Kenneth R. Kellum, Department of Mathematics and Computer Science, San José State University, San José, California 95192.

Iterates of almost continuous functions and Sarkovskii's Theorem

A function $f: X \rightarrow Y$ is almost continuous if for each open set $D \subseteq X \times Y$ such that $f \subseteq D$ there exists a continuous $g: X \rightarrow Y$ such that $g \subseteq D$. (I make no distinction between a function and its graph.) f is a connectivity function if the restriction, $\left.f\right|_{C}$, of f to C is connected whenever C is connected. In case $X=Y=\Re$, where \Re denotes the real numbers, an almost continuous function must be a connectivity function and a function is a connectivity function if and only if its graph is connected.

Professor William Transue has asked me if Sarkovskii's Theorem might hold for connectivity functions. Sarkovskii's Theorem states that if $f: \Re \rightarrow \Re$ is continuous and f has a point of prime period k, then f also has points of prime period n, where n follows k in the Sarkovskii ordering given by $3,5, \ldots, 6,10, \ldots, \ldots 4,2,1$. Since Sarkovskii's Theorem is closely related to the fixed point property, one might well guess that this is true. Our Theorem 1 shows that it is in fact false.

It is well known that almost continuous and connectivity functions are ill-behaved relative to functional composition. In [2] I proved that if J and I are n-cells then there exist almost continuous functions $f: J \rightarrow I$ and $g: I \rightarrow J$ such that $g \circ f: J \rightarrow J$ has no fixed point, and hence is not almost continuous. In case J and I are both an interval, it follows that f and g are connectivity functions while $g \circ f$ is not. Ceder [1] has recently given a similar example. Theorem 2 of the present paper is a stronger result in that it shows that the composition of an almost continuous function with itself can fail to be a connectivity function. Note that the proof of Theorem 2 does not use the Continuum Hypothesis.

Suppose $f: \Re \rightarrow \Re$ and K is a closed subset of the plane such that $f \cap K=\emptyset$ and $g \cap K \neq \emptyset$ whenever $g: \Re \rightarrow \Re$ is continuous. The set K is called a blocking set of f. Clearly f is almost continuous if and only if it has no blocking set. In [3] it is proved that every blocking set of a function from \Re into \Re contains an irreducible blocking set and that the X-projection of an irreducible blocking set is non-degenerate and connected. Since a blocking set must intersect each constant function, its Y - projection must be \Re. Thus, if $f: \Re \rightarrow \Re$ intersects each closed set in the plane both of whose projections have the cardinality of \Re, then f is almost continuous.

THEOREM 1. There exists an almost continuous function $f: \Re \rightarrow \Re$ which has a point of prime period 3 but for each x, either $x=f(x), f$ is of prime period 3 at x, or $x \neq f^{n}(x)$ for all $n>1$.

Proof: First let $f(0)=1, f(1)=2$ and $f(2)=0$. Also for each integer $n>2$, let $f(n)=n+1$. We will complete the definition of f by transfinite induction.

Let K be the set of all closed subsets K of the plane such that both the X projection and the Y-projection of K have the cardinality, c, of the real line. We will construct f in such a way that $f \cap K \neq \emptyset$ for each $K \in \mathcal{K}$.

By indexing K with the cardinal c, we can well-order
\mathcal{K} as $K_{1}, K_{2}, \ldots, K_{\alpha}, \ldots$ so that each
K_{α} is preceded by fewer than c-many members of \mathcal{K}. Assume that for some $\alpha<c$ we have defined $f(x)$ for $\max \left\{\aleph_{0}, \alpha\right\}$-many points in such a way that:
a. If $f(x)$ has been defined, then $f^{n}(x)$ has been defined for all $n=2,3, \ldots$ so that either $x=f(x), x=f^{3}(x)$ and $x \neq f^{2}(x)$, or $x \neq f^{n}(x)$ for all $n>1$.
b. For each $\beta<\alpha, f$ has been defined at a point x_{β} so that $\left(x_{\beta}, f\left(x_{\beta}\right)\right) \in K_{\beta}$.

