Real Analysis Exchange Vol 14 (1988-89)

Chris Freiling and Dan Rinne, Department of Mathematics, California State Oniversity, San Bernardino, CA. 92407

STIIETRIC DERIVATES OP HOM-MEASURABLE PUNCTIONS

One of the areas of divergence between the ordinary and symmetric derivative is in the Denjoy-Young-Saks Theorem. For the ordinary derivative we have:

THEOREM: (Denjoy-Young-Saks [3]) For any real function f and for almost every x, either $f^{\prime}(x)$ exists (finite) or else $\underline{f}^{\prime}(x)=-\infty$ and $\bar{f}^{\prime}(x)=+\infty$.

For the symmetric derivative we have:

THEOREY: (Ezzell-Nymann [2]) For any measurable real function f and for almost every x, either $f^{S y}(x)$ exists (finite) or else $\underline{f}^{S y}(x)=-\infty$ and $\bar{f}^{S y}(x)=+\infty$.

That Ezzell and Nymann's theorem does not hold for arbitrary functions was shown by Oher [5]. Uher constructed a set 0 of full outer measure such that for all x in δ, if $f(x)$ is the characteristic function of J, then $\underline{f}^{S y}(x)=0$ and $\bar{f}^{S y}(x)=+\infty$. Uher asked if there is a function f for which the set $\left\{x \mid-\infty<\underline{f}^{S y}(x)<\bar{f}^{\text {Sy }}(x)<+\infty\right\}$ has positive outer measure. We will show that in one sense, the symmetric version of the Denjoy-Young-Saks Theorem fails in the worst possible way. That is, any one of the following sets

$$
\begin{aligned}
& S_{0}=\left\{x \mid-\infty=\underline{f}^{\mathbf{S y}}(x)<\overline{\mathbf{f}}^{\mathbf{S y}}(\mathrm{x})=+\infty\right\} ; \\
& S_{1}=\left\{x \mid-\infty<\underline{f}^{\mathbf{S y}}(x)=\bar{f}^{\mathbf{S y}}(x)<+\infty\right\} ; \\
& S_{2}=\left\{x \mid-\infty<\underline{f}^{S y}(x)<\bar{f}^{S y}(x)=+\infty\right\} ; \\
& S_{3}=\left\{x \mid-\infty=\underline{f}^{\mathbf{S y}}(x)<\overline{\mathbf{f}}^{\mathbf{S y}}(\mathrm{x})<+\infty\right\} ; \\
& \mathbf{S}_{4}=\left\{\mathbf{x} \mid-\infty<\underline{\underline{f}}^{\mathbf{S y}}(\mathrm{x})<\overline{\mathbf{f}}^{\mathbf{S y}}(\mathrm{x})<+\infty\right\} ; \\
& S_{5}=\left\{x \mid-\infty<\underline{f}^{\mathbf{S y}}(x)=\bar{f}^{s y}(x)=+\infty\right\} ; \\
& S_{6}=\left\{x \mid-\infty=\underline{f}^{\mathbf{S y}}(x)=\bar{f}^{\mathbf{S y}}(x)<+\infty\right\} ;
\end{aligned}
$$

may have full outer measure for a particular function. Further, S_{0} and any other S_{i} can simultaneously have full outer measure. The combinations $\left\{\mathrm{S}_{0}, \mathrm{~S}_{2}, \mathrm{~S}_{5}\right\}$ or $\left\{\mathrm{S}_{0}, \mathrm{~S}_{3}, \mathrm{~S}_{6}\right\}$ may also simultaneously have full outer measure. No other pairs are possible by the following theorem.

THEOREM: Let f be a real function and let $S \in T=\left\{S_{1}, S_{2} U S_{5}, S_{3} \cup S_{6}, S_{4}\right\}$. Then almost every outer density point of S is in SUS_{0}.

NOTATION: Let A be a set. Then cA denotes the complement of A, χ_{A} denotes the characteristic function of $A, \lambda(A)$ and $\lambda^{*}(A)$ denote the Lebesgue measure (when it exists) and the outer Lebesgue measure of A respectively. $D^{*}(\mathbb{A})$ denotes the outer density points of A which is taken to mean $\left\{x \mid \lim _{\epsilon \rightarrow 0^{+}}\right.$ $\left.\lambda^{*}(\operatorname{A}(x-\epsilon, x+\epsilon)) / 2 \epsilon=1\right\}$. If f is a real function and x is a real number then $\bar{f}^{S y}(x), \underline{f}^{S y}(x)$, and $f^{S y}(x)$ denote the upper symmetric derivate, lower symmetric derivate, and symmetric derivative of f at x respectively. Ve say that d is a symmetric derived number of f at x iff there is some sequence of numbers $h_{n} \rightarrow 0$ such that $\lim _{n \rightarrow \infty}\left(f\left(x+h_{n}\right)-f\left(x-h_{n}\right)\right) / 2 h_{n}=d$.

