R. Menkyna, Technical University of Liptovský Mikuláš, Cédrová 490. 031 01 Liptovský Mikuláš, Czechoslovakia.

CLASSIFYING THE SET WHERE A BAIRE 1 FUNCTION IS APPROXIMATELY CONTINUOUS

The aim of this paper is to give full characterization of the set of points at which a Baire 1 function f:(a,b)—R is approximately continuous. We show that this characterization coincides with the characterization of the set of points at which a derivative is approximately continuous, which is the problem mentioned in monograph [2].

Throughout this paper \mathcal{B}_1 is the family of all Baire 1 functions, \triangle the family of all derivatives and \mathbb{C} the family of all continuous functions. The set \mathbb{A}_f is the set of points at which the function f is not approximately continuous and $\lambda(E)$ the Lebesque measure of the set E.

We first need the concept of density of a set at a point. Let A be a measurable subset of R and let $x_0 \in R$. The number

$$\overline{d}(x_0, A) = \lim_{h \to 0} \sup \frac{1}{2h} \lambda(A \cap [x_0 - h, x_0 + h])$$

is called the upper density of A at x_0 . The lower density $\underline{d}(x_0, A)$ is defined analogously. If $\overline{d}(x_0, A) = \underline{d}(x_0, A)$, we call this number the density of A at x_0 and denote it by $d(x_0, A)$.

It is easy to verify that the following lemmas hold.

Lemma 1. Let $\{I_n\}_{n=1}^{\infty}$ be a sequence of intervals such that $\lambda(I_n) \rightarrow 0$ and $x_0 \in \overline{I}_n$ for every $n=1,2,\ldots$. If for a measurable set B $\lambda(B \cap I_n) > \frac{1}{m} \lambda(I_n)$ for every n, then $\overline{d}(x_0,B) \ge \frac{1}{2m}$.

Lemma 2. Let $U = \bigcup_{n=1}^{\infty} I_n$, where I_n are open intervals,

 $\lambda(U) < +\infty$ and B be a measurable set. If $\lambda(B \cap I_n) > \frac{1}{m} \lambda(I_n)$ for every n, then $\lambda(B \cap U) \ge \frac{1}{2m} \lambda(U)$.

Lemma 3. Let $\{I_n\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint intervals such that $x_0 \notin \bigcup_{n=1}^{\infty} \overline{I}_n$ and $\overline{d}(x_0, \bigcup_{n=1}^{\infty} I_n) > 0$. If for a measurable set B $\lambda(B \cap I_n) > \frac{1}{m} \lambda(I_n)$ for every $n = 1, 2, \ldots$, then $\overline{d}(x_0, B) > 0$.

Definition 1 ([2]). A function $f:(a,b) \to \mathbb{R}$ is said to be approximately continuous at an $x \in (a,b)$ if for each given $\mathcal{E} > 0$ the set $A(x,\mathcal{E}) = \{t,|f(t) - f(x)| < \mathcal{E}\}$ has the density 1 at x; that is $\underline{d}(x,A(x,\mathcal{E})) = \overline{d}(x,A(x,\mathcal{E})) = 1$.

We give Corollary 3.11 ([3]) as our Theorem 1.

Theorem 1. If a function $f \in \mathcal{B}_1$ and $\lambda(E) = 0$, then there exists an approximately continuous function g such that f(x) = g(x) for every $x \in E$.

Because any Baire 1 function is approximately continuous almost everywhere ([2], page 19), without loss of generality we may assume that

(1)
$$f(x) = 0$$
 for every $x \in A_{\rho}$.

Theorem 2. If the function $f \in \mathcal{B}_1$, then the set A_f is of type $G_{\delta G}$.

Proof. Let $A_{n,k,l}$ be the set of all $x_o \in (a,b)$ for which there exist an open interval $I^n(x_o)$ such that

(2)
$$\lambda(\{x \in I^n(x_0), |f(x)| \ge \frac{1}{k}\}) > \frac{1}{k}\lambda(I^n(x_0))$$
,

 $x_0 \in I^n(x_0)$ and $\lambda(I^n(x_0)) < \frac{1}{n}$. We denote $N_f = \{x, f(x) = 0\}$.

