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 1 Introduction

 Sets of measure zero will be called nullsets. Although these sets, from a mea-
 sure theoretic perspective are all the same size, nullsets may have very different
 properties with respect to their cardinal, topological and metric properties. This
 explains why, from the beginning of this century, various classifications of nullsets
 have been proposed. (See for example Hausdorff dimension [12], Borei classifica-
 tion [2], [3], [4], [5], [6], Fréchet rarefaction [7] etc.)

 In 1919, S. Stoilow [15] proposed a classification of nullsets and studied it
 further in [16] and [17]. (Also see [18, pp. 100-108].) Stoilow's classification (StC
 for short) has the advantage that it does not depend on the method of defining
 nullsets, but, as Stoilow [15] himself remarked, presents other shortcomings. For
 instance, Stoilow dimension (to be defined) depends on the way in which the
 elements of the set are written in a certain scale. As we will see in the second

 section of the present paper, there are sets of infinite Stoilow dimension with
 respect to a certain scale which have Stoilow dimension one with respect to
 another scale. However, StC seems to be an interesting and still unexplored
 hierarchy of nullsets.

 In the sequel N is the set of nonnegative integers, I is the unit interval [0, 1]
 and Nfc is the set of all positive integers not less than k , for any positive integer
 k. Let 6eNj, and let A C I be a nullset. Define Ai = A and, for every n 6 N2,
 let An C /" be the set of all n-tuples (xi, . . . ,xn) with the property that

 O.x^x^ . . . x^x^x^ . . . Xj^ . . . 6 A,

 where

 Xi = O.Xj^Xj ^ . . . xļ^ . . . xj^ . . .

 for all » = 1, 2, . . . , n. All above numbers are represented in the scale 6, the
 representations being considered infinite. The construction of the sets An is the
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 same as that used in the standard proof of the fact that /" and I have the same
 power.

 We say that A has Stoilow dimension one with respect to the scale b if at
 least one of the two projections proji Aļ or projj A^ on the first or, respec-
 tively, the second axis is not a linear nullset. Inductively, we say that A has
 Stoilow dimension n with respect to the scale 6 and we write St(A,b) = n if
 St(A, b) > n - 1 (that is, all the projections of sets A2, . . . , An are linear nullsets)
 and at least one of the projections projļAn+i, . . . ,projn+1An+1 is not a linear
 nullset. If St(A, b) = n, then A is said to be in the n-th class of StC. Those sets for
 which St(A, 6) / n for every n € Ni are called sets of infinite Stoilow dimension
 with respect to the scale b. For example, all countable sets are nullsets of in-
 finite Stoilow dimension with respect to the scale 6. In his first paper on this
 subject, Stoilow [15] wrote about sets of infinite Stoilow dimension with respect
 to the scale 6, "Ils semblent être tous dénombrables" . However, the classical
 Cantor ternary set has infinite Stoilow dimension with respect to the scale 3 as
 follows from Lemma 2.2 below, but has the power of the continuum. Thus it
 is natural to ask, "how large may sets be which have infinite Stoilow dimension
 with respect to the scale 6?" The Cantor ternary set (which is the first natural
 counterexample to Stoilow's conjecture) is a nowhere dense, closed set in I and
 its Hausdorff dimension is (log 2) /(log 3). (See Section 2 for complete references
 to this last result.)

 The first Theorem of the present paper will prove that for any e > 0 and
 for every sufficiently large scale 6 there exists a set which is a counterexample
 to Stoilow's conjecture with respect to b and its HausdorfF dimension is greater
 than 1 - e. In Section 3 we will construct, for every scale b €. N2, a dense set
 in I which has the power of the continuum and has infinite Stoilow dimension
 with respect to b. In the case 6 = 2, using some results due to T. Šalát [14], we
 will show that the above dense counterexample to Stoilow's conjecture may be
 taken to be a i^-set; that is, a countable union of closed sets. In the last section
 we will show that StC is effective, that is every class from this classification is
 nonempty and we will give a counterexample to show that StC does not possess
 the Darboux property in the sense of S. Marcus [10].

 Of course, many interesting questions concerning StC remain open. Some of
 them are briefly discussed in Section 4.
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 2 Counterexamples with large HausdorfF dimen-
 sion

 It is shown in [9] that a linear set of positive Lebesgue measure has HausdorfF
 dimension 1. Hence the HausdorfF dimension differs from one only for nullsets.
 The main result of this section is the existence of a set of infinite Stoilow dimen-

 sion with respect to the scale b having the power of the continuum and Hausdorff
 dimension greater than 1 - er. Such a set is a counterexample to Stoilow's conjec-
 ture. Here e > 0 is fixed and 6 is a sufficiently large integer. In fact we may pick
 the above set to have HausdorfF dimension "very near" to a number h,0 < h < 1,
 given in advance. More precisely, we may state the following result.

