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ON THE GENERALIZED RIEMANN INTEGRAL DEFINED BY MEANS
OF SPECIAL PARTITIONS

Let m be a fixed positive integer, and let R™ be the product of m copies of the
set R of all real numbers. In R™ we use the metric induced by the norm |x| =
max{l{ll,...,|£m|} for x=(§1,...,§m) in R™; note that this metric, which is
convenient for our purposes, differs from the usual Euclidean metric in R™. If EcR™,
then d(E) and |E| denote, respectively, the diameter and the outer Lebesgue measure of

E ; moreover, if E has a positive diameter, we set r(E) = |E|/[d(E)]™ .

An interval is a compact nondegenerate interval in R™ . A special partition (cf. [P,
Remark 7.4]) of an interval A is a collection P = {(Cl,xl),...,(Cp,xp)} where Cl,...,Cp
are intervals whose interiors are disjoint and whose union is A , and X; i8 a vertez of Ci ,
i=1,..p. If r(Ci) > ¢ foran ¢>0 and i=1,...,p, wecall P aspecial e—partition of
A. If § is a positive functionon A and d(C,) < &x;) for i=1,..,p, we say that P is
a 6—fine special partition of A . An easy compactness argument shows that a éfine
special 1—partition of an interval A Rl exists for any positive function § on A (see [H,
Theorem 1]). However, in case of m > 2, the existence of éfine special e—partitions has

been an open problem for several years. A partial solution was given by Z. Buczolich, who

proved the following theorem (see [B]).
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THEOREM (Buczolich). There is a positive constant & < 1 such that for each
interval A cR® and each positive function é on A we can find a éfine special

k—partition of A .

The proof is quite involved, and it is not clear whether it can be generalized to
higher dimensions. Recently, A. Mkhalfi attempted to solve the problem in any dimension
(see [M, Lemma 2]), but it appears that there is a gap in his argument. Thus, to my
knowledge, the problem is still open when m > 3. For this reason, throughout the

remainder of this note, we assume that m < 2.

DEFINITION. Let f be a real—valued function on an interval A . We say that f is
s—integrable on A if there is a real number I with the following property: given an

€ > 0, we can find a positive function § on A such that

p
Zf(xi)|Ci| ~I|<e
i=1

for each §fine special e—partition {(Cl,xl),...,(Cp,xp)} of A.

It follows from the Theorem that the number I in the Definition is determined
uniquely by the s—integrable function f; it is called the s—integral of f over A , denoted
by S(f,A). A standard completeness argument (see [H, Theorem 4] or [P, Proposition
3.4]) shows that the s—integrability of f over A implies the s—integrability of f over
each interval B C A ; the function B+ S(f,B) is called the indefinite s—integral of f in
A. We use the letters s and S to indicate that the integral arises from special

partitions.
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Clearly, the s—integral generalizes the integral from [P, Definition 3.1]; for m=1,
these integrals actually coincide. It is also easy to establish that the s—integral has all the
properties listed in [P, Sections 3—6], with the exception of [P, Proposition 4.10 and
Corollary 4.11] which are false for the s—integral when m = 2. In particular, the space of
all s—integrable functions on an interval A is a linear space on which the s—integral is a
nonnegative linear functional, and the indefinite s—integral is an additive function of
intervals. To illustrate the use of special partitions, we prove the additivity of the

indefinite s—integral.

PRrOPOSITION. Let an interval A be the union of intervals B1 ,B2 whose interiors
are disjoint, and let f be a function on A which is s—integrable on B, and B, . Then f

is s—integrable on A and S(f,A) = 5(f,B,) + S(f,B,) .