EXAMPLES: Let I be a Hamel basis for the reals (with full outer measure) and let G consist of all reals with first Hamel basis coefficient zero. Uher's example [5] uses the set \mathbb{U} consisting of all reals x , whose Hamel basis representation uses only basis elements less than or equal to x. The following examples show that both S_{0} and $S_{i}, 1 \leq i \leq 6$, can have full outer measure.

1) S_{0} and S_{1}
$f(x)=\chi_{G}(x)$. Then $S_{1}=G$ and $S_{0}=c G \quad$ (see also [2] Example 1).
2) S_{0} and $S_{2} \quad f(x)=\chi_{0}(x)$. Then $S_{2}=\mathbb{J}$ and $S_{0}=c \mathbb{D} \quad$ (see [5]).
3) S_{0} and $S_{3} \quad f(x)=-\chi_{0}(x)$. Then $S_{3}=0$ and $S_{0}=c D$.
4) S_{0} and S_{4}
$f(x)=x \cdot \chi_{G}(x)$. Then $S_{4}=G$ and $S_{0}=c G$.
5) S_{0} and $S_{5} \quad f(x)=n-2 k$ where n is the number of basis elements in the representation of x, and k is the number of these basis elements greater than x . (The symmetric derivative is infinite on H. In fact, if $h \in \mathbb{H}$ is the center of some non-degenerate interval (a,b), then $f(b)-f(a) \geq 1$.
6) S_{0} and S_{6}
$f(x)$ is the negative of example 5.
7) S_{0}, S_{2}, and S_{5}

Partition the Hamel basis \mathbf{H} into two subsets J, and K , each of full outer measure. Let $f(x)=n-2 k$ where n is the number of basis elements in the representation of x which are in J, and k is the number of these basis elements which are greater then x . $\quad\left(\mathrm{S}_{0}=\mathrm{CH}-\{0\}, \mathrm{S}_{2}=\mathrm{K} \cup\{0\}\right.$ and $S_{5}=J$)
8) S_{0}, S_{3}, and $S_{6} \quad f(x)$ is the negative of example 7.

The proof of Theorem 1 depends on the following lemma:

LEMA: If $\bar{f}^{\text {Sy }}<0$ on a set \mathbb{A}, then for almost every outer density point, x, of A, if d is a positive symmetric derived number at x, f also has a symmetric derived number at x which is less than or equal to -3d.

Proof: Let $A_{n}=\{x \in A \mid(f(x+h)-f(x-h)) / 2 h<0$ for all $0<h<1 / n\}$. Then $A=U A_{n}$ and $\lambda^{*}\left(\Lambda_{n}\right)$ approaches $\lambda^{*}(\Lambda)$ so $\lambda\left(D^{*}\left(\Lambda_{n}\right)\right)$ approaches $\lambda\left(D^{*}(\Lambda)\right)$. It suffices then to show that every outer density point of any A_{n} satisfies the desired condition. Fix n and let x be an outer density point of A_{n}. Let $d>0$ be a symmetric derived number at x. We show the case of d finite, the argument for d infinite being similar. Pick a sequence $\left\{h_{k}\right\}$ of positive numbers less than $1 / 2 n$ and approaching zero so that $\lim \left(f\left(x+h_{k}\right)-f\left(x-h_{k}\right)\right) / 2 h_{k}=d$ and the relative outer measure of A_{n} in the interval $\left(x-h_{k}, x+h_{k}\right)$ is more than $1-1 /(k+1)$. Ve can then pick a_{k} and b_{k} in $A_{n} \cap\left(x-h_{k} / 3-2 h_{k} /(k+1), x-h_{k} / 3\right)$ and $A_{n} \cap\left(x+h_{k} / 3, x+h_{k} / 3+2 h_{k} /(k+1)\right)$ respectively. Reflect $x-h_{k}$ about a_{k} and then about b_{k} to get $c_{k}=2 b_{k}-\left(2 a_{k}-\left(x-h_{k}\right)\right)$ and reflect $x+h_{k}$ about b_{k} and then about a_{k} to get $d_{k}=2 a_{k}-\left(2 b_{k}-\left(x+h_{k}\right)\right)$. Observe that $d_{k}<x<c_{k}, \quad\left(c_{k}+d_{k}\right) / 2=x$, and $f\left(c_{k}\right)-f\left(d_{k}\right)<-\left(f\left(x+h_{k}\right)-f\left(x-h_{k}\right)\right)$ since a_{k} and b_{k} are in A_{n}. Also, $c_{k}-d_{k}=4 b_{k}-4 a_{k}-2 h_{k}<4\left(2 h_{k} / 3+4 h_{k} /(k+1)\right)-2 h_{k}=2 h_{k} / 3+16 h_{k} /(k+1)$. Thus, $\left(f\left(c_{k}\right)-f\left(d_{k}\right)\right) /\left(c_{k}-d_{k}\right)<-\left(f\left(x+h_{k}\right)-f\left(x-h_{k}\right)\right) /\left(2 h_{k}(1 / 3+8 /(k+1))\right)$ which approaches - 3 d as \mathbf{k} approaches infinity. This finishes the proof of the lemma.