Using (1), (2) and Lemma 1 we obtain $A_f = \bigcup_{k=1}^{\infty} \bigcup_{k=1}^{\infty} (N_f \cap \bigcap_{n=1}^{\infty} A_n, k, 1)$ and moreover,

(3)
$$\overline{d}(x_0, \{x, |f(x)| \ge \frac{1}{k}\}) \ge \frac{1}{21}$$
 for every $x_0 \in \mathbb{N}_f \cap \bigcap_{n=1}^{\infty} \mathbb{A}_{n, k, 1}$.

Because $\bigcap_{n=1}^{\infty} A_{n,k,1} = \bigcap_{n=1}^{\infty} \bigcup \{I^{n}(x), x \in \bigcap_{n=1}^{\infty} A_{n,k,1}\}$ and the set N_{f} ([2], page 1) are sets of type G_{δ} , the set A_{f} is of type G_{δ} .

In the following part we shall deal with some properties of the set $\mathbb{A}_{\mathbf{f}^{\bullet}}$

Definition 2 ([1]). A function f is a member of the family [C] if and only if there are functions $g_i \in C$, i=1,2,..., and closed sets K_i such that $\bigcup_{i=1}^{\infty} K_i = R$ and $f(x) = g_i(x)$ for every $x \in K_i$.

The paper [1] contains Theorem 3 below.

Theorem 3. Let $f \in \mathcal{B}_1$. Then there are $f_n \in [C]$, $n=1,2,\ldots$, such that $f_n \to f$ uniformly.

For a given $f \in \mathcal{B}_1$ and for every $k=1,2,\ldots$ we choose a function $g_k \in [C]$ such that $|f(x) - g_k(x)| < \frac{1}{4k}$ for every x. Let K_i^k , $i=1,2,\ldots$, be closed sets, $\sum_{i=1}^{\infty} K_i^k = (a,b)$ and g_{k/K_i^k} is the continuous function. We set $A_{k,1}^i = \bigcap_{n=1}^{\infty} A_{n,k,1} \cap N_f \cap K_i^k$.

Lemma 4. Let $U \supset A_{k,1}^i$ be an open set. Then there is an open set U' such that $U \supset U' \supset A_{k,1}^i$ and for each of its component, T_s ,

(4)
$$\lambda(\mathbb{T}_{s} \cap (\sim \overline{\mathbb{A}}_{k,1}^{i})) \geq \lambda(\mathbb{T}_{s} \cap \{x, | f(x)| \geq \frac{1}{k}\}) \geq \frac{1}{21} \lambda(\mathbb{T}_{s}).$$

Proof. The function g_k is continuous on the set $\overline{A}_{k,1}^i \subset K_i^k$ and $|f(x) - g_k(x)| < \frac{1}{4k}$ for every $x \in K_i^k$. Because f is 0 at all $x \in A_{k,1}^i$, the function g_k is bounded by the constant $\frac{1}{4k}$ on the set $\overline{A}_{k,1}^i$. Hence

 $|f(x)| \leq |f(x) - g_k(x)| + |g_k(x)| < \frac{1}{2k} \text{ for every } x \in \overline{A}_{k,1}^i.$ From the definition of the set $A_{k,1}^i$ it is evident that for every $x \in A_{k,1}^i$ we may choose an open interval I(x) CU such that $\lambda(\left\{t \in I(x), |f(t)| \geq \frac{1}{k}\right\}) > \frac{1}{l} \lambda(I(x)). \text{ Let } U^* = \bigcup \left\{I(x), x \in A_{k,1}^i\right\}.$ If T_s is a component of the set U^* , then according to Lemma 2 $\lambda(\left\{t \in T_s, |f(t)| \geq \frac{1}{k}\right\}) \geq \frac{1}{2l} \lambda(T_s). \text{ Since by (5)}$

 $\{t \in T_s, |f(t)| \ge \frac{1}{k} \} \subset T_s \cap (\sim \overline{A}_{k-1}^i), \text{ we have (4).}$

