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 1. The Gauss-Green formula. The Gauss-Green theorem is the set of assumptions under which the
 following formula holds:

 I div v = ļ v • tía . Ja JdA

 2. History. The full-fledged Gauss-Green theorem cannot be formulated by means of the Lebesgue integral,
 because derivatives need not be Lebesgue integrable. This was recognized already by Lebesgue. In 1912 and
 1914, it lead to the development of the Denjoy- Perron integral, which gives the unrestricted fundamental
 theorem of calculus, i.e., the Gauss-Green theorem in dimension one. In spite of many efforts, no substantial
 progress was made in the higher dimensional case for nearly 70 years. Only in the eighties, variations of
 the generalized Riemann integral of Henstock and Kurzweil were shown to integrate the divergence of any
 differentiate vector field. These new averaging methods were devised by Mawhin, Kurzweil, Jarnik, and
 others including the author. Unfortunately, all of them have deficiencies varying in the degree of severity.
 Some lack certain basic properties one expects of any integral worth its name (I like to call them gadgets rather
 than integrals), others are either coordinate bound or cannot handle vector fields with many singularities,
 and all of them place unnatural restrictions on the domains of integration.

 2. Objectives. I want to show that all of these deficiencies can be removed, and that a well-behaved
 coordinate free extension of the Lebesgue integral can be defined under assumptions approaching the limits
 of generality . As the papers on the subject tend to be highly technical , my primary goal is to expose the
 intuition behind the technical formalism, without compromising the level of useful generality.

 3. The setting. Throughout, Rm with m > 1 is fixed, and all functions are real-valued. Let A C Rm and
 X E Rm . We define:

 (1) d(A) = diameter of A ;
 (2) M-A) = 'A' = m-dimensional outer Lebesgue measure of A ;
 (3) W(j4) = (m - l)-dimensional outer Hausdorff measure of A ;

 'A H U(x,e)' ( 1 means that x is a density point of A'
 e- o+ 'U(x,e)' ' 0 means that x is a dispersion point of A'

 (5) intM = essential interior of A = the set of all density points of A ;
 (6) clM = essential closure of A = the set of all nondispersion points of A ;
 (7) d* A = c I* A - intM = essential boundary of A .

 4. BV sets. For domains of integration we want the largest family of sets for which the surface area and
 the exterior normal can be defined. This is the family BV of sets with bounded variation introduced in the
 fifties by Caccioppoli, De Giorgi, and independently by Marik. A bounded measurable set A C Rm with
 characteristic function xa is called a BV set if the distributional gradient Vxa is a vector-valued Borei
 measure of bounded variation 'Vxa' = <ta, called the surface measure of A . A bounded set A C Rm is a
 BV set if and only if H(d*A) < +oo. For a BV set A we define:

 (1) ''A'' = <rA(dA) = ti(d*A) - perimeter of A ;
 (2) tia = Federer exterior normal of A defined W-almost everywhere on d*A .

 Two BV sets which differ by a set of measure zero have the same perimeter. If A € BV, then for each C°°
 vector field t; in a neighborhood of cLA we have

 I div v dX = I v • tia dH -
 Ja Jd*A
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 The regularity of a BV set A is given by

 r(il)=fÄ **»)MI>o.
 ( 0 otherwise,

 and if E C Rm, we set BVa = {B € BV : B C A).
 To get an idea about the complexity of BV sets, consider the iterations of "caviar" (i.e., a countable union

 of balls whose total perimeter is finite) and "swiss cheese " (i.e., a ball from which countably many balls
 of finite total perimeter were removed). We need all BV sets because the family BV has an important
 compactness property needed in variational problems of geometric measure theory (e.g., minimal surfaces)
 and conservation laws.

 5. Convergence. If {#n} is a sequence in BV and B is a BV set, we write Bn - ♦ B whenever Bn C
 By n = 1,2,..., sup||£a|| < +00, and limļfl - Bn' = 0.

 6. The germ of the Gauss-Green theorem. The following lemma is the infinitesimal form of the
 Gauss-Green theorem.

 Lemma 1. Let U C Rm be open, x € U, and let v be a continuous vector field in U which is differentiable
 at X. Then given e > 0, there is a 6 > 0 such that

 divv(x)'B' - f v nßdH < e'B'
 Jd*B

 for each B 6 BVu with x 6 clB% d(B) < 6, and r(B) > e.

 Now let v be differentiable in Í/, and let A be a subset of U. Since we like to believe that in this case the
 function F : B fd.D v no dHt B € BVa, is an * indefinite integral n of divt; in A , it is reasonable to define
 an indefinite integral of an arbitrary function / on A by abstracting the essentials from Lemma 1.

 (1) The indefinite integral of / should be an additive function F which is continuous in the following
 sense:

 Bn^B => lim F(Bn) = F(B).

 This property corresponds to the continuity of v.
 (2) The expression 'f(x)'B' - F(B) | should be bounded by a nonnegative additive functiont say Ař, to

 avoid the accumulation of errors.

