C.W. Kim, Department of Mathematics and Statistiscs Simon Fraser University, Burnaby, B.C., Canada V5A 1S6

BAIRE MEASURES ON $[0,\Omega)$ AND $[0,\Omega]$

1. Baire and Borel Sets

Let X be the set of all ordinals less than the first uncountable ordinal Ω , and let \bar{X} be $X \cup \{\Omega\}$, each with the order topology. Then X is a locally compact, noncompact, nonmetrizable, first countable T_4 -space, and \bar{X} is a compact, nonmetrizable Hausdorff space. Moreover, \bar{X} is the one-point compactification of X and is not first countable at Ω . (See [2], [4].)

Let Y be either X or \bar{X} , and let $\mathbf{S}(Y)$ be the σ -algebra of Borel sets in Y, that is, the σ -algebra generated in Y by the open subsets of Y. Let C(Y) be the system of continuous real-valued functions defined on Y, and let $C_{C}(Y)$ be the system of $f \in C(Y)$ with compact support. Let $\mathbf{S}_{0}(Y)$ be the σ -algebra generated in Y by C(Y), called the σ -algebra of Baire sets in Y.

It follows from [3, Problem 10, p. 231], together with [1, Lemma 1, p 195], that

 $\mathfrak{Z}(X) = \{A \subset X : A \text{ or } X-A \text{ contains an unbounded closed subset of } X\},$

 $\mathfrak{B}(\bar{X})$ = {A $\subset \bar{X}$: A or \bar{X} -A contains an unbounded closed subset of X}.

Let \P, \P_0 denote respectively the system of open and open \mathbb{F}_{σ} subsets of X, and let $\bar{\P}, \bar{\P}_0$ denote respectively the system of open and open \mathbb{F}_{σ} subsets of $\bar{\mathbb{X}}$. Let $\P_0, \bar{\P}_0$ be the system of closed \mathbb{G}_{δ} subsets of X and $\bar{\mathbb{X}}$, respectively. It is easy to see that $\P_0(\bar{\mathbb{X}})$ and $\P_0(\bar{\mathbb{X}})$

coincide with the σ -algebras generated by \mathfrak{T}_0 and $\bar{\mathfrak{T}}_0$, respectively. Let \mathfrak{R} denote the system of all countable subsets of X, \mathfrak{R}' = {X-A: A $\in \mathfrak{R}$ }, and $\mathfrak{R}^{\mathbb{C}}$ = { \bar{X} -A: A $\in \mathfrak{R}$ }. It is straightforward to show that

$$\mathbf{S}_0(\mathbf{X}) - \mathbf{R} \cup \mathbf{R}', \quad \mathbf{S}_0(\bar{\mathbf{X}}) - \mathbf{R} \cup \mathbf{R}^c, \quad \mathbf{S}_0(\mathbf{X}) \subseteq \mathbf{S}(\mathbf{X}), \quad \mathbf{S}_0(\bar{\mathbf{X}}) \subseteq \mathbf{S}(\bar{\mathbf{X}})$$
 and that
$$\mathbf{T}_0 - \mathbf{T} \cap \mathbf{S}_0(\mathbf{X}), \quad \bar{\mathbf{T}}_0 - \bar{\mathbf{T}} \cap \mathbf{S}_0(\bar{\mathbf{X}}).$$

If K denotes the system of compact subsets of X, then $K \subset \mathbb{R}$ and $K \subset \mathbb{F}_0 \cap \bar{\mathbb{F}}_0$. Note that $\mathbb{F}_0(X)$ coincides with the σ -algebra generated by K or, equivalently, $C_c(X)$.

