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 I-density Continuous Functions

 Here, and in what follows I will stand for the ideal of first category
 subsets of R.

 Definition of an I-density point of a set A Ç. R.

 Motivation: 0 is a density point of A iff
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 Definition (Wilczyński)

 (1) 0 is an I-density point of A iff

 ¥«v«v £ I'a'e'
 (2) X is an I-density point of A iff

 0 is an I-density point of (-x)+A

 Let be a family of all Borei sets ACR such that every point xeA is

 an I-density point of A.
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 Fact 1. rx is a topology on R.

 Def. (1) rx is called I-density topology on R.

 (2) A function f:R-*R is said to be I-density continuous if it is

 continuous when domain and range are equipped with I-density topology, i.e. , when

 f : (R, rx)-+(R, rx) is continuous.

 Remark. Unfortunately (R,rx) is not regular. To correct this another

 definition has been introduced.

 Def. X is a deep I-density point of AcR provided there exists a closed set

 PcA such that x is on I-density point of P.

 Similarly as before we define a deep I-density topology rdX and deep

 I-density continuous functions (as continuous f : (R, rdX)-*(R, rdX) ) .

 Fact A. (R,rdX) is completely regular.

 Fact B. A homeomorphism h:R-*R ( or h : (a ,b)-*(c , d) ) is I-density continuous iff

 it is deep I-density continuous.

 Fact C. Ordinary topology c rdI C TIt ordinary topology d density topology

 but density topology <£rx , rdX <t density topology.

 Results :

 Theorem 0. If h:R->R and h"1 satisfy a local Lipschitz condition then h and

 h"1 are I-density continuous.

 Theorem 1. Analytic functions are I-density continuous.

 Example 1. There is a C® homeomorphism that is not I-density continuous.

 Example 2. There is a convex function on R that is not I-density continuous.

 Corollary 1. There is a density continuous homeomorphism that is not I-density

 continuous .

 Theorem 2. If f is I-density continuous then f is Baire *1 , i.e., for every

 perfect set P there is a portion Q=Pn(a,b)^ such that f | Q is continuous

 in the ordinary sense.
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 Theorem 3. The space of I-density continuous functions considered with the

 uniform convergence topology is 1-st category in itself.

 Theorem 4. The space of continuous, I-density continuous functions is nowhere

 dense in the space C(R) of continuous functions.

 Theorem 5. {f_1(0) : f :R->R is I-density continuous} - {A£R: A is F6,G£ and is

 I-density closed}

 Notation: Cx stands for ° semigroups of I-density continuous functions.

 Theorem 6. The semigroup (Cj,0) has inner automorphism property (i.e., every

 automorphism can be represented as ^(fj-hofoh'1 for some heCj) but

 (R,rx) is not generated (i.e., the family (R'f-1(x) : xeR, feCj} does not form a

 subbase for (R,rx)).
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