 (3) It should be possible to make the function M arbitrarily small .
 (4) As we want to allow for singularities of v (i.e., for points where v is not differentiable) the approxi-

 mation |/(x)|fl| - <F(B)| < M(B) should be required only outside an exceptional subset of A .

 7. Variational integral. Let A € BV , and let / and F be functions on clM and BVa » respectively. Given
 e > 0 and a set T C Rm, an s-majorant of the pair (/, F) in A mod T is a nonnegative additive function M
 on BVa satisfying the following conditions:

 (i) M (A) < e;
 (ii) V* 6 cl* A - T, 36 > 0 3 'f(x)'B' - F(B)' < M(B) VBeBVÁBxe cl Bt d(B) < Í, r(B) > e.

 Definition 1. Let A G BV and let / be a function on clM. We say that / is v-integrable (uvn for
 variational ly) in A if there is a continuous additive function F on BVa satisfying the following condition:

 Ve > 0, 3T C Rm of H-<t- finite measure 3 (/, F) has an ¿-majorant in A mod T.

 Some remarks to Definition 1.

 (1) We can switch the first two quantifiers and write: 3 T 3 Vf.
 (2) F is determined uniquely by f'(A - N) where 'N' = 0. This follows nontrivially by elaborating on

 ideas of Besicovitch. Thus we can integrate functions defined only almost everywhere in A; for clM
 differs from A by a set of measure zero. We call F the indefinite v-integral of / in A . The number
 /v(/, A) = F(A) is called the v-integral of / over A .
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 (3) There are no topological restrictions imposed on the exceptional set T. We shall see from Theorem 1
 that in terms of the measure H , the set T is as large as possible.

 (4) In a different context variational integrals were considered previously by Henstock, who introduced
 the name. His integrals can be defined by means of either additive or superadditive ¿-majorants. It
 appears that in our situation, the uniqueness of the indefinite v-integral depends on the additivity of
 ¿-majorants.

 7. The Gauss-Green theorem. A vector field v on an open set U C Rm is almost differentiable at « € U

 l"W-»WI<+00.
 v-* I y - *1

 By Stepanoff's theorem, a vector field v almost differentiable everywhere in E C U is differentiable almost
 everywhere in E.

 A vector field v on an arbitrary set E C Rm is almost differentiable at x € E if it is extendable to a
 vector field w on an open neighborhood of E such that w is almost differentiable at x according to the above
 definition. If E is measurable and v is almost differentiable (in particular, differentiable) everywhere in E ,
 then the differential Dv is determined uniquely almost everywhere in E.

 The following theorem is a relatively easy consequence of Lemma 1.

 Theorem 1. Let A € BV and let T C Itm be ofW-a-fìnite measure. Suppose that v is a continuous vector
 field on clA which is almost differentiable on cl* A - T. Then divv is v-integrable in A and

 Iv(diw,A) = I v-n^dH.
 Je*A

 The Cantor function shows that Theorem 1 is false if T is not of %-<r-finite measure.

 8. The additivity of tlie v-integral. The v-integral is rather well-behaved.
 (1) / Iv(f, A) is a nonnegative linear functional.
 (2) If / is integrable in a BV set Ai it is integrable in each B € BV', and the function B »-► Iv(ftB) is

 additive and continuous on BVą.
 (3) Each v-integrable function is almost everywhere a derivative of its indefinite v-integral; in particular,

 it is measurable.

 (4) / is Lebesgue integrable if and only if both / and |/| are v-integrable, in which case the Lebesgue
 and variational integrals of / have the same value.

 (5) The monotone and dominated convergence theorems hold for the v-integral.
 (6) The v-integral is invariant with respect to Lipschitzian change of coordinates, and hence it can be

 lifted to rectifiable sets as well as to C1 manifolds .

 But not quite} since the additivity is deficient!

 Proposition. Let B and C be disjoint BV sets , A = B U C, and let f be a function on A which is
 v-integrable in B and C. Then f is v-integrable in A whenever clB = cl*B and clC = cPC.

 Proof: Extend / arbitrarily to clM, and choose an e > 0. Let Fb and Fc be the indefinite v-integrals of
 f in B and C, respectively, and let Mb and Mc be, respectively, the (¿/2)-majorants of (/, Fb) and (/, Fc)
 in A mod Tb and A mod Tc where Tb and Tc are sets of W-(T- finite measure. For D € BV' set

 F(D) = Fb(B flD) + Fc(C H D) and M(D) = Mb(B O D) + Mc(C D D) ,
 and let T = Tb UTc U ( d*B ) U ( d*C ). To show that M is an ¿-majorant of (/, F) in A mod T, observe that
 each x € clM - T belongs to int*fl or int*C by the choice of T. By our assumption, x is either in cl* J9 - cl C
 or in cl *C - clß. Thus in a neighborhood of x either F = Fb and M = Mb or F = Fc and M = Mc, and
 the Proposition follows.

 In the previous proof, severe difficulties would have arisen if x had been in (eli?) 0 (clC) because the
 regularity of D € BVa provides no information about the regularities of BHD and COD. In fact, an
 example of Buczolich shows that without the assumptions about cl B and cl C the Proposition is false. Thus
 the v-integral is still a mere gadget.