2. Baire and Borel Measures on X

Let Y be either X or \bar{X} , let A be a σ -algebra of subsets of Y such that $B_0(Y) \subset A$, and let μ be a measure defined on A. The measure μ is said to be outer regular or inner regular or inner semi-regular at $A \in A$, depending on whether

$$\mu(A) = \inf{\{\mu(G) : A \subset G, G \text{ open, } G \in A\}}$$

or

$$\mu(A) = \sup\{\mu(C): C \subset A, C \text{ compact}, C \in A\}$$

or

$$\mu(A) = \sup\{\mu(F): F \subset A, F \text{ closed}, F \in A\}.$$

The measure μ is said to be regular or semi-regular at $A \in \mathcal{A}$ if it is inner and outer regular or inner semi-regular and outer regular at A. We say that μ is inner regular (outer regular, regular, semi-regular) if it is inner regular (outer regular, semi-regular) at every set in \mathcal{A} . A Baire (Borel) measure μ on Y is any measure on $\mathcal{B}_0(Y)$ [$\mathcal{B}(Y)$] such that $\mu(C) < \infty$ for every compact subset C of Y. For any Baire (Borel) measure μ on X, since $\mu(X) < \infty$, the notions of outer regularity,

regularity and semi-regularity for μ coincide. Define

$$D(\mu) = \{x \in Y: \mu(\{x\}) > 0\}, C(\mu) = \{x \in Y: \mu(\{x\}) = 0\}$$
.

LEMMA 1. Let ${\mathfrak A}$ be a σ -algebra of subsets of X such that ${\mathfrak B}_0({\mathsf X})\subset {\mathfrak A}$, and let μ be a measure on ${\mathfrak A}$. Then the following assertions are equivalent:

- (i) $\mu(K) < \infty$ for every compact subset K of X.
- (ii) $\mu(A) < \infty$ for every countable subset A of X.
- (iii) The set $D(\mu)$ is countable and $\mu(D(\mu)) < \infty$.

PROOF. (i) \Rightarrow (ii): Suppose (i) holds. For any $A \in \Re$, let $a = \sup A$. Since the interval [0,a] is compact and contains A, we get $\mu(A) < \infty$. Therefore (ii) holds.

(iii) \Rightarrow (iii): Suppose that (ii) holds and that $D(\mu) \neq \phi$. To prove (iii), it is enough to show that for each $n=1,2,\ldots$, the set $E_n = \{x: \mu(\{x\}) \geq 1/n\}$ is finite. Suppose E_n is an infinite set for some n. Let A be a countably infinite subset of E_n . Then $\mu(A) = \infty$. On the other hand, we have from (ii) that $\mu(A) < \infty$, a contradiction.

(iii) \Rightarrow (i): Suppose (iii) holds. For any compact subset K of X we get $\mu(K) = \mu(K \cap D(\mu)) < \infty$. Therefore (i) holds. \square

Let μ be any Baire (Borel) measure on X. By Lemma 1 we get $D(\mu) \in \Re$ and $C(\mu) = X - D(\mu) \in \Re'$. The measure μ is called purely discontinuous if $\mu(X) = \mu(D(\mu)) > 0$ and continuous if $\mu(\{x\}) = 0$ for all $x \in X$. For each $x \in X$, let ϵ_X be the measure defined on the power set of X such that $\epsilon_X(A) = 1$ if $x \in A$ and $\epsilon_X(A) = 0$ if $x \notin A$. Let ν be the Baire (Borel) measure defined by $\nu(A) = \mu(A \cap D(\mu))$. If $D(\mu)$ is void, then $\nu=0$, the zero measure. Otherwise ν is a purely

discontinuous measure of the form $\sum_{n}\mu(\{x_{n}\})\epsilon_{x_{n}}$, where $\{x_{1},x_{2},\ldots\}$ is an enumeration of $D(\mu)$ such that $x_{i}\neq x_{j}$ if $i\neq j$.

Let γ be the continuous Baire measure defined by $\gamma(A) = 0$ if $A \in \mathcal{R}$ and $\gamma(A) = 1$ if $A \in \mathcal{R}'$. For each $p \in [0,\infty]$, define the continuous Baire measure $p\gamma$ on X by setting $(p\gamma)(A) = p\gamma(A)$. We adopt the convention that $\infty \cdot 0 = 0$.

THEOREM 1. Every Baire measure μ on X is semi-regular and can be expressed in exactly one way in the form

$$\mu = \nu + p\gamma$$
,

where ν is either 0 or a purely discontinuous Baire measure and $0 \le p \le \infty$.

