be shown that P(t) satisfies the criterion Vz* + Vx* < Vy*.

 If Q(t) is obtained from P(t) by simultaneous interchanging rows and columns, then Q(t) can take

 twelve distinct forms (including P(t)) and for all of these the corresponding real quadratic form is the

 same. Hence each of the forms of Q(t) demonstrates that the conjecture (C) will be false for some

 t e (1, 2) when p,q and r take the same values as above. Each of the criteria (4. 1), (4.2) and (4.3)

 is satisfied by exactly four of these twelve forms.

 Presented by CJF Upton,

 Mathematics Department,

 University of Melbourne,

 Parkville 3052,

 Victoria, Australia.
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