Real Analysis Exchange Vol 14 (1988-89)

 G. RANGAN, THE RAMANUJAN INSTITUTE, UNIVERSITY OF MADRAS, MADRAS - 600 005, INDIA,

AND

V. SELVAMUTHU, DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE (MEN), NANDANAM, MADRAS - 600 035, INDIA.

DARBOUX CONTINUOUS FUNCTIONS

ON NON ARCHIMEDEAN VALUED FIELDS

1. INTRODUCTION: It is well known that the only non-discrete locally-compact valued fields other than the fields R of real numbers and C of complex numbers are the local fields which are the p-adic fields Q_{n} , their finite extensions and the field of formal Laurent series over the finite field Z^{p} . Analysis over the fields R or C has been studied extensively. To have a complete picture there fore it is but natural to consider analysis over valued fields other than R or C. The valuation of any such field satisfies the following stronger form of the usual triangle inequality.

$$
\left| x + y \right| \leq Max (\vert x \vert, \vert y \vert)
$$

 which is known as the ultrametric inequality and the valued fields in which the valuation satisfies the above inequality are known as non-archimedean valued fields. In the sequel K denotes a non-trivial non-archimedean complete valued field. This ultrametric inequality causes fascinating deviations from the classical analysis

(over R or C). For example a series Σa_n with a_n in K converges if and only if the n^{th} -term a_n tends to zero in K. Each disc in K is open and closed and each point of a disc is a centre. Geometrically any triangle in K is isosceles, the non-archimedean valued fields cannot be ordered and so on. These and other deviations make the search for analogues and for differences of classical results in non-archimedean analysis interesting. In this note we prove analogues of Bolzano's theorem and Intermediate value theorem in the non-archimedean case for the Darboux Continuous functions .

 Of the many properties of real valued continuous functions defined on a compact interval in the real line the Intermediate value property is well-known which itself is an offshoot of Bolzano's theorem (p. 85, Apostoł [1]). The proofs of those theorems like that of the Mean value Theorem make essential use of the fact that the real ' field is ordered. On the other hand in the p-adic fields or more generally non-archimedean valued fields there is no order compatible with the algebra and the topological structure of the field (see p. 128, van Rooij [2]). It is therefore necessary to find a suitable analogue of the notion of betweenness before attempting at an analogue of the above two theorems for the non-archimedean case. In [3] and [4] Schikhof has made an attempt to define such a notion of betweenness, monotonie functions etc. in the non archimedean analysis and we make use of some of these notions in this note.

 2. DEFINITIONS AND MAIN THEOREMS: We now recall some definitions and results from Schikhof [3].

Let x,y be elements of K . The smallest ball in K containing x and y is denoted by $[x,y]$. It then follows easily that for all x,y in K , $[x,y] = [y,x]$ and

z ε $[x,y]$ $\leq = > |z-x| < |x-y|$ $\leq = > z = \alpha x + (1-\alpha)y$ for some $\alpha \in K$, $|\alpha| \leq 1$. If $x \neq y$ then $\alpha = (z-y)/(x-y)$.

DEFINITION 1. A subset C of K is called convex if x and y in C implies $[x,y] \subset C$.

 It is easy to see that the empty set, singletons, balls and the whole space K are convex sets and they are the only convex sets of K.

DEFINITION 2. Let X be a subset of K. A set $C \subset X$ is called convex in X (or relatively convex) if x,y in C implies that $[x,y]$ \bigcap X \bigcap C or equivalently C is the intersection of X with a convex subset of K.

The relation ω defined on K -the non-zero elements of K by $x \sim y$ if O does not belong to $[x, y]$ is an equivalence relation. It is easy to see that $K^+ = \{ x \in K : |1-x| < 1 \}$ is a multiplicative subgroup of the commutative group κ^* and

(1) 0 **f** $[x,y] \iff |x-y| < |x| \iff |xy^{-1}-1| < 1 \iff |x^{-1}y-1| < 1.$ $x \sim y$ implies $|x| = |y|$ but not conversely.

It may be noted that the relation \sim defined on the non-zero reals R^* in the above manner where $\{x,y\}$ is the smallest closed interval containing x and y is also an equivalence relation and $x \wedge y$ means x and y have the same sign i.e. both positive or both negative. The equivalence relation partitions R^{\uparrow} into two equivalence classes namely positive and negative real numbers. In such a case $x \wedge y$ y implies that $xy < 0$. But in the non-archimedean case there are more than two equivalence classes defined by the equivalence relation $\boldsymbol{\omega}$.

 One usually calls a real vlaued function defined on a closed interval having the intermediate value property as Darboux function or Darboux continuous function. This definition of Darboux function requires that the image of a connected set be connected. The only connected subsets fo the real line are intervals which are also convex sets. Motivated by this, Darboux continuity is defined in the non-archimedean case as follows:

DEFINITION 3. Let X be a subset of K and f: $X \rightarrow K$ be a function defined on X with values in K. f is called weakly Darboux continous if for every relatively convex set C in X the set $f(C)$ is convex in $f(X)$. f is called Darboux continuous if for every relatively convex set C in X, the set f(C) is convex in K.