 Theorem 2.1 Let hi and hļ be two given real numbers in Int I with hi < hļ
 and n a positive integer. Then, for every sufficiently large integer b, there exists
 a set A having the power of the continuum and infinite Stoilow dimension with
 respect to bn such that

 hi < dim HausdorfF (A) < hļ.

 The proof of this Theorem will be based upon an auxiliary result which has
 its own interest.

 We begin with some notation. Let d € {0, 1, . . . , 6 - 1} be a fixed digit in the
 scale 6, 6 > 3. We denote by C(6; d) the generalized Cantor set of all numbers
 from I with the property that in their representatons in the scale b, d is a missing
 digit. Then C{b-,ditdit. . . ,djt) := C(b'di) fi C(6;dj) D . . . n C(b'dt) is the set of
 all numbers with d', . . . , d* missing in their representations in the scale 6, where
 b £ N3, A; is a positive integer smaller than b and di, <¿2, . . . are k fixed digits
 in the scale 6.

 As we claimed in the Introduction, the classical Cantor ternary set C( 3; 1)
 has infinite Stoilow dimension with respect to the scale 3. A more general result
 is contained in the following lemma.

 Lemma 2.2 Let n and k be two positive integers, b € N3 with b > k and let
 di,...,dk bek fixed digits in the scale b. Then the set C(b; di,..., dt¡) has infinite
 Stoilow dimension with respect to bn.

 Proof. A first remark (derived directly from the definitions) is the following.

 If B Ç A, then St(B,b) > St(A,b). In particular if B Ç A and the Stoilow
 dimension of A is infinite, then the Stoilow dimension of B is also infinite.
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 Thus it is sufficient to prove Lemma 2.2 for k = l,di = d and C := C(6; d).
 The representation of a number in the scale 6" may be obtained from the cor-
 responding representation in the scale 6, by considering "blocks" of n digits and
 interpreting every block as a digit in the scale 6n. Because d is a missing digit
 in the scale 6, for every element of C, d has the same property for every element
 from projet , with t and t fixed, 1 < i < t. Therefore, in the representation of an
 element from projiCt in the scale 6, the block dd...d (n times) does not occur.
 Hence the projection projiCt is included in C(6n; d(bn - l)/(6 - 1)) which is a
 nullset. Thus projiCt is itself a set of Lebesgue measure zero and this shows that
 C has infinite Stoilow dimension.

 Remark 2.3 The Stoilow dimension of the sets C(6;di,...,d*) may change if
 we use other scales. For instance, Q := C(4;l,2) has infinite Stoilow dimension
 with respect to 4 n,n > 1, by Lemma 2.2, but St(Q, 2) = 1/ Indeed, the elements
 of Q have representations in the scale 2 of the form

 O.X1X1X222Z3X3 • • • where x¿ = 0 or 1 (/ = 1,2,.. .)

 since very element of Q has a representation in the scale 4 only with digits 0
 and 3 and the * block * 00 in the scale 2 is the digit 0 in the scale 4 and 11 in
 the scale 2 is 3 in the scale 4. Thus projiQi contains every number of the form
 O.X1X2X3 ... in the scale 2. That is, proj'Q j = I which is not a nullset. Hence
 St(Q, 2) = 1. This example shows the importance of the scale in the behavior of
 the Stoilow dimension of a set.

 Now we are in a position to prove Theorem 2.1.

 Proof of Theorem 2.1. The set C(ò; di, . . . , d*) has infinite Stoilow dimen-
 sion with respect to bn (Lemma 2.2) and has the power of the continuum. On
 the other hand, its Hausdorff dimension is (log(6 - k))/ log 6. (See [8], [19], [9].)

 For sufficiently large integers b we have bh*~hi > 1 + b~hl since the left-hand
 member of the above inequality tends to infinite while the right-hand one tends
 to 1 when 6 tends to infinity. Hence bh* - bhl > 1 for all large b and because
 0 < bhl < bh> < by there exists an integer k < b such that bhl <b - k < 6*a. This
 yields hi < (log(fr - A;))/ log 6 < h2. Therefore, for any A;-tuple (du...,dk) of
 digits in the scale 6, we have hi < dim Hausdorif (C(6; di, . . . ,dt)) < h2 which
 completes the proof.
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 3 Dense sets as counterexamples to Stoilow's
 conjecture

 The counterexamples to Stoilow's conjecture given in Theorem 2.1 axe based on
 generalized Cantor sets. Thus even if they may have large Hausdorff dimension
 for sufficiently large scales, from the density point of view they are rather thin.
 However, for all scales b G N2, we may construct counterexamples to Stoilow's
 conjecture dense in I. It is worthwhile mentioning the influence of Šaláťs work
 [13,14] on the results of this section.

