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 1. INTRODUCTION: It is well known thdt the only non-discrete

 locally-compact valued fields other than the fields R of real numbers

 and C of complex numbers are the local fields which are the p-adic

 fields Qp, their finite extensions and the field of formal Laurent

 series over the finite field Z^. Analysis over the fields R or
 C has been studied extensively. To have a complete picture there-

 fore it is but natural to consider analysis over valued fields other

 than R or C. The valuation of any such field satisfies the following

 stronger form of the usual triangle inequality.

 X + y < Max ( |x| , |y I )

 which is known as the ultrametric inequality and the valued fields

 in which the valuation satisfies the above inequality are known

 as non-archimedean valued fields. In the sequel K denotes a

 non-trivial non-archimedean complete valued field. This ultrametric

 inequality causes fascinating deviations from the classical analysis
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 (over R or C), For example a series I an with an in K converges
 if and only if the nth-term a^ tends to zero in K. Each disc in

 K is open and closed and each point of a disc is a centre.

 Geometrically any triangle in K is isosceles, the non-archimedean

 valued fields cannot be ordered and so on. These and other

 deviations make the search for analogues and for differences of

 classical results in non-archimedean analysis interesting. In this

 note we prove analogues of Bolzano's theorem and Intermediate value

 theorem in the non-archimedean case for the Darboux Continuous

 functions .

 Of the many properties of real valued continuous functions

 defined chi a compact interval in the real line the Intermediate value

 property is well-known which itself is an offshoot of Bolzano's

 theorem (p. 85, Apostoł [1]). The proofs of those theorems like

 that of the Mean value Theorem make essential use of the fact that

 the real ' field is ordered. On the other hand in the p-adic fields

 or more generally non-archimedean valued fields there is no order

 compatible with the algebra and the topological structure of the

 field (see p. 128, van Rooij [2]). It is therefore necessary to

 find a suitable analogue of the notion of betweenness before attempting

 at an analogue of the above two theorems for the non-archimedean

 case. In [3] and [4] Schikhof has made an attempt to define such

 a notion of betweenness, monotonie functions etc. in the non-

 archimedean analysis and we make use of some of these notions

 in this note.
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 2. DEFINITIONS AND MAIN THEOREMS: We now recall some definitions

 and results from Schikhof [3].

 Let x,y te elements of K. The smallest ball in K contain-

 ing X and y is denoted by [x,y]. It then follows easily that for

 all x,y in K, [x.y] = [y,x] and

 z e [x,y] <==> I z-x | < |x-y ļ <==> z = a x+(l-a)y

 for some aeK, |a| <1. if x i y then a = (z-y)Jix-y).

 DEFINITION 1. A subset C of K is called convex if x and y in

 C implies [x,y] C C.

 It is easy to see that the empty set, singletons, balls

 and the whole space K are convex sets and they are the only convex

 sets of K.

 DEFINITION 2. Let X te a subset of K. A set C C X is called

 convex in X (or relatively convex) if x.y in C implies that

 [x.y] O X C C or equivalently C is the intersection of X with

 a convex subset of K.

 ♦

 The relation r'j defined on K -the non-zero elements of

 K by xroy if O does not belong to [x.y] is an equivalence relation.

 It is easy to see that K+ = { x e K I |l-x| < l} is a multiplicative
 *

 subgroup of the commutative group K and

 (1) O ff [x.y] <==> I x-y I < I x ļ <==> xy_1-l <1 <==> x-1y-l < 1 .

 xroy implies |x| = |y| but not conversely.
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 It may be noted that the relation ru defined on the non-zero

 reals R in the above manner where [x,y] is the smallest closed

 interval containing x and y is also an equivalence relation and

 xrOy means x and y have the same sign i.e. both positive or both
 4c

 negative. The equivalence relation partitions R into two equivalence

 classes namely positive and negative real numbers. In such a case

 x y implies that xy <0. But in the non-archimedean case there

 are more than two equivalence classes defined by the equivalence

 relation ťo •

 One usually calls a real vlaued function defined on a closed

 interval having the intermediate value property as Darboux function

 or Darboux continuous function. This definition of Darboux function

 requires that the image of a connected set be connected. The only

 connected subsets fo the real line are intervals which are also

 convex sets . Motivated by this , Dar boux continuity is defined in

 the non-archimedean case as follows:

 DEFINITION 3. Let X be a subset of K and f: X - ► K be a function

 defined on X with values in K. f is called weakly Darboux continous

 if for every relatively convex set C in X the set f(C) is convex

 in f(X) . f is called Darboux continuous if for every relatively

 convex set C in X, the set f(C) is convex in K.