Proor. If P = {(Cl,xl),...,(Cp,xp)} is a partition of a subinterval of A, we set
o(P) = 2‘1’=1f(xi)|Ci| . Choose an ¢ > 0, and find positive functions 6j on Bj ,ji=12,
so that la(Pj) —S(f,Bj)| < ¢/2 for every 6j—ﬁne special (¢/2)—partition Pj of Bj'
With no loss of generality, we may assume that for each x € B; — B, the number §; (x)
is smaller than the distance from x to B2 , and symmetrically, for each x € B2 - B1 the

number &,(x) is smaller than the distance from x to B, . Now let

6(x) if xeB; -B,,
o(x) = 64(x) if xeB,-B
min{&l(x),éz(x)} if xeB;NB

11
27

and choose a 6—fine special e—partition P of A . Since P is a special partition, it follows
from our choice of § that Pj ={(Cx)eP:Cc Bj} ,j=12,is a ﬁj—ﬁne special

e—partition of Bj . As €> ¢/2, we have
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|o(P) — [S(£,B;) + S(£,By)]| < [o(P;) —S(£,B;)| + |o(Py) — S(£;B,)| <€
and the Proposition is proved.

The purpose of this note is to show by example that for m =2 the indefinite
s—integral is neither continuous nor bounded function of intervals. This is the point where
the s—integral differs significantly from the integral defined in [P, Definition 3.1] (cf. [P,
Proposition 4.10]).

EXAMPLE. Let m=2, A = [-1,1]2, B = [0,1]%, and for n = 1,2,... , let
-1 - 2 n2 _
B+n___ [3.2—]1 1’2 n+1]x[0,2—n] and B_n= [0,2 n]x[3.2-n 1,2—]1+1] .

24n—
For x€ A, set f(x)= 2" o 1/n if xeB, ,and f(x)=0 otherwise. Finally, let

0=(0,0).

We show first that f is s—integrable on B, and that S(f,B) =0. To this end
choose an ¢ > 0, and find positive integers j and k so that PR <e¢ and j/k<e.

Next define a positive function § on B which satisfies the following conditions:

L K0 <27

(2) &x) < |x| foreach x € B—{0};

(3) 5(x) <2771 foreach x in the boundary of B, ,n=12,.;

(4)  &x) is smaller than the distance from x to the boundary of B, ~for each

x € B— {0} which does not lie on the boundary of B, ,n=1.2,...
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Now if P= {(Cl,xl),...,(Cp,xp)} is a 6&fine special e—partition of B, then
0¢€ {xl,...,xp} by condition (2). We may assume that x, =0. As P is a special
partition, it follows from conditions (3) and (4) that each of the intervals C2,...,Cp is
either contained in B, =~ for some integer n 2 1, or is disjoint from B, = for all integers
n21. Thus f(x))|C;| = S(£,C;) for i=2,..,p. Since r(C;)> 27, using the additivity

of the s—integral and condition (1), it is not difficult to deduce that

P P k+j .
Y £ 01| = | Y SEC) € Y, peifk<e.
i=1 1=2 n=k+1

The same argument shows that S(f,[O,x]2) =0 for each x € (0,1], a fact which proves to

be important.
Since f=0 outside B, we see that f is s—integrablein A, and S(f,A) =0. We

set F(x,y) =S(f,[-1,x]x[-1,y]) for each (x,y)E€ (—1,1]2, and show that F s
unbounded in a neighborhood of 0. Indeed,

q2_1 q2d
Y L[ dioiogq,
q

2
q-1
2
F(279% 970 - 2 S(f,B, ) =
=q n:q

2
and similarly, F(2_q ,2—Q+1) <-logq, q=1,2,.... In particular, F is discontinuous
at 0.

Two conclusions can be drawn from the Example.

(a)  The Alexiewicz norm ||f|| = sup{S(f,[—1,x]x[-1,y]) : (x,y) € A} cannot be defined in
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(b)

the space of s—integrable functions on an interval A (cf. [O, Definition 2]).
The s—integral is a proper extension of the integral defined in [P, Definition 3.1].
Indeed, if the function f of the Example were integrable in the latter sense, then by

[P, Proposition 4.10], the function F of the Example would be continuous.

In view of (a), it appears that the behavior of the integral from [P, Definition 3.1] is

superior to that of the s—integral. We feel that the added generality of the s—integral

established in (b) is of little value, and that the technical complexity of [P, Definition 3.1]

may be unavoidable for obtaining an integral with desirable properties.

ReEMARK. Conclusions (a) and (b) hold also for the GM—integral of [M, Definition 4],

which is easily seen to coincide with the s—integral.
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