 Theorem 3.1 Let b € N2. There exists a set S = S(b) C I with the following
 properties:

 (i) S has infinite Stoilow dimension with respect to b'

 (ii) S has the power of the continuum;

 (iii) S is dense in I.

 Proof. Let S = S (b) be the set of all numbers x from I with the property that
 the infinite series £n>i en(x)ļn converges. Here en(x) = 0 if the n-th digit in
 the representation of x in the scale 6 is even and en(x) = 1 if the n-th digit
 is odd. Firstly, we show that 5 is a nullset. In 1964, T. Šalát [13] proved
 that if (an) is a decreasing sequence of positive numbers with lim inf n_»oo nan >
 Ojlimn^oo an = 0 and if et € {0, 1} such that limsup,,^^ ¿ £"=1 et > 0, then the
 infinite series £*>i etOt diverges. We will apply this theorem for a« = 1/t and
 et = et(x). Since the strong law of large numbers implies that, for almost all
 i 6 /,limn_»oo £ Iw=i et(x) > 0 according to the aforementioned result of Šalát,
 S is a nullset. We note that this argument is similar to the one due to Galambos
 [9, pp. 123-124] in the case 6 = 2.

 Now we show that S has infinite Stoilow dimension with respect to 6. To this
 end consider the set

 Sn = {(*1, ...,xn) :xi= 0.x{' ) . . .x^p . . . ;y € S },

 where y = . . . x^x^x^ . . . . . . and let € projkSn. We recall that
 all numbers are represented in the scale 6. From the definition of the set S we
 have the convergence of the series £t>x et(y)/t. This shows that the series

 EcxW+(t-i)B(f)/(4k) 1 + (* - 1)») «>1 1
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 has the same nature as £t>i et(y)/t (being a subseries of a convergent series
 with non-negative terms). Hence the above series converges and this shows that
 projkSn Ç 5 for any positive integer n and all k with 1 < k < n. Thus projkSn
 are all nullsets and 5 has infinite Stoilow dimension with respect to the scale 6.

 Since when in £t>i 1/t; we omit all digits which contain a 9 in their repre-
 sentation in the scale ten, the resulting series converges, all numbers which, in
 the scale 6, have odd digits only in positions which in the scale ten miss the digit
 9 are elements of 5. Thus 5 has the power of the continuum.

 Now we show that 5 is dense in I. It is sufficient to prove that for every pair
 of positive integers m and n with 0 < m < 6n - 1, 5 fl (m/6n, (m -f l)/6n] is
 nonempty. If the 6- adic (finite) expansion of m/6n is m/6n = ££=1 £kb~k, then
 every number x € (m/6re, (m + l)/6n] is characterized by the fact that its 6-adic
 expansion x = £*(*)&"* satisfies e*(x) = e* for k = 1, . . . ,n. Then the
 number xq given by its 6-adic expansion xo = ejt(xo)6~* where e¿(xo) = e*
 for k = 1, . . . , n, 6ķ(xo) = 1 for k > n and k = j2 (with a certain suitable j') and
 e/t(xo) = 0 for k > n and k ^ ¿2 (ť = 1,2,3, . . .), is a number from the interval
 (m/6n, (m + l)/6n]. On the other hand, the convergence of the series 1 /j2
 implies Xo E S.

 The proof is now complete.
 The set 5(2) (constructed above for an arbitrary scale 6) has a very exten-

 sive literature. We refer the reader again to Šalát [13], [14] and the references
 cited therein. Using some of these previous results we may obtain further addi-
 tional information on counterexamples to Stoilow 's conjecture in the case 6 = 2.
 For instance, Theorem 1.8 by Šalát [14] tells us that S = 5(2) is a F„s set in
 (0, 1]. However, Theorem 3.2 below shows that there is even a F„- set which is a
 counterexample to Stoilow's conjecture.

 Theorem 3.2 There exists a set S* C I with the following properties:

 (i) S* has infinite Stoilow dimension with respect to the scale 2;

 (ii) S* has the power of the continuum:

 (iii) S* is dense in /;

 (iv) S* is a -F„-set.

 Proof. We define S* = 5(2) U {{k/ 2n : 1 < k < 2 n,n € N} ' {1}), where 5(2)
 is the set given in the proof of Theorem 3.1. Since 5(2) has infinite Stoilow
 dimension with respect to 2, the union of 5(2) with every countable set has
 the same property. Thus (i) is true and for the same reasons (ii) and (iii) are
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 satisfied. Now we show that S* is a F0- set. To this end it suffices to construct a
 function / whose set of discontinuities is S* because a well known result asserts
 that such a set is a Fa- set. Let / be the real function defined on I in the following
 way: if x 6 S (2); i.e., the number gr(x) := en(z)/n is finite, then we put
 f{x) = (flf(a:)) / (1 + jf(x)); if x & 5(2), we define f(x) = 1. Then Theorem 2.1 of
 Šalát [14] says that the set of discontinuities of / is S*. Hence Theorem 3.2 is
 proved.

