ON THE GENERALIZED RIEMANN INTEGRAL DEFINED BY MEANS OF SPECIAL PARTITIONS

Let m be a fixed positive integer, and let \mathbb{R}^{m} be the product of m copies of the set \mathbb{R} of all real numbers. In \mathbb{R}^{m} we use the metric induced by the norm $|x|=$ $\max \left\{\left|\xi_{1}\right|, \ldots,\left|\xi_{\mathrm{m}}\right|\right\}$ for $\mathrm{x}=\left(\xi_{1}, \ldots, \xi_{\mathrm{m}}\right)$ in \mathbb{R}^{m}; note that this metric, which is convenient for our purposes, differs from the usual Euclidean metric in \mathbb{R}^{m}. If $E \subset \mathbb{R}^{m}$, then $d(E)$ and $|E|$ denote, respectively, the diameter and the outer Lebesgue measure of E ; moreover, if E has a positive diameter, we set $\mathrm{r}(\mathrm{E})=|\mathrm{E}| /[\mathrm{d}(\mathrm{E})]^{\mathrm{m}}$.

An interval is a compact nondegenerate interval in \mathbb{R}^{m}. A special partition (cf. $[\mathrm{P}$, Remark 7.4]) of an interval A is a collection $P=\left\{\left(C_{1}, x_{1}\right), \ldots,\left(C_{p}, x_{p}\right)\right\}$ where C_{1}, \ldots, C_{p} are intervals whose interiors are disjoint and whose union is A, and x_{i} is a vertex of C_{i}, $\mathrm{i}=1, \ldots, \mathrm{p}$. If $\mathrm{r}\left(\mathrm{C}_{\mathrm{i}}\right)>\epsilon$ for an $\epsilon>0$ and $\mathrm{i}=1, \ldots, \mathrm{p}$, we call P a special ϵ-partition of A. If δ is a positive function on A and $d\left(C_{i}\right)<\delta\left(x_{i}\right)$ for $i=1, \ldots, p$, we say that P is a δ-fine special partition of A . An easy compactness argument shows that a δ-fine special 1-partition of an interval $A \subset \mathbb{R}^{1}$ exists for any positive function δ on A (see $[H$, Theorem 1]). However, in case of $m \geq 2$, the existence of δ-fine special ϵ-partitions has been an open problem for several years. A partial solution was given by Z. Buczolich, who proved the following theorem (see [B]).

Theorem (Buczolich). There is a positive constant $\kappa<1$ such that for each interval $A \subset \mathbb{R}^{2}$ and each positive function δ on A we can find a δ-fine special κ-partition of A .

The proof is quite involved, and it is not clear whether it can be generalized to higher dimensions. Recently, A. Mkhalfi attempted to solve the problem in any dimension (see [M, Lemma 2]), but it appears that there is a gap in his argument. Thus, to my knowledge, the problem is still open when $m \geq 3$. For this reason, throughout the remainder of this note, we assume that $\mathrm{m} \leq 2$.

Definition. Let f be a real-valued function on an interval A. We say that f is s-integrable on A if there is a real number I with the following property: given an $\epsilon>0$, we can find a positive function δ on A such that

$$
\left|\sum_{i=1}^{p} f\left(x_{i}\right)\right| C_{i}|-I|<\epsilon
$$

for each δ-fine special ϵ-partition $\left\{\left(\mathrm{C}_{1}, \mathrm{x}_{1}\right), \ldots,\left(\mathrm{C}_{\mathrm{p}}, \mathrm{x}_{\mathrm{p}}\right)\right\}$ of A .

It follows from the Theorem that the number I in the Definition is determined uniquely by the s-integrable function f ; it is called the s-integral of f over A , denoted by $\mathrm{S}(\mathrm{f}, \mathrm{A})$. A standard completeness argument (see [H, Theorem 4] or [P, Proposition 3.4]) shows that the s-integrability of f over A implies the s-integrability of f over each interval $B \subset A$; the function $B \mapsto S(f, B)$ is called the indefinite s-integral of f in A. We use the letters s and S to indicate that the integral arises from special partitions.

Clearly, the s-integral generalizes the integral from [P, Definition 3.1]; for $\mathrm{m}=1$, these integrals actually coincide. It is also easy to establish that the s-integral has all the properties listed in [P, Sections 3-6], with the exception of [P, Proposition 4.10 and Corollary 4.11] which are false for the s-integral when $\mathrm{m}=2$. In particular, the space of all s-integrable functions on an interval A is a linear space on which the s-integral is a nonnegative linear functional, and the indefinite s-integral is an additive function of intervals. To illustrate the use of special partitions, we prove the additivity of the indefinite s-integral.