PROOF. For each $A \in \mathcal{B}_0(X)$ let $\nu(A) = \mu(A \cap D(\mu))$ and $\lambda(A) = \mu(A \cap C(\mu))$. Then ν is either 0 or a purely discontinuous Baire measure, and λ is a continuous Baire measure. Since $\lambda(A) = 0$ for $A \in \mathcal{R}$ and $\lambda(A) = \mu(C(\mu))$ for $A \in \mathcal{R}'$, we get $\lambda = p\gamma$, where $p = \mu(C(\mu))$. Consequently $\mu = \nu + p\gamma$. It is obvious that such a decomposition of μ is unique.

Plainly ν is regular. To prove μ is semi-regular, it is enough to show that λ is semi-regular. Suppose p>0. We show readily that λ is semi-regular but not inner regular at every $A\in\Re'$. Suppose $A\in\Re$ and $A=\sup A$. Since $\lambda(A)=0$, λ is inner regular at A. Since [0,a] is an open set such that $A\subset[0,a]$ and $\lambda([0,a])=0$, λ is outer regular at A. Consequently λ is regular at every $A\in\Re$ and hence λ is semi-regular. \square

For each $A \in \mathcal{B}(X)$, let $\delta(A) = 1$ or 0, depending on whether A or

X-A contains an unbounded closed subset of X. It follows that δ is a Borel measure on X. For each $p \in [0,\infty]$, let $p\delta$ be the Borel measure on X defined by $(p\delta)(A) = p\delta(A)$.

LEMMA 2. Let μ be a measure on $\mathfrak{F}(X)$. Then μ is continuous and semi-regular if and only if $\mu = p\delta$ for some $p \in [0,\infty]$.

PROOF. Let $p \in [0,\infty]$. It is straightforward to show that $p\delta$ is a continuous Borel measure which is semi-regular at every $A \in \mathcal{B}(X)$ with $\delta(A) = 1$ and is regular at every $A \in \mathcal{B}(X)$ with $\delta(A) = 0$.

Suppose μ is continuous and semi-regular. Plainly μ is a Borel measure. Let C be any unbounded closed subset of X. For every open set G with $C \subset G$, X-G is compact so that $\mu(X-G) = 0$ and $\mu(G) = \mu(X)$. Let $p = \mu(X)$. Since μ is outer regular, we get $\mu(C) = p$. Since $\mu(K) = 0$ for every compact (bounded closed) set K, we get $\mu(F) = p\delta(F)$ for every closed subset F of X. Since both μ and $p\delta$ are inner semi-regular, we get $\mu(A) = p\delta(A)$ for all $A \in \mathcal{B}(X)$.

THEOREM 2. Every semi-regular Borel measure μ on X can be expressed in exactly one way in the form

$$\mu = \nu + p\delta$$
,

where ν is either 0 or a purely discontinuous Borel measure, and $0 \le p \le \infty$.

PROOF. Define the Borel measures ν and λ on X by setting $\nu(A) = \mu(A \cap D(\mu))$ and $\lambda(A) = \mu(A \cap C(\mu))$. Then ν is either 0 or purely discontinuous, and λ is continuous. To prove λ is semi-regular, let A be any Borel set and $a = \sup D(\mu)$. It follows that

 $C(\mu) = C(\mu) \cap [0,a] \cup [a+1,\Omega)$ and $\lambda(A) = \mu(A \cap [a+1,\Omega))$. If $\lambda(A) = \infty$, then λ is outer regular at A. Suppose $\lambda(A) < \infty$. Since μ is outer regular, there is, for any $\epsilon > 0$, an open set U such that

 $A \cap [a+1,\Omega) \subset U \subset [a+1,\Omega), \quad \mu(U) < \lambda(A) + \epsilon$.

If we define $G = [0,a] \cup U$, then G is open, $A \subset G$, and

$$\lambda(G) = \mu(U) < \lambda(A) + \epsilon$$
.