 Remark 3.3 It is interesting to note that Šalát [14] proved that the function f
 used above also has many other remarkable properties. For example f is a strong
 locally recurrent function, it has the Darboux property and is of the second Baire
 class. (For definitions see Šalát [14].)

 4 Miscellaneous remarks

 A natural question which arises is the following. Is StC effectiveŤ i.e. are
 all classes from StC non empty? The examples which show that the answer
 is affirmative are constructed by a modification of the generalized Cantor sets
 C(b; d) in order to obtain a set with a given Stoilow dimension.

 Proposition 4.1 Let b and n be two positive integers and let d be a fixed digit
 in the scale b. Define and set K(b,d,n) of all numbers from I which have rep-
 resentations in the scaie b such that d appears in no position of the form nq + r
 with q € N,0 < r < n. Then St(K(b,d,n);b) = n - 1.

 Proof. Let K := K(b,d,n). Because digits in the positions of the form nq
 may attain any digit of the scale 6, the n-th projection projnKn+ 1 is equal to I.
 Thus St(K , 6) < n - 1. Let us assume that there exists a positive integer k with
 1 < k < n- 1 such that St(K,b) = k. Thus there is a number » with 1 < i < fc+1
 such that projiKķ+i is not a nullset. However, every member of projiKt+i avoids
 the occurrence of the block dd in the representation in the scale b. Indeed the
 digit d appears in the representation of a number in the scale 6, only in a position
 of the form ns by the construction of K. Thus the next digit in the representation
 is in the position ns + k + 1 and because k + 1 < » - 1, this digit is not d. Hence,
 passing again to representations in the scale 62, d(b2 - 1)/(6- l) is a missing digit.
 This implies projiKk+' Ç C(b2,d(b2 - 1)1 (b - 1)) which shows that projiKk+i is
 a nullset. This contradiction leads to the desired equality St(K,b) = n - 1.

 Remark 4.2 The above examples from Proposition 4-1 permit us to show that
 Stoilow 's hierarchy does not have the Darboux property.
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 According to S. Marcus [10], a (decreasing) family {Fi} of sets with i^-fi Fj = 0
 for i Ý 3 has the Darboux property if for any i < j - 1, for every Ai € Fi, Aj € Fj
 with Ai D Aj and for every k with i < k < j there exists At G Fk such that
 Ai D At D Aj. Taking for Fn the n-th class of StC, i = 2,j = 5,k = 3 and
 Aļ = K(2, 1, 3), As = K(2, 1,6) we have Aj D A¡. However, if A3 £ J3 is a
 set with As Ç Aļ it follows that each number from As contains the digit 1 in
 the representation in the scale 2 only in positions of the form 3 q. Hence, all four
 projections (in R4) have 11 as a missing block, as a argument similar to the proof
 of Proposition 4.1 shows. Thus, considering representations in the scale 4, we
 get that all four projections are nullsets, which contradicts A3 € F3.

 The fact that StC does not have the Darboux property shows that StC be-
 haves somewhat irregularly with respect to the relation of set inclusion.

 Of course, there are many other topics for further study. Firstly, we state the
 following

 Problem 4.3 Let b G N2. It is true that there exists a counterexample to
 Stoilow's conjecture with respect to the scale b which is of the second Baire cate-
 gory in I?

 According to a result of Banerjee and Lahiri [l] the set 5(2) from Theorem
 3.1 is of first category in J. In [11] Solomon Marcus suggested investigating
 an analogous classification for sets of the first category and for sets of Jordan
 measure zero, for instance. The answer to analogous Stoilow's conjecture for
 these classifications may be obtained by means of some examples presented above.

 Section 2 contains examples of uncountable sets which have infinite Stoilow
 dimension with respect to an infinite sequence of scales of the form 6n. However,
 little is known for multiplicatively-independent scales, like 2 and 3 for instance.
 Even the answer to the following question seems to be unknown.

 Problem 4.4 Is there an uncountable set of infinite Stoilow dimension with re-
 spect to all scales b> 2?

 Also it would be interesting to investigate analogues of Theorem 2.1, in which
 Hausdorif dimension is replaced by other classifications of nullsets. Let us men-
 tion here the following problem raised in [11]:

 Problem 4.5 (S. Marcus). What relations exist between Stoilow classification
 of sets of measure zero, on the one hand, and Borei and Fréchet classifications
 of the same sets, on the other hand ?
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