Real Analysis Exchange Vol 14 (1988-89)

Mariusz Strześniewski, Institute of Mathematics, UG, Wita Stwosza, 57, 87-952 Gdańsk, Poland.

A NOTE ON ASYLMETRY SETS

In this note we give a difference between measure and category in terms of asymmetry sets. A category analogue of an approximate asymmetry set is \mathcal{C} -well porous, see [6]. Here, we construct a function f for which the approximate asymmetry set is not \mathcal{C} -well porous. In other words, the thesis that every approximate asymmetry set is \mathcal{C} -porous cannot be strengthened to a thesis that every such set is \mathcal{C} -well porous.

Let f be a function from R into R. The asymmetry set of f is denoted by A(f) and defined to be the set of all points $x \in R$ for which $W_{-}(f,x) \neq W_{+}(f,x)$ where $W_{-}(f,x)$, $W_{+}(f,x)$ denote one sided approximate cluster sets of f at a point x. More precisely, $W_{+}(f,x)$ is the set of all $y \in R \cup \{-\infty, +\infty\}$ satisfying the following condition, for every neighbourhood U of y, x is not a dispersion point of $f^{-1}(U)$ from the right in the sense of measure. In an analogous way is defined the set $W_{-}(f,x)$. As in [2] we define the category analogues of one sided dispersion as follows. Let I denote the \tilde{G} -ideal of all meager sets in R. Let $B \subseteq R$ be a Baire set.

We say that 0 is an I-dispersion point of the set B from the right if and only if for every increasing sequence of positive integers m_n there exist a subsequence m_k and A \in I such that $\chi_{\underline{m}_{k}, B \land [0,1]}(x)$ converges to 0 for all $x \in [0,1] \setminus A$. In this case we write $I-d_+(0,B) = 0$. We write $I-d_{+}(x,B) = 0$ if $I-d_{+}(0,B-x) = 0$, where $B-x = \{b-x: b \in B\}$. In such a case we say that x is an I-dispersion point of the set B from the right. Similarly the left sided I-dispersion of B at x is defined. Let $f: R \rightarrow R$ be a Baire function. If in the definitions of $\mathbb{W}_{(f,x)}$, $\mathbb{W}_{+}(f,x)$ and $\mathbb{A}(f)$ we replace dispersion in the sense of measure by I-dispersion we obtain definitions of $I-W_{\perp}(f,x)$, $I-W_{\perp}(f,x)$ and I-A(f), respectively. In $\begin{bmatrix} 4 \end{bmatrix}$ it is shown that in the sense of measure the sets A(f) are $\tilde{0}$ -porous. In the sense of category, the sets I-A(f) are \tilde{b} -well porous [6], i.e. they satisfy the following

Definition. A set B is well porous at the point x if $p(x,B) \stackrel{\text{def.}}{=} \max\left(\lim_{\delta \to 0^+} \inf_{\delta \to 0^+} \frac{\delta}{\delta} + \frac{$

The notion of well porosity is inspired by the following

Lemma. E.Łazarow [1], comp. [3] Thm.44 . Let G be an open set. Then $I-d_+(0,G) = 0$ if and only if for every positive integer n there exist a positive integer k and a positive number $\delta > 0$ such, that for every $h \in (0, \delta)$ and every $i \in \{1, \ldots, n\}$ there exists a positive integer $j \in \{1, \ldots, k\}$ satisfying the equality

$$\left(\frac{\mathbf{i}-\mathbf{1}}{\mathbf{n}}+\frac{\mathbf{j}-\mathbf{1}}{\mathbf{nk}}\mathbf{h},\frac{\mathbf{i}-\mathbf{1}}{\mathbf{n}}+\frac{\mathbf{j}}{\mathbf{nk}}\mathbf{h}\right) \wedge \mathbf{G} = \emptyset'$$

The main result of this paper is the following

Theorem. There exists a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that A(f) is not $\tilde{0}$ -well porous.

Proof. We construct a set B such that the asymmetry set of its characteristic function is not 6-well porous. By C we denote a Cantor-like set constructed inductively in the following way. In the k-th step we delete from [0,1]a finite number of pairwise disjoint open intervals called D-intervals of order k. The intervals that remain after k steps are called the R-intervals of order k. Any R-interval is closed.

