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 SYMET1IC DEUVATES OF N0N-1EASŪIABLE FUNCTIONS

 One of the areas of divergence between the ordinary and symmetric

 derivative is in the Denjoy- Young- Saks Theorem. For the ordinary derivative

 we have:

 THEOREM: (Denjoy- Young- Saks [3]) For any real function f and for almost every
 / /

 X, either f (x) exists (finite) or else f (x)=-a> and f (x)=+a>.

 For the symmetric derivative we have:

 THEOREM: (Ezzell- Nymann [2]) For any measurable real function f and for

 almost every x, either fsy(x) exists (finite) or else fsy(x)=-(D and fsy(x)=+co.

 That Ezzell and Nymann' s theorem does not hold for arbitrary functions

 was shown by Uher [5] . Uher constructed a set U of full outer measure such

 that for all x in U, if f(x) is the characteristic function of U, then

 fsy(x)=0 and īsy(x) =+od. Uher asked if there is a function f for which the set

 {x| < (^(x) < rsy<x) < +dd} has positive outer measure. Ve will show that

 in one sense, the symmetric version of the Denjoy- Young- Saks Theorem fails in

 the worst possible way. That is, any one of the following sets
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 S0 = {x| -OD = fSy(x) < fSy(x) = +od};

 Sj = {x| -OD < fsy(x) = ïsy(x) < +od};

 Sg = {x| -m < fSy(x) < îSy(x) = +00};

 Sg = {x| -od = fSy(x) < îSy(x) < +od};

 S4 = {x| -od < fSy(x) < fsy(x) < +od};

 Sg = {x| -od < fSy(x) = fSy(x) = +<d};

 Sg = {x| -od = fSy(x) = īSy(x) < +od};

 may have full outer measure for a particular function. Further, Sq and any

 other can simultaneously have full outer measure. The combinations

 {Sq9S2»S^} or {S0,S3,S6} may also simultaneously have full outer measure. No

 other pairs are possible by the following theorem.

 THEOREM: Let f be a real function and let S 6 T = {S^, ^USg, ®3U^6' ^4^'

 Then almost every outer density point of S is in SuSq.

 NOTATION : Let A be a set. Then cA denotes the complement of A, Xļ denotes the
 *

 characteristic function of A, ^(A) and A (A) denote the Lebesgue measure (when
 *

 it exists) and the outer Łebesgue measure of A respectively. D (A) denotes

 the outer density points of A which is taken to mean {x|limc_>Q+
 *

 X (An(x-e,x+e))/2e =1}. If f is a real function and x is a real number then

 fsy(x), fsy(x), and fsy(x) denote the upper symmetric derivate, lower

 symmetric derivate, and symmetric derivative of f at x respectively. Ve say

 that d is a symmetric derived number of f at x iff there is some sequence of

 numbers h -»0 such that lim„ (f v (x+h v )-f (x-h.))/2h v = d. n n-HD v v ny v ny// n
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 EXAMPLES : Let H be a Hamel basis for the reals (with full outer measure) and

 let G consist of all reals with first lamel basis coefficient zero. Uher 's

 example [5] uses the set U consisting of all reals x, whose Hamel basis

 representation uses only basis elements less than or equal to x. The

 following examples show that both Sq and Sj, l<i<6, can have full outer
 measure.

 1) Sq and Sj f(x)=^g(x). Then S^=6 and Sq=cG (see also [2]
 Example 1).

 2) Sq and Sg f(x)=^(x). Then Sg^ and Sq=cU (see [5]).
 3) Sq and Sg f (x)=-^(x) . Then Sg=U and Sq=cU.

 4) Sq and S^ f (x)=x*^q(x) . Then S^=G and Sq=cG.

 5) Sq and Sg f(x)=n-2k where n is the number of basis elements
 in the representation of x, and k is the number of

 these basis elements greater than x. (The symmetric

 derivative is infinite on H. In fact, if heH is the

 center of some non- degenerate interval (a,b), then

 f(b)-f(a)>l.)

 6) Sq and Sg f(x) is the negative of example 5.