The set $A_{k,1}^{i}$ is of type G_{δ} and measure 0; that is, $A_{k,1}^{1} = \bigcap_{n=1}^{\infty} V_{n}$ where V_{n} are open sets, $\lambda(V_{n}) \rightarrow 0$. By Lemma 4, there is an open set V_1^* such that $A_{k,1}^{1} \subset V_1^* \subset V_1$ and for each of its component T_1^s (4) holds. In every set $T_1^s \cap (\sim \overline{A}_{k-1}^i)$ choose a finite number of closed, pairwise disjoint intervals $J_1^{s,1}$,... ., $J_1^{s,1(s,1)}$ such that $\lambda(\bigcup_{r=1}^{1(s,1)} J_1^{s,r}) \ge \frac{1}{2} \lambda(T_1^s \cap (\sim \overline{A}_{k,1}^i))$. Because the set $W_1 = V_1^s - \underbrace{\bigcup_{s=1}^{l(s,1)} J_1^{s,r}}_{l} = \underbrace{\bigcup_{s=1}^{l(s,1)} J_1^{s,r}}_{l}$ is open, by Lemma 4 there is an open set V_2^* such that $A_{k,1}^i \subset V_2^* \subset$ $V_2 \cap W_1$ and for each of its component T_2^8 (4) holds. In every set $T_2^s \cap (\sim \overline{A}_{k,1}^i)$ choose a finite number of closed, pairwise disjoint intervals $J_2^{s,1}, \ldots, J_2^{s,1(s,2)}$ such that $\lambda(\bigcup_{r=1}^{1(s,2)}J_2^{s,r}) \ge \frac{1}{2}\lambda(\mathbb{T}_2^s \cap (\sim \overline{\mathbb{A}}_{k,1}^i)) \ge \frac{1}{41}\lambda(\mathbb{T}_2^s)$. Inductively we may construct a sequence of open sets V_n^* satisfing (4), $\prod_{n=1}^{\infty} V_n^* = A_{k,1}^1$, $\lambda(V_n^*) \rightarrow 0$ and a sequence of closed, pairwise disjoint intervals $J_n^{s,r}$, n=1,2,..., s=1,2,..., r=1,2,...,1(s,n) such that $\lim_{r=1}^{l(s,n)} J_n^{s,r} \subset T_n^s - V_{n+1}^s$ and $\lambda(\lim_{r=1}^{l(s,n)} J_n^{s,r}) \ge \frac{1}{41} \lambda(T_n^s),$

where T_n^s are components of the set V_n^s .

Let \mathcal{G} be a family of sets. Define $\overline{d}^{M}(x,\mathcal{G}) = \overline{d}(x,\bigcup\{A\in\mathcal{G},\ d(x,A)=0\})$.

Further we show that the sequence of closed intervals $J_n^{s,r}$, $n=1,2,\ldots,s=1,2,\ldots,r=1,2,\ldots,l(s,n)$, constructed above satisfies the following Theorem 4.

Theorem 4. $A_f \supset \{x, \overline{d}^*(x, \{J_n^{s,r}\}) > 0\} \supset A_{k,1}^i$.

Proof. Let x_0 be a point of the set $A_{k,1}^i$. Then there is a sequence of components $T_n^{s(n)}$ of sets V_n^s such that $x_0 \in \bigcap_{n=1}^{\infty} T_n^{s(n)}$.

Because $\lambda(T_n^{s(n)}) \to 0$, by Lemma 1, (6) implies that $\overline{d}^*(x_0, \{J_n^{s,r}\}) \ge \overline{d}(x_0, \bigcup_{n=1}^{\infty} \int_{r=1}^{s(n),n} J_n^{s(n),r}) \ge \frac{1}{81}$, which proves the second inclusion.

Now let $\overline{d}^*(x_0, \{J_n^{s,r}\}) > 0$. We shall show that $x_0 \in A_f$. Since $\overline{d}(x_0, J_n^{s,r}) > 0$ for one interval $J_n^{s,r}$ at most, we may assume that $\overline{d}(x_0, \bigcup_{n=1}^{\infty} \bigcup_{s=1}^{\infty} \bigcup_{r=1}^{1} J_n^{s,r}) > 0$ and $x_0 \notin J_n^{s,r}$ for every n,s,r.

If for every n there is a component $T_n^{s(n)}$ of V_n^* such that $x_o \in \overline{T}_n^{s(n)}$, then $x_o \in \overline{A}_{k,1}^i$ and by (5) $|f(x_o)| < \frac{1}{2k}$. Since for components $T_n^{s(n)}$, $n=1,2,\ldots$, (4) holds and since $\lambda(T_n^{s(n)}) \to 0$, Lemma 1 implies $\overline{d}(x_o,\{x,|f(x)| \geq \frac{1}{k}\}) \geq \frac{1}{41}$. From above it follows that $\overline{d}(x_o,\{x,|f(x)| - f(x_o)| \geq \frac{1}{2k}\}) \geq \overline{d}(x_o,\{x,|f(x)| \geq \frac{1}{k}\}) \geq \frac{1}{41}$, e.i. $x_o \in A_f$.