As noted by Schikhof (p.13 [13]) a Darboux continuous function need not be continous and a continuous function need not be Darboux continuous. Now we prove the analogue of Bolzano's Theorem for the non-archimedean case.

THEOREM 1. Lex X be a subset of K and $f : X \rightarrow K$ be Darboux continuous. Let a, b be in X and $f(x) \sim f(b)$. Then there exists a point c in $[a, b] \cap X$ such that $f(c) = 0$.

Proof: By definition $f(a) \sim f(b)$ implies that 0 belongs to $[f(a),f(b)]$. Since the ball $[a,b]$ is convex in K, $[a,b] \cap X$ is convex in X. Hence by Darboux continuity of f the set $f([a,b] \cap X)$ is convex in K and it contains $f(a)$ and $f(b)$. It follows that $[f(a), f(b)] \subset f([a, b] \cap X)$ because the ball $[f(a), f(b)]$ is the smallest convex set in K containing f(a) and f(b). This implies that 0 belongs to $f([a, b] \cap X)$ and hence there exists a point c in $[a, b] \cap X$ such that $f(c) = 0$.

 REMARK. In non-archimedean analysis even continuous functions may not possess this property as the following example shows.

EXAMPLE. Consider the p-adic field Q_5 associated with the prime $p = 5$, with the normalised valuation $| \cdot |$ on Q_5 . Define

$$
A = \left\{ x \in Q_5 \middle| \quad |x-1| < \frac{1}{5} \right\}
$$
\n
$$
B = \left\{ x \in Q_5 \middle| \quad |x-6| < \frac{1}{5^2} \right\}
$$

On A U B define f by

$$
f(x) = \chi_A(x) + 2 \chi_B(x)
$$

where x_A and x_B are the characteristic functions of A and B respectively. Then for $x \in A \cup B$, $f(x) \neq 0$ and f is continuous,

f(1) \sim f(6), but for no point c in A U B does f(c) = 0.

 The following is the analogue of the Intermediate value Theorem (p. 85, Apostoł [1]) for the non-archimedean case.

THEOREM 2. Lex X be a subset of K and $f : X \rightarrow K$ be Darboux continuous. Let a, b belong to X and $f(a) \nsubseteq f(b)$. Define

$$
S = \{ x \in K : |x| < \min (|f(a)|, |f(b)|) \}
$$

Then for every $\alpha \in S$, there exists a point c in [a,b] Ω X such that $f(c) = \alpha$.

Proof: Without loss of generality we can assume that $|f(a)| \leq |f(b)|$ so that

$$
S = \{ x \in K : |x| < |f(a)| \}
$$

Since $f(a)$ γy $f(b)$, it follows from the discussion following definition 2 above that

 $\mathcal{L}^{\mathcal{L}}$

 ~ 1

$$
|f(a) - f(b)|
$$
 \geq $|f(a)|$ and $|f(b)|$
 \geq max $(|f(a)|, |f(b)|)$

But by the ultra metric inequality of $\vert \vert$ we have

$$
|f(a) - f(b)| \le max (|f(a)|, |f(b)|)
$$

and therefore $f(a) \sim f(b)$ implies that,

$$
|f(a)-f(b)|
$$
 = max $(|f(a)|, |f(b)|) = |f(b)|$.

Now for any $x \in S$,

$$
x \in S
$$
 == $|x| < |f(a)|$ == $|x - f(a)|$ = $|f(a)| \le |f(b)|$
 = max ($|f(a)|$, $|f(b)|$)

implying thereby that x is in $[f(a), f(b)]$ or equivalently S C $[f(a), f(b)]$. Since $f(b) \in [f(a), f(b)]$ but $f(b) \neq S$, S is a proper subset of $[f(a), f(b)]$. Further for any α in S, $|\alpha|$ < $|f(a)| \leq |f(b)|$. Defining

$$
F(x) = f(x) - \alpha
$$

we see that F is Darboux continuous and $F(a) \nightharpoonup F(b)$. Otherwise $F(a)$ N $F(b)$ would imply that

$$
|F(a)-F(b)| < |F(a)|
$$
 (= $|F(b)|$)

i.e.

$$
|f(a)-f(b)|
$$
 < $|f(a)|$ (= $|f(b)|$)

which implies that $f(a) \vee f(b)$ contradicting our hypothesis. Thus F satisfies all the conditions of Theorem 1 above and hence there exists a point c in [a, b] $\bigcap X$ such that $F(c) = 0$.

This completes the proof of Theorem 2.

REFERENCES

- 1. A.M. Apoštol, Mathematical Analysis, Second Edition, Addison- Wesley (1977).
- 2. A.C.M. Van Rooij, Non-archimedean Analysis, Nieuw Arch. Wisk. 19 (1971), 120-160.
- 3. W. Schikhof, Non-archimedean monotone functions (Lecture notes) mathematisch Institute, Nijmegen, The Netherlands, Report No. 7916.
- 4. W. Schikhof, Ultrametric Calculus, Cambridge University Press, Cambridge. 1982. Received May 2, 1988