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 A CRITERION FOR MEASURABILITÏ OF COUNTABLE-TO-ONE FUNCTIONS

 Let X be a subset of R and denote by B(X) « {BOX : B

 Borei subset of R} the o-f ield of all measurable subsets of X.

 Given subsets X and Y of R, a function f : X Y is

 measurable if f_1(C) e 8(X) for each C e 8(Y). If f is a

 one-one correspondence, and both f and f~l are measurable, then

 f is a Borel-isomorphism (or generalised homeomorphism as in [1]),

 and X and Y are Borel-isomorphic . The following result is well

 known [1; p. 431] :

 1 . 1 Lemma ; Let X be a subset of R, and let f : X -»• R be

 measurable. Then f extends to a measurable function g : R R.

 A subset of R is analytic if it is the image of a Borei subset

 of R under a measurable map. A measurable subset of an analytic set

 is again analytic. For basic facts about these sets, vide [1],

 1.2 Theorem: Let f : X Y be a one-one correspondence

 between subsets X and Y of R. Suppose that X is analytic.

 In order that f be á Borel-isomorphism, it is necessary and

 sufficient that for each A ç X, the sets A and f(A) be

 Borei - i somorph ic .

 Proof: Necessity is obvious. Suppose now that f has the

 indicated property. Given any Ac 8(X), we know that A and

 X - A are analytic. Thus f(A) and f(X-A) - Y - f(A) are
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 analytic. By Lusin's first separation theorem [1; p. 185]. there

 is some Borei subset B of R such that f(A) ç B and

 Y - f(A) c R - B. It follows that f(A) e 8(Y). We have shovm

 that f~l is measurable. Since Y - f(X) is analytic, a

 symmetrical argument shows that f is measurable.

 Q.E.D.

 Under the continuum hypothesis (CH), the condition of

 analytic ity is not needed. This will follow from

 1.3 Theorem (CH): Let f : X ♦ R be a countable-to-one

 function defined on a subset X of R. In order that f be

 measurable, it is necessary and sufficient that for each A c x,

 the set f(A) be a measurable image of A.

 Proof: Necessity is obvious. To prove sufficiency, we show

 the contrapositive. Suppose that f is not measurable. List all

 measurable, countable-to-one functions on X as

 f0 fj ... f0 ... a < w j. We construct the elements of a set

 A c X by transfinite induction: suppose that the points xg have

 been chosen for all 0 < a, where a is a countable ordinal.

 Choose Xq from the set

 {x e X : f(x) 4 f0(x)} - f"l{fg(xg) : 0 < a}

 - f0 {f(xg) : 0 < a},

 whose uncountability is easily seen. Finally, put

 A - {xa : a < u,). We assert that f(A) is not a measurable image
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 of A. Were it so, there would be some measurable function

 g : A ♦ R with g( A) » f(A). By lemma 1.1, g is the restriction

 of some one of the functions fa. Then Xa e A, but we shall

 demonstrate that gixj,) ■ f^Xg) is not a member of f(A). For

 suppose foiXf,) • f(xļj) for some B < ut. It is easy to check

 that this violates the conditions under which Xq and xg were

 chosen.

 Q.E.D.

 1.4 Corollary (CH): Let f : X Y be a one-one

 correspondence between arbitrary subsets X and Y of R. In

 order that f be a Borei -isomorph ism, it is necessary and

 sufficient that for each A c X, the sets A and f(A) be

 Borei- isomorphic.

 In Theorem 1.3, the hypothesis that f be countable-to-one

 cannot be eliminated. To see this, let f be the indicator

 function of a non-Borel subset of X - R. I do not know whether

 the assumption of CH is necessary in the previous results.

 [1] Kuratowski, K. , Topology . Vol. I, Academic Press-PWN, New
 York-Warsaw 1966
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