Step 1. Let us choose the interval $(\frac{1}{4}, \frac{3}{4})$ as the system of all D-intervals of order 1 and the intervals $\begin{bmatrix} 0 & 1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} \frac{3}{4} & 1 \end{bmatrix}$ as the system of all R-intervals of order 1. Inductive step. Let k be a positive integer. Let T be an R-interval of order k and let d_k denote the length of T. As the system of all D-intervals of order k+1 in T let

us choose k+1 open intervals from T each of length $d_k \frac{1}{k+2}$ and such that the complement in T of the union of these intervals has k+2 components each of length $d_{L} \left(\frac{1}{k+2}\right)^2$ These components are the R-intervals of order k+1 in T . Let C be the complement in [0,1] of the union of all D-intervals. If D = (a,b) is a D-interval of order k, then let $B_{D} = (b-d_{k}, b)$ where d_{k} denotes the length of the R-interval of order k. Let B be the union of all intervals B_{D} . It is easy to verify that if $x \in C \setminus \{0\}$ then x is a dispersion point of the set B from the right and x is not a dispersion point of the set B from the left. We have that $A(\chi_B) = (C \setminus \{0\}) \cup E$ where E denotes the set of all left ends of intervals B_D . We show that $A(\chi_B)$ is not 6-well porous. Because E is countable it is sufficient to show that C is not $\tilde{0}$ -well porous. Assume on the contrary that C is \tilde{b} -well porous. Then $C = \bigcup_{n=1}^{\infty} E_n$ where E_n is well porous for n=1,2,... As is done in [5] we will define a sequence $\left\{ C_{n}^{n} \right\}_{n=1}^{\infty}$ of nonempty perfect sets such that $C_{n+1} \subseteq C_n \subseteq C$ and $C_n \cap E_n = \emptyset$ for n=1,2,... The existence of such a sequence yields a contradiction because it implies the existence of a point $x \in \bigwedge_{n=1}^{n} C_n \leq C$ which does not belong to $\bigcup_{n=1}^{\infty} E_n = C$. Define the sets C_n by induction .

1. If $\overline{E}_1 \neq C$, then there exists an R-interval T such that $T \cap \overline{E}_1 = \emptyset$. Let $C_1 = T \cap C$. If $\overline{E}_1 = C$, then for each

positive integer k and for each D-interval T = (a,b) of order k let $\tilde{T} = (a - d_k/3, b + d_k/3)$, where d_k denotes the length of the R-intervals of order k. Now we define C_1 as the complement in [0,1] of the union of all intervals \tilde{T} . It is easy to verify that for all $x \in C_1$

$$\underline{\mathbf{p}}(\mathbf{x},\mathbf{E}_1) = \underline{\mathbf{p}}(\mathbf{x},\overline{\mathbf{E}}_1) = \underline{\mathbf{p}}(\mathbf{x},\mathbf{C}) = \mathbf{0}.$$

Hence $C_1 \cap E_1 = \emptyset$.

2. We observe that the perfect set C_1 has all the properties which are sufficient to construct / in an analogous way / a set $C_2 \subseteq C_1$ and, inductively, a set $C_{n+1} \subseteq C_n$ for a positive integer n.

REFERENCES.

- [1] E.Lazarow, On the Baire class of I-approximate derivatives, Fund.Math. to appear .
- [2] W.Poreda, E.Wagner-Bojakowska, W.Wilczyński, A category analogue of the density topology, Fund. Math., 125, 1985, 167-173.
- [3] W.Wilczyński, A category analogue of the density topology, approximate continuity and the approximate derivative, Real Anal. Exch., 10, 1984-85, 241-265.
- [4] L.Zajiček, On cluster sets of arbitrary functions, Fund.Math.,83,1974,197-217.
- [5] L.Zajiček, Sets of δ-porosity and sets of δ-porosity (q),
 Cas.pro pest. mat., 101, 1976, 350-359.
- [6] M.Strześniewski, On the I-asymmetry, in preparation .

Received April 12 1988