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 CLASSIFYING THE SET »«"HERE A 3AIRE 1 FUNCTION

 IS APPROXIMATELY CONTINUOUS

 The aim of this paper is to give full characterization

 of the set of points at which a Baire 1 function f:(a,b)- »R

 is approximately continuous* We show that this characterization

 coincides with the characterization of the set of points at

 which a derivative is approximately continuous, which is the

 problem mentioned in monograph [2] •

 Throughout this paper (foy is the family of all Baire 1
 functions, the family of all derivatives and C the family

 of all continuous functions* The set A^ is the set of points
 at which the function f is not approximately continuous and

 2t(E) the Lebesque measure of the set E.

 We first need the concept of density of a set at a point.

 Let A be a measurable subset of R and let xQ€R. The number

 3(xq,A) = lim sup ¿'(AH [xQ-h,x0+h])
 h-»0

 is called the upper density of A at xQ. The lower density

 d(xQ,A) is defined analogously. If 3(xQ,A) = d(xQ,A), we call
 this number the density of A at xQ and denote it by d(xQ,A)»

 It is easy to verify that the following lemmas hold.

 Lemma 1. Let b® a sequence of intervals such

 that ^(In)- »0 and xQ£ în for every n-1,2,... . If for a measu-
 rable set B ^(BO In)>^'X (In) for every n, then ď(xQ,B)

 00

 Lemma 2. Let U = Jí-il.,, where I„ are open intervals, ' n= i nF n '
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 ^(UX + OO and. B be a measurable set. If <X(3nin)>^'X(In)
 for every n, then ^(Bnu)^^Tk(U) •

 Lemma 3» Let ke a sequence of pairwise disjoint
 oo Moo

 intervals such that x0£ an<* d. CxQ, ^ f°r
 a measurable set B ^(BH In).>¿ ^or every n =
 then d(xQ,B) >0«

 Definition 1 ({2}). A function f:(a,b)-»R is said to be
 approximately continuous at an x€.(a,b) if for each given £->0

 the set A(x, £ ) = [t,|f(t) - f(x)l<£] has the density 1 at x;
 that is d(x,A(x,£)) = 3(x, A(x, £)) =1.

 We give Corollary 3*11 ([3]) as our Theorem 1,

 Theorem 1» If a function f£ and. ^(E) = 0, then there

 exists an approximately continuous function g such that

 f(x) = g(x) for every xCE.

 Because any Baire 1 function is approximately continuous

 almost everywhere ([2], page 19), without loss of generality
 we may assume that

 (1) f(x) = 0 for every x€A^.

 Theorem 2. If the function f€ (6ļt then the set Af is of
 type

 Proof. Let A„ , be the set of all x £ (a,b) for which
 Kf x O

 there exist an open interval In(x0) such that

 (2) ^({xSIn(x0), |f(x)|žj})>ļ''X(II1(l0)) ,
 xQ£In(x0) and ^CIn(*0))<^ . We denote » ļx, fix) = oļ»

 00 00 00

 Using (1), (2) and Lemma 1 we obtain (Nf^nDlAn, k, l^
 and moreover,

 (3) 5(x0,{x, |f(x)|^¿})>^Y for every xQC Nf ^ ,Qi An, ]ct 1 •
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 Because £Vn(ļ£>1 = ßlVk.J ^ the 3et Nf
 ([2], page 1) are sets of type G^, the set A^. is of type Gíí •

 In the following part we shall deal with some properties

 of the set A^.
 Definition 2 ( [1] ) • A function f is a member of the fami-

 ly [c] if and only if there are functions g,C C * i=1,2,...,
 OO

 and closed sets such that ¿ViKi 3 Ä 011(1 =
 every x €. •

 The paper fi] contains Theorem 3 below.

 Theorem 3* Let f € fö-, . Then there are fß£ [C] » n=1,2,...,
 such that uniformly.

 Por a given f€ and for every k=1,2,..# we choose a func-

 tion gke [C] such that |f(x) - for every x» Let k£,
 OO -i

 i=1,2,..., be closed sets, = (&»k) aad S^/k^ tile G0£l~
 tinuous function. We set A¿ •, i = /^A„ ,, nfMI^nK^. iCf i n=i nfK,l ,, i i

 Lemma 4. Let UDA^ ^ be an open set. Then there is an open

 set U' such that UOU' DA^ ^ and for each of its component, Ts,

 (4) >(Tsn (~Á£>1))>'X(T3n{x,if(x)te5})>¿^(V.
 • í Ir

 Proof. The function g^ is continuous on the set A^

 and |f(x) - gj^Cac) | <C for every x£K^. Because f is 0 at all

 x€a£ the function g^ is bounded by the constant ^ on the
 set Hence

 (5) lf(x)|^|f(x) - gk(x)| + |gk(x)!<¿ for every *€.1^.
 From the definition of the set a£ ^ it is evident that for every

 x€La£ ļ we may choose an open interval I(x)CU such that

 ^([t£I(x),|f(t)|á¿})>Y*(Kx)). Let U' = Uļl(x), UA^ļ.
 If T., is a component of the set U', then according to Lemma 2

 A({t€Ts, IfCt^^J^^ACTg). Since by (5)
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 ítfcTa, |f(t)|k¿}C we have (4).

