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 BAIRE MEASURES ON [0,0) AMD [0,0]

 1. Balre and Borei Sets

 Let X be the set of all ordinals less than the first uncountable

 ordinal 0, and let X be X U {0} , each with the order topology. Then

 X is a locally compact, noncompact, nonmetrizable , first countable

 T^- space, and X is a compact, nonmetrizable Hausdorff space. Moreover,

 X is the one-point compactification of X and is not first countable at

 Q. (See [2], [4].)

 Let Y be either X or X, and let 3(Y) be the a -algebra of Borei

 sets in Y, that is, the a-algebra generated in Y by the open subsets of

 Y. Let C(Y) be the system of continuous real -valued functions defined

 on Y, and let Cc(Y) b® th® system of f e C(Y) with compact support.

 Let ®q(Y) be the a-algebra generated in Y by C(Y), called the
 a-algebra of Baire sets in Y.

 It follows from [3, Problem 10, p. 231], together with [1, Lemma 1,

 p 195] , that

 $(X) - (A c X: A or X-A contains an unbounded closed subset of X) ,

 $(X) - (A c X: A or X-A contains an unbounded closed subset of X) .

 Let 7 ,Jq denote respectively the system of open and open

 subsets of X, and let denote respectively the system of open and

 open F^ subsets of X. Let *q»'q be the system of closed subsets

 of X and X, respectively. It is easy to see that ®q(X) and ®q(X)
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 coincide with the a- algebras generated by Sq and 5q, respectively. Let

 Ä denote the system of all countable subsets of X, Ä' - {X-A: A e Jt) ,

 and Äc - {X-A: A e Ä} . It is straightforward to show that

 ®q(X) - » U Ä1 , S0(X) - « U ÄC, S0(X) 5 ®(X) , ®Q(X) 5 *(X)

 and that yQ - V n ®Q(X) , ífl - f n SQ(X) .

 If X denotes the system of compact subsets of X, then K c Ä and

 K c n Note that ®q(X) coincides with the a-algebra generated by

 K or, equivalently , C^(X).

 2. Baire and Borei Measures on X

 Let Y be either X or X, let d be a a-algebra of subsets of Y

 such that ®q(Y) C d, and let ji be a measure defined on ti. The measure

 H is said to be outer regular or inner regular or inner semi- regular at

 A G d, depending on whether

 /¿(A) - inf{/i(G): A c G, G open, G e d)

 or

 /i(A) - sup{/*(C): C c A, C compact, C G d}

 or

 /i(A) - sup{/i(F): F C A, F closed, F e sá } .

 The measure /x is said to be regular or semi- regular at A G s4 if it is

 inner and outer regular or inner semi -regular and outer regular at A. We

 say that /i is inner regular (outer regular, regular, semi-regular) if it

 is inner regular (outer regular, semi -regular) at every set in d š A

 Baire (Borei) measure /i on Y is any measure on ®q(y) [®(Y) ] such

 that /i(C) < « for every compact subset C of Y. For any Baire (Borei)

 measure /i on X, since /i(X) < 00 , the notions of outer regularity,
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 regularity and semi -regularity for fi coincide. Define

 D(/i) - {X G Y: /i({x}) > 0}, COO - {X E Y: /i({x}) - 0} .

 LEMMA 1. Let si be a a-algebra of subsets of X such that

 Äq(X) C 4, and let fi be a measure on id. Then the following assertions

 are equivalent:

 (i) /i(K) < ® for every compact subset K of X.

 (ii) fi (A) < ® for every countable subset A of X.

 (iii) The set D(/i) is countable and /¿(D(/0) < 00 •

 PROOF. (i) =» (ii): Suppose (i) holds. For any A G Ä, let

 a - sup A. Since the interval [0,a] is compact and contains A, we get

 /i(A) < oo. Therefore (ii) holds.

 (ii) ^ (iii): Suppose that (ii) holds and that D(/i) ** <ļ> . To prove

 (iii), it is enough to show that for each n-1,2,..., the set

 - {x: /i({x}) > 1/n) is finite. Suppose E^ is an infinite set for

 some n. Let A be a countably infinite subset of E^. Then /¿(A) - «>.
 On the other hand, we have from (ii) that /i(A) < ®, a contradiction.

 (iii) =» (i): Suppose (iii) holds. For any compact subset K of X

 we get /i(K) - /i(K n D(/0) < 00 . Therefore (i) holds. □

 Let fi be any Baire (Borei) measure on X. By Lemma 1 we get

 D (fi) G Ä and C (fi) - X - D (fi) G Ä' . The measure fi is called purely dis-

 continuous if fi(X) - fi(D(fi)) > 0 and continuous if fi(lx)) - 0 for all

 x G X. For each x G X, let be the measure defined on the power set

 of X such that €X(A) " 1 x G A and CX(A) ~ 0 if x g A. Let v
 be the Baire (Borei) measure defined by f(A) - fi( A n D(/*)). If D(/i) is

 void, then i/-0, the zero measure. Otherwise u is a purely
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 discontinuous measure of the form 2 u({x })c . where (x-.x~,...) is an n n X . 12
 n

 enumeration of D(/i) such that x^ * x^ if i * j .
 Let 7 be the continuous Baire measure defined by 7(A) - 0 if

 A G ft and 7(A) - 1 if A G ft' . For each p e [0,®] , define the

 continuous Baire measure p7 on X by setting (P7)(A) - P7(A) . We

 adopt the convention that <*>•() - 0.