The proof of the theorem will follow from this lemma. It can be shown that no pair of sets from T share a common outer density point. We will show
this, for example, for the pair $\left\{S_{1}, S_{4}\right\}$. Ve choose this pair since it is the most involved. Suppose then that S_{1} and S_{4} share a common outer density point and therefore each has relative outer measure greater than $1 / 2$ in some interval I. For each positive rational number q, let $\mathbb{A}_{q}=\{x \in I \mid$ $\left.\mathrm{q}<\overline{\mathrm{f}}^{\mathrm{Sy}}(\mathrm{x})-\underline{f}^{\mathrm{Sy}}(\mathrm{x})\right\}$. Then for some $\mathrm{q}, \mathrm{D}^{*}\left(\mathrm{~A}_{\mathrm{q}}\right)$ has relative measure greater than $1 / 2$. Fix such a q and for each rational number r let $B_{r}=\left\{x \in I \mid r<f^{\text {Sy }}(x)<\right.$ $r+q / 3\}$. Then for some $r, D^{*}\left(A_{q}\right)$ must intersect $D^{*}\left(B_{r}\right)$. Fix such an r. Then there must also be an element a in $A_{q} \cap D^{*}\left(B_{r}\right)$. Let δ denote $\bar{f}^{S y}(a)-\underline{f}^{s y}(a)$, and γ denote $\left(\bar{f}^{\mathrm{Sy}}(a)+\underline{\mathrm{f}}^{\mathrm{Sy}}(a)\right) / 2$. If $\mathrm{r} \leq \gamma-\delta / 6$ then we may apply the lemma to $\mathrm{f}(\mathrm{x})-(\gamma+\delta / 6) \mathrm{x}$ and get that $\underline{\mathrm{f}}^{\mathrm{Sy}}(a) \leq(\gamma+\delta / 6)-3\left(\overline{\mathrm{f}}^{\mathrm{Sy}}(a)-(\gamma+\delta / 6)\right)=$ $4(\gamma+\delta / 6)-3 \overline{\mathrm{f}}^{\mathrm{Sy}}(a)$ and so $\overline{\mathrm{f}}^{\mathrm{Sy}}(a)-\underline{f}^{\mathrm{Sy}}(a) \geq 4\left(\overline{\mathrm{f}}^{\mathrm{Sy}}(a)-(\gamma+\delta / 6)\right)=4(\delta / 3)$. Similarly , if $r \geq \gamma+\delta / 6$ then by applying the lemma to $(\gamma+\delta / 6) x-f(x)$ we also get that $\bar{f}^{\mathrm{Sy}}(a)-\underline{\mathrm{f}}^{\mathrm{Sy}}(a) \geq 4(\delta / 3)$. But this contradicts that a is in \mathbb{A}_{q}.

For the other pairs from T, the proof follows easily from the lemma and is omitted. Suppose that $S \in T$ and $A=D^{*}(S)-S-S_{0}$ has positive outer measure. Then \mathbb{A} must intersect some other $S^{\prime} \in T$ in a set of positive outer measure, and therefore $A \cap S^{\prime}$ has an outer density point. But any outer density point of Λ is an outer density point of S, contradicting the lemma. Therefore \mathbb{A} must have measure zero and the theorem is proved.

BIBLIOGRAPHY

[1] C.L. Belna, M.J. Evans, P.D. Humke, "Symmetric Monotonicity", Acta. Math. Acad. Sci. Hungar., 34 (1979) 17-22.
[2] C.C. Ezzell, J.E. Nymann "An analogue of the Denjoy Theorem for the symmetric derivative, Rev. Roumaine Math. Pures Appl., 17 (1972),

237-241.
[3] S. Saks, Theorie de l'integrale, PVN, Varszawa, 1933
[4] J. Uher, "Symmetrically differentiable functions are differentiable almost everywhere", Real Analysis Exchange, 8 (1982-83), 253-261.
[5] J. Uher, "Some remarks on symmetric derivative", Real Analysis Exchange, 13 (1987-88), 35-38.

Received October 25, 1988