 The set ^ is of type G¿ and measure 0; that is,
 Af , = where V„ are open r sets. 2'(V„)-*0. By u Lemma 4» * Kfi , n=*i n n r r#,n u *

 there is an open set V!J such that ^CV^CV-j and for each of

 its component T® (4) holds« In every set T^PiC^I^ choose
 S 1

 a finite number of closed, pairwise disjoint intervals

 #>JsfKs,1) s uc h t hat 1 ) J®»r)£ £ ^(T^O ( . Becau-
 , 1(S»D e „ o K«, l5 „ „

 se the set W1 = V» - U(^ , J®»r) e „ = U (T® o - j®»r) „ „ is

 open, by Lemma 4 there is an open set V| such that A^tx^~V2^~
 VgfiW-j and for each of its component T® (4) holds» In every
 set choose a finite number of closed, pairwise

 disjoint intervals j|,' • •», such that
 Inductively we

 may construct a sequence of open sets satisfing (4),

 jDivi 3 i , a sequence of closed, pairwise dis-
 n= i ii i Cf X n

 joint intervals J^,r» n»1,2,..», s=1,2,..., r=1,2, ...,l(s,n)
 l(s,n)

 such that J®» CT® - Vļ+1 and
 (6) »

 where T® are components of the set Y*a •

 Let !f be a family of sets. Define

 3*(x,y) = d(x,U{ACif, d(x, A) = 0}).
 Further we show that the sequence of closed intervals

 n® ss1,2| •••, r=1,2, »..»Ks, n) , c ons t rue ted above

 satisfies the following Theorem 4«

 Theorem 4. Af"}[x, 5*(x, (j®,r}) >o}3> Aj^ •

 Proof» Let xQ be a point of the set A^ ^» Then there is
 a sequence of components T®^ of sets such that
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 Because ^(T®^)-*0 , by Lemma 1, (6) implies that

 . which provee

 the second inclusion*

 Now let d*(xot {«J®* r} )">£)• We shall show that xQ€.Af» Since

 3(xo»Jn,ï)>0 for one interval J®,r at most, we may assume
 çO 1 ( S jjj

 that d(xQ, ^ J®»r)>0 and xQ£j®,r for every n,str.

 If for every n there is a component T®(n) of Vļ such that

 x0£T®^n' then and by (5) lf(*0 Since for com-
 ponents T®^n' n=1,2,..., (4) holds and since ^(T®^)-*0 ,

 Lemma 1 implies d(x0,£x, If (x)l>£1)^^* Prom above it follows

 that d(xQ, {x, |f(x) - f(x0)|>¿})^d(x0t1x, If (x)|>£])>ļjy, e. i.
 *o£Af *
 In the opposite case there is n such that x £ T® for every s*

 o

 From the assumption it follows that

 » oo l(s,n) 0 1 (s,n) _ „
 d(x • {J ^4 **-/t =1 J 0 )^0 or d(x N » s=1 J?® _ „ )^0 - -^w for ^ vj- so- o' • n=n s=1 r =1 n or N o » s=1 r=1 k - -^w ^ vj-
 0 » 0

 me k0€. {l,2, ...,n0- lļ. Therefore d(xQ, ¿-^T® )>0, xQí T® or
 mm 00 0- 0

 there is sQ such that d(xQ, "" )>0, xQ(. T® for s^sQ. In "" O o o

 both cases xq£Ä£ ^ and ļf(xQ)|<^. Applying Lemma 3 from (4)

 we obtain d(xQ, (x, Jf (x)J^^}) >0« Because

 5(x0,{x, If Cx) - f(xQ 5(x0,[x, If(x)l^^j), it follows
 that xQ£Aj which finishes the proof.

 Corollary 1 • For every set A^ ^ there is an open set V

 such that [x, ď*(x, {TS}^°aļ )> o} D A^ where Ts are the
 components of the set V.

 <*» l(s,n) _
 Proof. It is sufficient to put c V » n=i V-4. fl= M, i r»i n _ • c n=i fl= i r»i n

 The statement of Corollary 1 is obvious, because

 d*(x,{j®'rj) = d*(x, {int«T®'r}) •
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 We are now ready to state the main result of this paper*

 Theorem 5. If f is a Baire 1 function, then there is

 a sequence of open sets V^, n=1,2,***, such that

 C7) Af = r(i'í.TñCi)>o}'
 where T® are the components of Vn, and conversely,

 for every sequence of open sets Va, n»1,2,..., there is
 a Baire 1 function f such that (7) holds*

 Proof» Combining Corollary 1 with the fact that
 0° 0° 00 i

 A^ » Ak,l ' we °bta*-n ^ke P*00^ t*1® first part
 of Theorem 5*

 Now let b® a sequence of open sets and let T®, s=1,2,.*,

 be the sequence of components of the set V^* Por every n«1,2,*»*
 we shall define a function f in the following way:

 0, (°ñ»bn>

 fn<l) " I 2s+17ī(x-a') a
 sin -J

 ^ n " an

 where (aQ»b®) is the middle open third of T®. It is easy to

 compute that fn£ A and evidently A^ » ix, ^*(x,1t® )^>o}*
 >3 û

 The function f » n'fn is a derivative ([2], page 17) and
 n=1 4

 OO

 therefore a Baire 1 function* Moreover Ax. » ^ A.» =
 I 11*1 1^

 Oo M . op «

 = d [^nis=1 ^0!» wkicłl completes the proof of
 Theorem 5*

 In closing we observe that the function f of the proof

 of Theorem 5 is a derivative* This together with the argument

 AC ^ yields the following result*

 Corollary 2* Theorem 5 is true, if we replace the concept

 "a Baire 1 function" by "a derivative" *
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