 THEOREM 1. Every Baire measure ^ on X is semi -regular and can be

 expressed in exactly one way in the form

 /1 - 1/ + P7 ,

 where 1/ is either 0 or a purely discontinuous Baire measure and

 0 < p < ».

 PROOF. For each A G ftQ(X) let i/(A) - /i(A n D(/i)) and

 A (A) - /i( A O C(/x)). Then 1/ is either 0 or a purely discontinuous Baire

 measure, and A is a continuous Baire measure. Since A (A) - 0 for

 A G Ä and A(A) - /x(C(/i)) for A G Ä' , we get A - p7, where

 p - /i(C (a0). Consequently /1 - 1/ + p7. It is obvious that such a

 decomposition of /i is unique.

 Plainly 1/ is regular. To prove is semi -regular, it is enough

 to show that A is semi -regular. Suppose p > 0. We show readily that

 A is semi -regular but not inner regular at every A G Ä' . Suppose A G ft

 and a - sup A. Since A (A) - 0, A is inner regular at A. Since [0,a]

 is an open set such that Ac [0,a] and A([0,a])-0, A is outer

 regular at A. Consequently A is regular at every A G ft and hence A

 is semi -regular. □

 For each A G ft(X) , let i(A) - 1 or 0, depending on whether A or
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 X-A contains an unbounded closed subset of X. It follows that fi is a

 Borei measure on X. For each p G [0,®], let p fi be the Borei measure

 on X defined by (pi) (A) - pfi (A).

 LEMMA 2. Let /a be a measure on ®(X) . Then /i is continuous and

 semi-regular if and only if /1 - p fi for some p G [0,»].

 PROOF. Let p G [0,co] . It is straightforward to show that p fi is a

 continuous Borei measure which is semi -regular at every A G ®(X) with

 fi (A) - 1 and is regular at every A G Ä(X) with fi (A) - 0.

 Suppose fi is continuous and semi -regular. Plainly /1 is a Borei

 measure. Let C be any unbounded closed subset of X. For every open

 set G with C C G, X-G is compact so that /i(X-G) - 0 and

 /i(G) - m(X) . Let p - m(X). Since /1 is outer regular, we get /i(C) - p.

 Since /i(K) - 0 for every compact (bounded closed) set K, we get

 /i(F) - pfi(F) for every closed subset F of X. Since both /i and pfi

 are inner semi-regular, we get /i(A) - pfi(A) for all A G ®(X) . □

 THEOREM 2. Every semi -regular Borei measure p on X can be

 expressed in exactly one way in the form

 /i - 1/ + pfi ,

 where u is either 0 or a purely discontinuous Borei measure, and

 0 < p < 00.

 PROOF. Define the Borei measures v and À on X by setting

 i/(A) - /i(A O D (fi)) and A(A) - /*( A n C(/x)). Then u is either 0 or purely

 discontinuous, and A is continuous. To prove A is semi-regular, let

 A be any Borei set and a - sup D(/i). It follows that
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 C(aO - C(/0 n [0,a] U [a+1,0) and A (A) - ft( A n [a+1,0)). If A (A) - «,

 then A is outer regular at A. Suppose A (A) < ®. Since ft is outer

 regular, there is, for any e > 0, an open set U such that

 A O [a+1,0) C U C [a+1,0), /i(U) < A (A) + c .

 If we define G - [0,a] u U, then G is open, A C G, and

 A(G) - m(U) < A (A) + e .

 Consequently A is outer regular at A. To prove A is inner

 semi-regular at A, suppose A(A) > 0. Since ft is inner semi -regular,

 there is, for any t < A (A), a closed subset F of X such that

 F C A n [a+1,0], t < ft( F) - A(F) .

 Let C be the closed set defined by C- F if Ac [a+1,0) and

 C - {x} u F if A n [0,a] * <ķ, where x e A n [0,a] . Then we have C c A

 and A(C) - A(F) > t so that A is inner semi-regular at A.

 Consequently A is semi -regular and hence by Lemma 2, A - pi where

 p - A(X). Therefore ft - v + pfi and the uniqueness of such a

 decomposition of ft follows easily. □

 COROLLARY. For any nonzero Baire (Borei) measure ft on X, ft is

 regular if and only if ft is purely discontinuous.

 LEMMA 3. Every continuous, finite Borei measure ft on X is

 semi -regular.

 PROOF. By a minor modification of the proof of [1, Lemma 3, p 197]

 we get ft - pi where 0 < p < ®. By Lemma 2 the measure ft is

 semi -regular. □

 The next theorem follows from Theorem 2 , together with Lemma 3 .
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 THEOREM 3. Every finite Borei measure on X is semi -regular.