In the opposite case there is n_o such that $x_o \not\in \overline{T}_{n_o}^s$ for every s. From the assumption it follows that

 $\overline{d}(x_0, \bigvee_{n=n_0}^{\infty} \bigcup_{s=1}^{\infty} \bigcup_{r=1}^{1} \bigcup_{n}^{s,r}) > 0 \text{ or } \overline{d}(x_0, \bigvee_{s=1}^{\infty} \bigcup_{r=1}^{1} \bigcup_{k_0}^{s,r}) > 0 \text{ for some } k_0 \in \{1, 2, \dots, n_0 - 1\}. \text{ Therefore } \overline{d}(x_0, \bigvee_{s=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{n=$

Corollary 1. For every set $A_{k,1}^i$ there is an open set V such that $A_f \supset \{x, \overline{d}^*(x, \{T^S\}_{S=1}^{\infty}) > 0\} \supset A_{k,1}^i$, where T^S are the components of the set V.

Proof. It is sufficient to put $V = \bigcup_{n=1}^{\infty} \bigcup_{s=1}^{\infty} \bigcup_{r=1}^{1} \inf J_n^{s,r}$. The statement of Corollary 1 is obvious, because $\overline{d}^*(x, \{J_n^{s,r}\}) = \overline{d}^*(x, \{intJ_n^{s,r}\})$.

We are now ready to state the main result of this paper.

Theorem 5. If f is a Baire 1 function, then there is a sequence of open sets V_n , $n=1,2,\ldots$, such that

(7)
$$A_{f} = \bigcup_{n=1}^{\infty} \{x, \overline{d}^{*}(x, \{T_{n}^{s}\}_{s=1}^{\infty}) > 0\},$$

where T_n^s are the components of V_n , and conversely, for every sequence of open sets V_n , n=1,2,..., there is a Baire 1 function f such that (7) holds.

Proof. Combining Corollary 1 with the fact that $A_f = \bigotimes_{k=1}^\infty \bigotimes_{l=1}^\infty \bigotimes_{i=1}^\infty A^i_{k,l} \text{ , we obtain the proof of the first part of Theorem 5.}$

Now let $\{V_n\}_{n=1}^{\infty}$ be a sequence of open sets and let T_n^s , s=1,2,..., be the sequence of components of the set V_n . For every n=1,2,... we shall define a function f_n in the following way:

$$f_{n}(x) = \begin{cases} 0, & \text{if } x \in \sim \sum_{s=1}^{\infty} (a_{n}^{s}, b_{n}^{s}) \\ \\ \sin \frac{2^{s+1} \pi (x-a_{n}^{s})}{b_{n}^{s} - a_{n}^{s}}, & \text{if } x \in (a_{n}^{s}, b_{n}^{s}), \end{cases}$$

where (a_n^S, b_n^S) is the middle open third of T_n^S . It is easy to compute that $f_n \in \Delta$ and evidently $A_{f_n} = \{x, \overline{d}^*(x, \{T_n^S\}_{s=1}^{\infty}) > 0\}$. The function $f = \sum_{n=1}^{\infty} \frac{1}{4^n} \cdot f_n$ is a derivative ([2], page 17) and therefore a Baire 1 function. Moreover $A_f = \bigcup_{n=1}^{\infty} A_{f_n} = \bigcup_{n=1}^{\infty} \{x, \overline{d}^*(x, \{T_n^S\}_{s=1}^{\infty}) > 0\}$, which completes the proof of Theorem 5.

In closing we observe that the function f of the proof of Theorem 5 is a derivative. This together with the argument $\triangle \subset \mathcal{B}_1$ yields the following result.

Corollary 2. Theorem 5 is true, if we replace the concept "a Baire 1 function" by "a derivative".

REFERENCES

- [1] AGRONSKY, S.J.-BISKNER, R.-BRUCKNER, A.M.-MAŘÍK, J.: Representations of functions by derivatives. Trans. Amer. Math. Soc. 263 (1981), 493-500.
- [2] BRUCKNER, A.M.: Differentiation of real functions. Lecture Notes in Mathematics, 659, Springer, 1978.
- [3] PREISS, D.-VILÍMOVSKÝ, J.: In-betwen theorems in uniform spaces. Trans. Amer. Math. Soc. 261 (1980), 483-501.

Received September 19, 1988