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 Concerning Two Properties of Connectivity Functions

 Let X and Y be topological spaces and let f:X- *Y. Then:

 D. : f is a Darboux function if f(C) is connected whenever C

 is connected in X.

 Conn. : f is a connectivity function if the graph of f

 restricted to C , denoted by f|c , is connected in XX Y
 whenever C is connected in X.

 A.C. : f is an almost continuous function if UCXXY is any open

 set containing the graph of f , then U contains the graph

 of a continuous function g:X- »Y.

 Ext. : f is an extendable function if there exists a connectivity

 function g:XX[0,l] - *Y such that f(x) = g(x,0) for

 each X in X.

 Let f:[a,b]- >R be a function. Then:

 P.R. : f has a perfect road if for each x in [a,b] there

 exists a perfect set P having x as a bilateral limit point

 such that f|p is continuous at x. If x is an endpoint,
 then the bilateral condition is replaced with a unilateral

 condition.

 For real- valued functions defined on an interval [a,b] we have

 only the following implications among the classes of functions defined

 above .
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 Ext . - > A.C. - > Conn . - > D .

 P.R.

 Question 1. Does A.C. + P.R. - ■> Ext.?

 Question 2. Does Conn. + P.R. - »A.C.?

 Question 3. Does D. + P.R. - * Conn. ?

 The following is a discussion of these questions. Let I = [0,1]

 and let I2 = [0,1] x [0,1].

 If A is any set and p is any point of A, then by a quasi-

 component of A containing p is meant the set consisting of p

 together with all points x of A such that A is not separated

 between p and x ;i.e., there exists no separation A = ApVJ Ax

 where ApHAx = Apn"Āx = p is in Ap , and x is in
 Ax. For reference see [5]. The quasi-components of any set A

 are disjoint and closed in A. A quasi -component of A may not be

 connected but each component of A is contained in a single quasi-

 component. In general the quasi-components of a set may be different

 from the components of this set. However for a particular set

 associated with a connectivity function they are the same.

 Theorem 1. If g:I2- >1 is a connectivity function, then the quasi-

 components of I2 - g~l(z) are connected for each z in I.

 The proof of this theorem is contained in the proof of theorem

 2.1 of the paper by Hunt [ 2 ] .
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 Corollary 1. If g:I2 - *i is a connectivity function and z

 separates g(I2)CI, then any point of g-1([0,z)) and any point

 of g~l((z,l]) lie in different quasi-components of I 2 - g~l(z).

 Corollary 2. If g:I2 - ^i is a connectivity function and z

 separates g(I2)C:i, then g-1(z) separates I2.

 Corollary 2 is a generalization of a well-known fact that says

 that if g:I2- *1 is continuous and z separates g(I2)ci , then

 g-l(z) separates I2. The following example shows that the

 conclusion of corollary 1 is not true for Darboux functions and for

 almost continuous functions.

 Example. Define h: [-1,1] * [0,1] [-1,1] by

 h(x,y) = sin(l/y) , if y > 0 and

 h(x,0) = X otherwise.

 Now h is a Darboux function and an almost continuous function but not

 a connectivity function.

 If f:X- >Y is a function and B is a subset of Y , then a

 leaf L of f~l(B) means that there exists a y in B such that

 L is a component of f~^(y).

 Theorem 2. Let g:I2 - »I be a connectivity function and let £> 0.

 If A is the union of all leaves of g~^(I) which have diameter

 greater than or equal to £ , then A is closed and the restriction of

 g to A is continuous.
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 Let f:[a,b] - be a function. Then

 SCIVP. : f has the SCIVP if for p and q in [a,b] such that

 p / q and f(p) ^ f(q) and for any Cantor set K between

 f(p) and f(q) there exists a Cantor set C between p

 and q such that f(C)CK and f J C is continuous.

 Using theorem 1 and theorem 2 we proved the following.

 Theorem 3. If g:I^- >1 is an extension of f:I- >1 and g is a

 connectivity function, then f has the SCIVP.

 However, there exists a function that is both A.C. and P.R

 which does not have the SCIVP. Thus the answer to question 1 is no.

 These results will appear in a paper under preparation by H. Rosen,

 F. Roush, and me.

 F. B. Jones and E. S. Thomas, Jr. [3] constructed a

 connectivity function f:I- *1 with its graph a -set that is not

 an almost continuous function. In [1] I defined property B and

 proved that for Darboux functions [a,b] - ►R, property B and P.R.

 are equivalent. Recently H. Rosen [4] proved that for Darboux

 functions with its graph a Gę -set, the function has property B and
 hence P.R. Thus the function constructed by Jones and Thomas is a

 connectivity function with a P.R. that is not almost continuous. So

 the answer to question 2 is no.
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 The answer to question 3 is unknown. But we have another

 question.

 Question 4. Does there exist a Darboux function with its graph

 a G g -set that is not a connectivity function?
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