Let D_{α} be the set of x for which $f(x)$ has been defined so far. We wish to place a point ($x_{\alpha}, f\left(x_{\alpha}\right)$) in K_{α}. We have two cases:

Case 1. Suppose that we can choose a point $\left(x_{\alpha}, y_{\alpha}\right) \in K_{\alpha}$ such that neither x_{α} nor y_{α} is in D_{α}. Let $f\left(x_{\alpha}\right)=y_{\alpha}$ and, unless $x_{\alpha}=y_{\alpha}$, let $f\left(y_{\alpha}\right)=3$.

Case 2. If the point $\left(x_{\alpha}, y_{\alpha}\right)$ cannot be chosen as in Case 1, it follows that for some y_{α} in D_{α}, K_{α} contains more than α-many points of the form $\left(x, y_{\alpha}\right)$. Let $\left(x_{\alpha}, y_{\alpha}\right)$ be such a point where $x_{\alpha} \notin D_{\alpha}$ and let $f\left(x_{\alpha}\right)=y_{\alpha}$.

Finally, if for any $x, f(x)$ has not been defined by the above induction, let $f(x)=x$.

If $f: \Re \rightarrow \Re$ is almost continuous, then we know that f^{2} must be a Darboux function and f^{2} cannot be separated by the diagonal. Theorem 2 shows that f^{2} can be separated by a non-horizontal line.

THEOREM 2. There exists an almost continuous function $f: \Re \rightarrow \Re$ such that f^{2} is separated by the line $y=x+1$.

PROOF: The proof is quite similar to that of Theorem 1 . Let \mathcal{K} be defined as above, indexed by c. Assume that for some $\alpha<c$ we have defined $f(x)$ for $\max \left\{\aleph_{0}, \alpha\right\}$ many points in such a way that:
a. If $f(x)$ has been defined, then $f^{2}(x)$ has been defined so that $f^{2}(x) \neq x+1$.
b. For each $\beta<\alpha, f$ has been defined at a point x_{β} so that $\left(x_{\beta}, f\left(x_{\beta}\right)\right) \in K_{\beta}$.

Let D_{α} be the set of x for which $f(x)$ has been defined so far. Again, we wish to place a point $\left(x_{\alpha}, f\left(x_{\alpha}\right)\right)$ in K_{α}. We again have two cases:

Case 1. Suppose that we can choose a point $\left(x_{\alpha}, y_{\alpha}\right) \in K_{\alpha}$ such that neither x_{α} nor y_{α} is in D_{α}. Let $f\left(x_{\alpha}\right)=y_{\alpha}$ and, unless $x_{\alpha}=y_{\alpha}$, let $f\left(y_{\alpha}\right)=x_{\alpha}$.

Case 2. If the point (x_{α}, y_{α}) cannot be chosen as in Case 1, it follows that for some y_{α} in D_{α}, K_{α} contains more than α-many points of the form $\left(x, y_{\alpha}\right)$. Let $\left(x_{\alpha}, y_{\alpha}\right)$ be such a point where $x_{\alpha} \notin D_{\alpha}$ and $x_{\alpha} \neq f\left(y_{\alpha}\right)+1$. Let $f\left(x_{\alpha}\right)=y_{\alpha}$.

If for any $x, f(x)$ has not been defined by the above induction, let $f(x)=x$.

By the construction of $f, f^{-1}(y)$ is dense in \Re for each y, from which it follows that f^{2} is a dense subset of the plane. Thus f^{2} is separated by $y=x+1$.

Questions

1. Is every Darboux function $\Re \rightarrow \Re$ the composition of two almost continuous functions?
2. Does Sarkovskii's Theorem hold for Darboux functions of Baire Class 1?

References

1. J. Ceder, On compositions with connected functions, Real Analysis Exchange 11, No. 2 (1985-86), 380-389.
2. K. R. Kellum, Almost continuous functions on I^{n}, Fund. Math. 79 (1973), 213-215.
3. K. R. Kellum, Sum and limits of almost continuous functions., Colloq. Math. 31 (1974), 125-128.

Recsived October 25, 1988