 7) Sq, Sg, and Sg Partition the Hamel basis H into two subsets J, and K,

 each of full outer measure. Let f(x)=n-2k where n is

 the number of basis elements in the representation of

 x which are in J, and k is the number of these basis

 elements which are greater then x. (Sq=cH-{0), S2=KU{0}

 and Sg=J)

 8) Sq, Sj, and Sg f(x) is the negative of example 7.
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 The proof of Theorem 1 depends on the following lemma:

 LEMMA: If fs^<0 on a set A, then for almost every outer density point, x, of

 A, if d is a positive symmetric derived number at x, f also has a symmetric

 derived number at x which is less than or equal to -3d.

 Proof: Let An={xeA| (f (x+h)-f (x-h))/2h < 0 for all 0<h<l/n}. Then A=UAn
 * * * *

 and X (Aq) approaches A (A) so A(D (Afl)) approaches A(D (A)). It suffices

 then to show that every outer density point of any An satisfies the desired

 condition. Fix n and let x be an outer density point of An. Let d>0 be a

 symmetric derived number at x. Ve show the case of d finite, the argument for

 d infinite being similar. Pick a sequence {h^} of positive numbers less than

 l/2n and approaching zero so that lim (f (x+hk)-f (x-hk))/2hk = d and the

 relative outer measure of AQ in the interval (x-hk,x+hk) is more than

 l-l/(k+l). Ve can then pick ak and bk in Ann(x-hk/3-2hk/(k+l) ,x-hk/3) and

 Ann(x+hk/3,x+hk/3+2hk/(k+l)) respectively. Reflect x-hk about a^ and then

 about b^ to get Cjf=2bļf- (x- h^) ) and reflect x+h^ about bk and then about

 a^ to get djc=2aj£- (2bjt" (x+h^)) . Observe that dk<x<ck, (ck+dk)/2=x, and

 f (ck)~ f (^k) <_ s^nce ^ and bfc are Also,
 ck"dk=4V4v2hk<4(2V3 + 4hk/(k+1)) ■ 2hk=2V3 + 16hk/(k+1)- Thus>

 (f(ck)-f(dk))/(ck-dk) < - (f (x+hk)- f (x- hk) ) / (2hk(l/3+8/(k+l))) which

 approaches -3d as k approaches infinity. This finishes the proof of the

 lemma.

 The proof of the theorem will follow from this lemma. It can be shown

 that no pair of sets from T share a common outer density point. Ve will show
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 this, for example, for the pair {S^S^}. Ve choose this pair since it is the
 most involved. Suppose then that and share a common outer density point

 and therefore each has relative outer measure greater than 1/2 in some

 interval I. For each positive rational number q, let Ag={x€l|

 q<fsy(x)-fsy(x)} . Then for some q, D (A^) has relative measure greater than

 1/2. Fix such a q and for each rational number r let Br={xel| r < fsy(x) <
 * *

 r+q/3}. Then for some r, D (A^) must intersect D (Br). Fix such an r. Then

 there must also be an element a in A^ n D (Br). Let 6 denote isy(o)-fsy(a) ,

 and 7 denote (fsy(a)+fsy(a))/2. If r< r¡-6/6 then we may apply the lemma to

 f (x)- (7+i/6)x and get that fSy(a) < (7+^/6)- 3(fsy(a)- (f+S/6)) =

 4(7+i/6)-3Ïsy(a) and so fsy(a)-fsy(a)>4(íSy(<*)- (7+ty6))=4(í/3) . Similarly, if

 r>7+5/6 then by applying the lemma to (7+£/6)x-f (x) we also get that

 îsy(a)-fsy(a)>4(£/3) . But this contradicts that a is in A^.

 For the other pairs from T, the proof follows easily from the lemma and

 is omitted. Suppose that SeT and A=D (S)-S-Sq has positive outer measure.

 Then A must intersect some other S'čT in a set of positive outer measure, and

 therefore AnS' has an outer density point. But any outer density point of A

 is an outer density point of S, contradicting the lemma. Therefore A must

 have measure zero and the theorem is proved.
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