 Since the Borei measure S is an extension of the Baire measure

 7, the following extension theorem follows from Theorems 1 and 2.

 THEOREM 4. Every Baire measure on X is uniquely extended to a

 semi -regular Borei measure on X.

 We close this section with two examples of non semi -regular infinite

 Borei measures.

 EXAMPLES

 1. For each A € $(X), let r(A) - 0 if A is countable and

 r(A) - ® if A is uncountable. Plainly r is a continuous, infinite

 Borei measure which is outer regular at each uncountable Borei set. It is

 easy to show that r is regular at each countable Borei set. Let Y be

 the set of all limit ordinals. in X, and let Z be the set of all

 nonlimit ordinals in X. Then Y is an uncountable closed set and Z is

 an uncountable open set. Since Z does not contain any unbounded closed

 subset of X and since r(Z) - <*>, r is not inner semi -regular at Z.

 Therefore r is outer regular but not inner semi -regular. Note that r

 is a Borei extension of the Baire measure ® -y.

 2. Notation is as in Example 1. Let be the Borei measure on X

 defined by /i(A) - í(A n Y) + r(A n Z). Then is a continuous Borei

 measure such that /i(Y) - 1 and /i(Z) - «. For any open set G such

 that Y C G, the set X-G is compact and the set G n Z is unbounded

 open so that /¿(G) - ®. Consequently is not outer regular at Y.

 Plainly is not inner semi -regular at Z. Therefore /i is neither

 outer regular nor inner semi -regular.
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 3. Baire Measures on X

 Let 7 be the Baire measure 011 X defined by 7(A) - 0 if A e Ä

 and 7(A) - 1 if A e Äc. For each p e [0,®), let (p7)(A) - P7(A) for

 A e Sq(X). We show readily that each p7 is a regular Baire measure on
 X.

 THEOREM 5. Every Baire measure /1 on X is regular and can be

 expressed in exactly one way in the form

 ft - v + p7 ,

 where v is a Baire measure concentrated on a countable subset of X and

 0 < p < «0.

 PROOF. Let Y - (X e X: fi(íx)) >0} and Z - X - Y. Since {0} is

 not a Baire subset of X, we get Y - D(¿0 e Ä, Z e Äc, and

 Z - {x e X: /i({x}) - 0} u {0}. If a - sup Y, then

 Z - Z n [0,a] U [a+1,0] and ft( Z) - /i([a+l,il]). For each A e ®q(X), let
 i/(A) - /ł(A n Y) and A(A) - /i( A O Z). Then v is concentrated on the

 countable set Y. Plainly A (A) - 0 for all A € Ä. If A e Ä°, then

 A(A) - m(Z) . Consequently A - p7 where p - p( Z)(<«). Therefore

 p - v + p7 and, since both v and p7 are regular, n is regular. It

 is clear that such a decomposition of /1 is unique. □

 For each A c X, let cq(A) - 1 if 0 e A and cq(A) - 0 if
 O $ A.

 THEOREM 6. Every Baire measure p on X is uniquely extended to a

 regular Boarel measure a on X. Moreover, the measure a is of the

 form
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 * - V(,xn1)ex + Pen •
 n

 where . . .) is a countable subset of X, and 0 < p < <*>.

 PROOF. Let /i - i/ + p7 be the decomposition of /x as in Theorem 5.

 Then there exists a countable subset {Xj^Xj,...} of X such that

 v - Sn/i({xn))ex . It follows readily that pc^ is a regular Borei
 n

 measure on X which extends the Baire measure p7. Consequently

 a-S/i({x})c +P€- r is a regular ° Borei measure which extends u. n n x r ft °
 n

 Suppose r is any regular Borei measure on X which extends /*.

 Let Y - {X e X: /i({x}) > 0} and Z - X-Y. Define r^A) - r( A n Y) ,

 TgíA) « r (A n Z) where A G $(X). Since r({x}) - /x({x}) for all
 X G X, we get - i/. By a minor modification of an argument given in

 the proof of Theorem 2, we show that r ^ is outer regular. Let G be

 any open subet of X such that 0 G G. By definition G - X-K, where K

 is a compact subset of X. It follows that r(K n Z) - /*( K n Z) - 0 so

 that ^(G) « ~ P» where p - /¿(Z) . Since is outer regular, we

 get ^({O}) - p so that r ^ Therefore a-r. □
 For each A G ®(X) , let £(A) - 1 or 0, depending on whether A or

 X-A contains an unbounded closed subset of X. Then 6 is a Borei

 measure on X which is not outer regular at ft (see [3, p. 231]).

 Plainly 5 extends the Baire measure 7. Consequently every Baire

 measure p on X can be extended to a Borei measure u of the form

 S /i({x } ) c + pí r , n n X r
 n

 where {x^xg, . . . } is a countable subset of X, and 0 < p < ®. Note
 that 1/ is not regular if p > 0. It is known [1, Theorem, p. 197] that

 every Borei measure /i on X is of the form
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 V + pi ,

 where v is a Borei measure concentrated on a countable subset of X, and

 0 ^ p < «0.
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