Consequently λ is outer regular at A. To prove λ is inner semi-regular at A, suppose $\lambda(A)>0$. Since μ is inner semi-regular, there is, for any $t<\lambda(A)$, a closed subset F of X such that

 $F \subset A \cap [a+1,\Omega], t < \mu(F) = \lambda(F).$

Let C be the closed set defined by C=F if $A \subset [a+1,\Omega)$ and $C = \{x\} \cup F$ if $A \cap [0,a] \neq \phi$, where $x \in A \cap [0,a]$. Then we have $C \subset A$ and $\lambda(C) = \lambda(F) > t$ so that λ is inner semi-regular at A. Consequently λ is semi-regular and hence by Lemma 2, $\lambda = p\delta$ where $p = \lambda(X)$. Therefore $\mu = \nu + p\delta$ and the uniqueness of such a decomposition of μ follows easily. \square

COROLLARY. For any nonzero Baire (Borel) measure μ on X, μ is regular if and only if μ is purely discontinuous.

LEMMA 3. Every continuous, finite Borel measure μ on X is semi-regular.

PROOF. By a minor modification of the proof of [1, Lemma 3, p 197] we get $\mu = p\delta$ where $0 \le p < \infty$. By Lemma 2 the measure μ is semi-regular. \square

The next theorem follows from Theorem 2, together with Lemma 3.

THEOREM 3. Every finite Borel measure on X is semi-regular.

Since the Borel measure δ is an extension of the Baire measure γ , the following extension theorem follows from Theorems 1 and 2.

THEOREM 4. Every Baire measure on X is uniquely extended to a semi-regular Borel measure on X.

We close this section with two examples of non semi-regular infinite Borel measures.

EXAMPLES

- 1. For each $A \in \mathcal{B}(X)$, let $\tau(A) = 0$ if A is countable and $\tau(A) = \infty$ if A is uncountable. Plainly τ is a continuous, infinite Borel measure which is outer regular at each uncountable Borel set. It is easy to show that τ is regular at each countable Borel set. Let Y be the set of all limit ordinals in X, and let Z be the set of all nonlimit ordinals in X. Then Y is an uncountable closed set and Z is an uncountable open set. Since Z does not contain any unbounded closed subset of X and since $\tau(Z) = \infty$, τ is not inner semi-regular at Z. Therefore τ is outer regular but not inner semi-regular. Note that τ is a Borel extension of the Baire measure $\infty \gamma$.
- 2. Notation is as in Example 1. Let μ be the Borel measure on X defined by $\mu(A) = \delta(A \cap Y) + \tau(A \cap Z)$. Then μ is a continuous Borel measure such that $\mu(Y) = 1$ and $\mu(Z) = \infty$. For any open set G such that $Y \subset G$, the set X-G is compact and the set $G \cap Z$ is unbounded open so that $\mu(G) = \infty$. Consequently μ is not outer regular at Y. Plainly μ is not inner semi-regular at Z. Therefore μ is neither outer regular nor inner semi-regular.

3. Baire Measures on \bar{X}

Let $\bar{\gamma}$ be the Baire measure on \bar{X} defined by $\bar{\gamma}(A) = 0$ if $A \in \Re$ and $\bar{\gamma}(A) = 1$ if $A \in \Re^{C}$. For each $p \in [0,\infty)$, let $(p\bar{\gamma})(A) = p\bar{\gamma}(A)$ for $A \in \Re_{0}(\bar{X})$. We show readily that each $p\bar{\gamma}$ is a regular Baire measure on \bar{X} .

THEOREM 5. Every Baire measure μ on \bar{X} is regular and can be expressed in exactly one way in the form

$$\mu = \nu + p\bar{\gamma} ,$$

where ν is a Baire measure concentrated on a countable subset of X and $0 \le p < \infty$.

PROOF. Let $Y = \{x \in X : \mu(\{x\}) > 0\}$ and $Z = \bar{X} - Y$. Since $\{\Omega\}$ is not a Baire subset of \bar{X} , we get $Y = D(\mu) \in \Re$, $Z \in \Re^C$, and $Z = \{x \in X : \mu(\{x\}) = 0\} \cup \{\Omega\}$. If $a = \sup Y$, then $Z = Z \cap [0,a] \cup [a+1,\Omega]$ and $\mu(Z) = \mu([a+1,\Omega])$. For each $A \in \Re_0(\bar{X})$, let $\nu(A) = \mu(A \cap Y)$ and $\lambda(A) = \mu(A \cap Z)$. Then ν is concentrated on the countable set Y. Plainly $\lambda(A) = 0$ for all $A \in \Re$. If $A \in \Re^C$, then $\lambda(A) = \mu(Z)$. Consequently $\lambda = p\bar{\gamma}$ where $p = \mu(Z)(<\infty)$. Therefore $\mu = \nu + p\bar{\gamma}$ and, since both ν and $p\bar{\gamma}$ are regular, μ is regular. It is clear that such a decomposition of μ is unique. \square