Proposition. Let an interval A be the union of intervals B_{1}, B_{2} whose interiors are disjoint, and let f be a function on A which is s-integrable on B_{1} and B_{2}. Then f is s-integrable on A and $S(f, A)=S\left(f, B_{1}\right)+S\left(f, B_{2}\right)$.

Proof. If $P=\left\{\left(\mathrm{C}_{1}, \mathrm{x}_{1}\right), \ldots,\left(\mathrm{C}_{\mathrm{p}}, \mathrm{x}_{\mathrm{p}}\right)\right\}$ is a partition of a subinterval of A , we set $\sigma(\mathrm{P})=\Sigma_{\mathrm{i}=1}^{\mathrm{p}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\left|\mathrm{C}_{\mathrm{i}}\right|$. Choose an $\epsilon>0$, and find positive functions δ_{j} on $\mathrm{B}_{\mathrm{j}}, \mathrm{j}=1,2$, so that $\left|\sigma\left(\mathrm{P}_{\mathrm{j}}\right)-\mathrm{S}\left(\mathrm{f}, \mathrm{B}_{\mathrm{j}}\right)\right|<\epsilon / 2$ for every δ_{j}-fine special $(\epsilon / 2)$-partition P_{j} of B_{j}. With no loss of generality, we may assume that for each $x \in B_{1}-B_{2}$ the number $\delta_{1}(x)$ is smaller than the distance from x to B_{2}, and symmetrically, for each $x \in B_{2}-B_{1}$ the number $\delta_{2}(x)$ is smaller than the distance from x to B_{1}. Now let

$$
\delta(x)= \begin{cases}\delta_{1}(x) & \text { if } x \in B_{1}-B_{2} \\ \delta_{2}(x) & \text { if } x \in B_{2}-B_{1} \\ \min \left\{\delta_{1}(x), \delta_{2}(x)\right\} & \text { if } x \in B_{1} \cap B_{2}\end{cases}
$$

and choose a δ-fine special ϵ-partition P of A . Since P is a special partition, it follows from our choice of δ that $P_{j}=\left\{(C, x) \in P: C \subset B_{j}\right\}, j=1,2$, is a δ_{j}-fine special ϵ-partition of B_{j}. As $\epsilon>\epsilon / 2$, we have

$$
\left|\sigma(\mathrm{P})-\left[\mathrm{S}\left(\mathrm{f}, \mathrm{~B}_{1}\right)+\mathrm{S}\left(\mathrm{f}, \mathrm{~B}_{2}\right)\right]\right| \leq\left|\sigma\left(\mathrm{P}_{1}\right)-\mathrm{S}\left(\mathrm{f}, \mathrm{~B}_{1}\right)\right|+\left|\sigma\left(\mathrm{P}_{2}\right)-\mathrm{S}\left(\mathrm{f}, \mathrm{~B}_{2}\right)\right|<\epsilon
$$

and the Proposition is proved.

The purpose of this note is to show by example that for $\mathrm{m}=2$ the indefinite s-integral is neither continuous nor bounded function of intervals. This is the point where the s-integral differs significantly from the integral defined in [P, Definition 3.1] (cf. [P, Proposition 4.10]).

Example. Let $\mathrm{m}=2, \mathrm{~A}=[-1,1]^{2}, \mathrm{~B}=[0,1]^{2}$, and for $\mathrm{n}=1,2, \ldots$, let

$$
\mathrm{B}_{+\mathrm{n}}=\left[3 \cdot 2^{-\mathrm{n}-1}, 2^{-\mathrm{n}+1}\right] \times\left[0,2^{-\mathrm{n}^{2}}\right] \quad \text { and } \quad \mathrm{B}_{-\mathrm{n}}=\left[0,2^{-\mathrm{n}^{2}}\right] \times\left[3 \cdot 2^{-\mathrm{n}-1}, 2^{-\mathrm{n}+1}\right] \text {. }
$$

For $x \in A$, set $f(x)= \pm 2^{n^{2}+n-1} / n$ if $x \in B_{ \pm n}$, and $f(x)=0$ otherwise. Finally, let $0=(0,0)$.