 As noted by Schikhof (p. 13 [13]) a Darboux continuous

 function need not be continous and a continuous function need not

 be Darboux continuous. Now we prove the analogue of Bolzano's

 Theorem for the non-archimedean case.
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 THEOREM 1. Lex X be a subset of K and f : X - ► K be Darboux

 continuous. Let a,b be in X and f(x) f( b) . Then there exists

 a point c in [a,b] O X such that f(c) = 0.

 Proof: By definition f(a)o^f(b) implies that 0 belpngs to

 lf(d),f(b)]. Since tne ball [d,b] is convex in K, [d,b] f) X is

 convex in X. Hence by Ddrboux continuity of f the set f([a,b] n X)

 is convex in K dna it contdins f(d) and f(b). It follows that

 [ f ( a) ,f( b) ] C f( [a, b] D X) because the ball [f (a) . f(b)] is the

 smallest convex set in K containing f(a) and f(b). This implies

 that 0 belongs to f([a,b] n X) and hence there exists a point c

 in [a,b] O X such that f(c) = 0.

 REMARK. In non-archimedean analysis even continuous functions

 may not possess this property as the following example shows.

 EXAMPLE. Consider the p-adic field Qg associated with the prime

 p = 5, With the normalised valuation | | on Qg. Define

 A = { X e Q. x-1 < "g" }

 B = { X e Qj. x-6 < -gr }

 On A U B define f by

 f(x) = XA(x) + 2 XB(x)

 where XA and XB are the characteristic functions of A and B
 respectively. Then for x e A (J B, f(x) /0 and f is continuous,
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 f ( 1 ) fSJ f(6), but" for no point c in A U B does f(c) = 0.

 The following is the analogue of the Intermediate value

 Theorem (p. 85, Apostoł [1]) for the non-archimedean case.

 THEOREM 2. Lex X be a subset of K and f : X - > K be Darboux

 continuous. Let a.b belong to X and f(a)Wf(b). Define

 S = { X e k ; ļ X ļ < min (|f(a)|, |f(b)|) }

 Then for every a e S, there exists a point c in [a,b] 0 X such

 that f(c) = a .

 Proof: Without loss of generality we can assume that |f(a)| <, |f(b)|

 so that

 S = { X e K : I X I < J f (a) I }

 Since f(a)0£/f(b), it follows from the discussion following definition 2

 above that

 I f (a) - f ( b) I > |f(a) I and |f(b)|

 > max (|f(a)|, |f(b)|)

 But by the ultra metric inequality of | ļ we have

 (f ( a) - f ( b) I < max (|f(a)|, |f(b)|)

 and therefore f(a)»Vf( b) implies that,

 |f(a)-f(b)| = max (|f(a)|, |f(b)|) = |f(b)|.

 Now for any x e s,
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 X e S ==> I X I < I f ( a ) I ==> 1 X- f ( a ) | = |f(a)| < |f(b)|

 = max ( I f { a) | , |f(b)|)

 Implying thereby that x is in [f (a) , f ( b) ] or equivalently

 S C [f(a) , f ( b) ] . Since f ( b) e [f(a), f ( b) ] but f ( b) / S, S is

 a proper subset of [f(a), f ( b) ] . Further for any a in S,

 |a I < I f ( a) ļ < I f C b) I . Defining

 F(x) = f ( x ) - a

 we see that F is Darboux continuous and F(a) f)U F(b). Otherwise

 F(a) F(b) would imply that

 |F(a)-F( b) I < I F( a ) I (= I F( b) I )

 i.e.

 I f ( a ) - f ( b) 1 < I f(a) I (= |f( b) I )

 which implies that f(a)AJf(b) contradicting our hypothesis. Thus

 F satisfies all the conditions of Theorem 1 above and hence there

 exists a point c in [a,b] (' X such that F(c) = 0.

 This completes the proof of Theorem 2.
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