For each $A \subset \bar{X}$, let $\epsilon_{\Omega}(A) = 1$ if $\Omega \in A$ and $\epsilon_{\Omega}(A) = 0$ if $\Omega \notin A$.

THEOREM 6. Every Baire measure μ on \bar{X} is uniquely extended to a regular Boarel measure σ on \bar{X} . Moreover, the measure σ is of the form

$$\sigma = \sum_{n} \mu(\{x_n\}) \epsilon_{x_n} + p \epsilon_{\Omega} ,$$

where $\{x_1, x_2, ...\}$ is a countable subset of X, and $0 \le p < \infty$.

PROOF. Let $\mu=\nu+p\bar{\gamma}$ be the decomposition of μ as in Theorem 5. Then there exists a countable subset $\{x_1,x_2,\ldots\}$ of X such that $\nu=\Sigma_n\mu(\{x_n\})\epsilon_{X_n}$. It follows readily that $p\epsilon_\Omega$ is a regular Borel measure on \bar{X} which extends the Baire measure $p\bar{\gamma}$. Consequently $\sigma=\Sigma_n\mu(\{x_n\})\epsilon_{X_n}+p\epsilon_\Omega$ is a regular Borel measure which extends μ .

Suppose τ is any regular Borel measure on \bar{X} which extends μ . Let $Y=\{x\in X:\ \mu(\{x\})>0\}$ and $Z=\bar{X}-Y$. Define $\tau_1(A)=\tau(A\cap Y)$, $\tau_2(A)=\tau(A\cap Z)$ where $A\in \mathcal{B}(\bar{X})$. Since $\tau(\{x\})=\mu(\{x\})$ for all $x\in X$, we get $\tau_1=\nu$. By a minor modification of an argument given in the proof of Theorem 2, we show that τ_2 is outer regular. Let G be any open subet of \bar{X} such that $\Omega\in G$. By definition $G=\bar{X}-K$, where K is a compact subset of X. It follows that $\tau(K\cap Z)=\mu(K\cap Z)=0$ so that $\tau_2(G)=\tau_2(\bar{X})=p$, where $p=\mu(Z)$. Since τ_2 is outer regular, we get $\tau_2(\{\Omega\})=p$ so that $\tau_2=p\epsilon_\Omega$. Therefore $\sigma=\tau$. \square

For each $A \in \mathcal{B}(\bar{X})$, let $\bar{\delta}(A) = 1$ or 0, depending on whether A or \bar{X} -A contains an unbounded closed subset of X. Then $\bar{\delta}$ is a Borel measure on \bar{X} which is not outer regular at Ω (see [3, p. 231]). Plainly $\bar{\delta}$ extends the Baire measure $\bar{\gamma}$. Consequently every Baire measure μ on \bar{X} can be extended to a Borel measure ν of the form

$$\sum_{n} \mu(\{x_n\}) \epsilon_{x_n} + p\bar{\delta}$$
,

where $\{x_1, x_2, \ldots\}$ is a countable subset of X, and $0 \le p < \infty$. Note that ν is not regular if p > 0. It is known [1, Theorem, p. 197] that every Borel measure μ on \bar{X} is of the form

 $\nu + p\bar{\delta}$,

where ν is a Borel measure concentrated on a countable subset of \bar{X} , and $0 \le p < \infty$.

REFERENCES

- [1] M. Bhaskara Rao and K.P.S. Bhaskara Rao, Borel σ -algebra on $[0,\Omega]$, Manuscripta Math. 5, 195-198 (1971).
- [2] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960.
- [3] P.R. Halmos, Measure Theory, Van Nostrand, 1950.
- [4] J.L. Kelley, General Topology, Van Nostrand, 1955.

Received December 22 1987