 An easy way to fix the additivity is to say that / is w-integrable ("w" for weakly) in A whenever there
 is a division fAi, ..., An} of A such that / is v-integrable in Ai for » = l,...,n. But we shall do better by
 following the ideas of Marik.
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 9. The continuous integral. We say that the family C C BV is closed whenever

 (Cn € C, n = 1,2,..., C€ BV, andCn ->(7) =» CeC.

 The intersection of closed subfamilies of BV is closed, and we define the closure CIS of a family £ C BV as
 the intersection of all closed subfamilies of BV containing £. Similar to the construction of Baire functions ,
 the closure of S C BV is obtained by a transfinite iteration of limits. A kernel of a BV set A is any family
 K C BVa with A e CIK .

 DEFINITION 2. A function / on a BV set A is c-integrable (V for continuously) in A whenever there is a
 continuous additive function F on BVa such that the family of all B G BVa for which F is the indefinite
 v-integral of / in B is a kernel of A.

 This resembles the constructive definition of the Denjoy integral. Indeed, the c-integral is obtained by
 forming "improper" v-integrals and iterating the process transfinitely . Consequently, there are no "improper"
 c-integrals, the good properties of the v-integral are inherited, and it follows from the next lemma, due to
 Miranda and Tamanini, that the deficiency in the Proposition disappears.

 Lemma 2. Each BV set A contains BV subsets An such that clAn = cřAni n = 1,2,..., and An - ► A .

 Proof: Fix an integer n > 1 and let <p(B) = ||B|| - n'B' for each BV set ¿?. Construct a minimizing
 sequence {Bk} in BVa so that

 Um

 Then the sequences {|£*|} and {^(£*)} are bounded, and so is {||2?*||}. It follows from the compactness
 property of BV that there is a subsequence {C*} of {Bk} and a BV set An such that

 lim '(An - Ck) U ( Ck - An)' = 0
 fc- ► oo

 Subtracting from An a set of measure zero, we may assume that An is a subset of A , and by the semicontinuity
 of perimeters,

 <p(An) = ||-4„|| - n|i4„| < liminf ļ|Ct|| - n lim |Ct| < limsupy>(Ct) = injT <p(B) .
 *- *oo «-*00 k-+oo B£BVjļ

 Thus An minimizes the functional <p on BVa • Generally BV sets which are solutions of variational problems
 have additional nice properties (e.g., they have smooth or analytic boundaries). Using this principle, one
 can show (nontrivial ly) that cL4n = cl*An. Since

 IIAnll-nl^nl^pll-nl^l,

 we see that ||An|| < ||A|| and n'A - An' < ||j4||. This implies that An - ► A and the lemma is proved.

 10. The integral. If m > 2, then by weakening the continuity requirement, a further extension of the
 c-integral is possible.

 (1) If {Bn} is a sequence in BV and B is a BV set, we write Bn A B whenever Bn C B> n = 1,2,...,
 and lim||B - Bn|| = 0.

 (2) An additive function F of BV sets is bounded if

 Bn±B => lim F(Bn) = F(B).

 If A G BV and v is a bounded W-measurable vector field on cL4, then B »-► fdmß v • nß dH is a bounded
 additive function on BVa .

 Definition 2. A function / on a BV set A is integrable in A whenever there is a bounded additive function
 F on BVa and a sequence {i4n} of BV sets such that An A A and F is the indefinite c-integral of / in
 An , n = 1, 2, ....

 Intuitively, the integral is just an u improper " c-integral, and thus it inherits all the good properties of the
 c-integral (except for the continuity, of course).
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 Theorem 2. Let A £ BV, and let S,T C Rm be such that 7 i(S) = 0 and T has W-<T-fìnite measure.
 Suppose that v is a bounded vector field on cIA which is continuous on clA - S and almost differentiate on
 cl*A - T. Then div v is integrable in A and the Gauss-Green formula holds.

 We note again that no topological restrictions are imposed on the exceptional set 5. The Heaviside function
 shows that Theorem 2 is false if H(S) > 0.

 11. Conclusion. While the problem of integrating the divergence of a differentiable vector field has been
 nicely solved, a major challenge remains: among many averaging methods available we have to select those
 (preferably just one) of universal appeal . I do not believe this can be done by inventing new and "more
 powerful" integrals or averaging gadgets. Rather, we should identify the properties, axioms if you want,
 which will determine the integral uniquely independent of a particular definition. Without drawing any
 parallels between the importance of the two fields, one can say that the present state of integration is
 somewhat analogous to that of homology theory prior to the introduction of Eilenberg-Steenrod axioms. I
 feel that in search for the axioms, it would be overly optimistic to expect in higher dimensions the same level
 of generality which the classical Denjoy-Perron integral achieves in dimension one. Reasons for this may be
 that only in dimension one the following is true:

 (1) Each set of Tť-tr-finite measure is countable .
 (2) The subtle notion of diíTerentiability is reduced to the existence of a single limit .

 Received April 79 1989
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