We show first that f is s-integrable on B , and that $\mathrm{S}(\mathrm{f}, \mathrm{B})=\mathbf{0}$. To this end choose an $\epsilon>0$, and find positive integers j and k so that $2^{-\mathrm{j}}<\epsilon$ and $\mathrm{j} / \mathrm{k}<\epsilon$. Next define a positive function δ on B which satisfies the following conditions:
(1) $\delta(0)<2^{-k}$;
(2) $\delta(x)<|x|$ for each $x \in B-\{0\}$;
(3) $\delta(\mathrm{x})<2^{-\mathrm{n}-1}$ for each x in the boundary of $\mathrm{B}_{ \pm \mathrm{n}}, \mathrm{n}=1,2, \ldots$;
(4) $\delta(x)$ is smaller than the distance from x to the boundary of $B_{ \pm n}$ for each $x \in B-\{0\}$ which does not lie on the boundary of $B_{ \pm n}, n=1,2, \ldots$.

Now if $P=\left\{\left(C_{1}, x_{1}\right), \ldots,\left(C_{p}, x_{p}\right)\right\}$ is a δ-fine special ϵ-partition of B, then $0 \in\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}}\right\}$ by condition (2). We may assume that $\mathrm{x}_{1}=0$. As P is a special partition, it follows from conditions (3) and (4) that each of the intervals $\mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}$ is either contained in $B_{ \pm n}$ for some integer $n \geq 1$, or is disjoint from $B_{ \pm n}$ for all integers $\mathrm{n} \geq 1$. Thus $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\left|\mathrm{C}_{\mathrm{i}}\right|=\mathrm{S}\left(\mathrm{f}, \mathrm{C}_{\mathrm{i}}\right)$ for $\mathrm{i}=2, \ldots, \mathrm{p}$. Since $\mathrm{r}\left(\mathrm{C}_{1}\right)>2^{-\mathrm{j}}$, using the additivity of the s-integral and condition (1), it is not difficult to deduce that

$$
\left|\sum_{i=1}^{p} f\left(x_{i}\right)\right| C_{i}| |=\left|\sum_{i=2}^{p} S\left(f, c_{i}\right)\right| \leq \sum_{n=k+1}^{k+j} \frac{1}{n} \leq j / k<\epsilon
$$

The same argument shows that $S\left(f,[0, x]^{2}\right)=0$ for each $x \in(0,1]$, a fact which proves to be important.

Since $\mathrm{f}=0$ outside B , we see that f is s-integrable in A , and $\mathrm{S}(\mathrm{f}, \mathrm{A})=0$. We set $F(x, y)=S(f,[-1, x] \times[-1, y])$ for each $(x, y) \in(-1,1]^{2}$, and show that F is unbounded in a neighborhood of 0 . Indeed,

$$
F\left(2^{-q+1}, 2^{-q^{2}}\right)=\sum_{n=q}^{q^{2}-1} S\left(f, B_{+n}\right)=\sum_{n=q}^{q^{2}-1} \frac{1}{n} \geq \int_{q}^{q^{2}} \frac{d t}{t}=\log q
$$

and similarly, $\mathrm{F}\left(2^{-\mathrm{q}^{2}}, 2^{-\mathrm{q}+1}\right) \leq-\log \mathrm{q}, \mathrm{q}=1,2, \ldots$. In particular, F is discontinuous at 0 .

Two conclusions can be drawn from the Example.
(a) The Alexiewicz norm $\|f\|=\sup \{S(f,[-1, x] \times[-1, y]):(x, y) \in A\}$ cannot be defined in
the space of s-integrable functions on an interval A (cf. [0, Definition 2]).
(b) The s-integral is a proper extension of the integral defined in [P , Definition 3.1]. Indeed, if the function f of the Example were integrable in the latter sense, then by [P, Proposition 4.10], the function F of the Example would be continuous.

In view of (a), it appears that the behavior of the integral from [P, Definition 3.1] is superior to that of the s-integral. We feel that the added generality of the s-integral established in (b) is of little value, and that the technical complexity of [P , Definition 3.1] may be unavoidable for obtaining an integral with desirable properties.

Remark. Conclusions (a) and (b) hold also for the GM-integral of [M, Definition 4], which is easily seen to coincide with the s-integral.

REFERENCES

[B] Z. Buczolich, A general Riemann complete integral in the plane, Acta Math. Hung., to appear.
[H] R. Henstock, A Riemann-type integral of Lebesgue power, Canadian Math. J., 20(1968), 79-87.
[M] A. Mkhalfi, On a generalized multiple integral and the divergence theorem, Bull. Soc. Math. Belgique, 40 B, 1988, 111-130
[O] K. Ostaszewski, The space of Henstock integrable functions of two variables, Internat. J. Math. Math. Sci., 11(1988), 5-21.
[P] W.F. Pfeffer, The divergence theorem, Trans. American Math. Soc., 295(1986), 665-685.

