Real Analysts Exchange Vol. 14 (1788-8%9)
R. Menkyna, Technicel University of Liptovsky Mikulds,

Cédrovd 490, 031 01 Liptovsky iikulds, Czechoslovekia.

CLASSIFYING THE SET WHERE A BAIRE 1 FUNCTION
IS APPROXIMATELY CONTINUOUS

The aim of this paper is to give full characterization
of the set of points at which & Baire 1 function f:(a,b)—sR
is approximately continuous. We show that this characterization
coincides with the characterization of the set of points at
which a derivative is approximately continuous, which is the
problem mentioned in monogreph [2].

Throughout this peper &1 is the family of all Baire 1
functions, 4 the family of all derivatives and C the family
of all continuous functions. The set Af is the set of points
at which the function f is not approximately continuous and
A(E) the Lebesque measure of the set E,

We first need the concept of density of a set at a point.

Let A be a measurable subset of R and let xoe.R. The number

H(xo,A) = l];‘i.mosup ?15')\(;\.!1 [xo-h,xo+h])

is called the upper density of A at x_. The lower density

o
g(xo,A) is defined analogously. If a(xo,A) = g(xb,A), we call
this number the density of A at x and denote it by d(xo,A).

It is easy to verify that the following lemmes hold,.

Lemma 1. Let {I }7_, be & sequence of intervals such
that ‘k(In)—.o and X, € in for every n=1,2,4¢¢ o« If for a measu-

1 - 1
rable set B A(BNI )>ZA(I ) for every n, then d(x_,B)>%-.

00
Lemme 2, Let U = é;QIn, where I ere open intervals,
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N(U)< +00 and B be & measurable set. If ')\(BﬂIn)>%)\(In)
for every n, then ?\(BﬂU)é-ZJE'}\(U).

Lemma 3. Let {In}w be a sequence of pairwise disjoint
intervals such that x ¢ n~1I end d(x 1In)>0' If for
a measurable set B ')\(BﬂIn)>E')\(.Ln) for every n = 1,2, c00,
then E(xo,B)>0.

Definition 1 ([2]). A function f:(a,b)—R is said to be
approximately continuous at an x € (a,b) if for each given £>0
the set a(x, &) = {t,|£(t) - £(x)|<€} has the density 1 at x;
that is d(x,A(x,€)) = A(x,A(x,E)) =

We give Corollary 3.11 ([3)) as our Theorem 1.

Theorem 1. If a function f€ 051 and A(E) = 0, then there
exists an approximately continuous function g such that

f(x) = g(x) for every x€E.

Because any Baire 1 function is approximately continuous
almost everywhere ([2], page 1%), without loss of genereality
we may assume that

(1) £(x) = O for every x€A,.

Theorem 2. If the function f€ (731, then the set Af is of
Proof. Let A ., ; be the set of all x € (ayb) for which
L o

there exist an open interval In(xo) such that
(2) A{xe1?(x,), EIREH ST AINx,))

x,€ I%(x ) end A(I™(x,))<z . Ve denote N, = {x, 2(x) - o},

( )
Using (1), (2) and Lemma 1 we obtain A, = §}J; » \J (NfﬂQ1An k,l)

and moreover,
[+

) Axge {30 IR ED 7 tor every x,€ 350 Dyay 1.
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- n
Beceause p—-—?‘in,k,l U{I (x), x€ 91 n, k, l} and the set Nf

([2], page 1) are sets of type G 5 9 the set Af is of type G“.

In the following pert we shall deal with some properties
of the set Af.

Definition 2 ([1]). A function f is a member of the fami-
ly [C] if and only if there are functions 8; eC, i= 929000y
and closed sets K; such that U K; = R and £(x) = g;(x) for
every x € Ki’

The paper [1] contains Theorem 3 below.

Theorem 3, Let f€ @)1. Then there are fne {C] s N=1,2, 000y
such that fn—»f uniformly.

For a given f¢€ ﬁh and for every k=1,2,+e¢ we choose a func-
tion g € [C] such that lf(x) - gk(x)l<-E for every x. Let K];,
i=1,2,¢60, be closed sets, U K = (a,b) and 5k/Kk is the con-

tinuous function. We set Ak 1= §1 n K, lﬁN ﬂK o

Lemme 4., Let UDAk,l be an open set. Then there is an open

set U’ such that UDU’ DAL ) and for each of its component, T,
? .

(4) 7\<Tsn<~xlﬁ,1)>2?\w {x 1z@I2gh>2r A1),

Proof. The function 8y is continuous on the set Ak,lC Klf
and |[£(x) - gk(x)|<£g for every xé.'Kljf.’ Because f is O at all
i . 1
xX€ Ak,l’ the function g, is bounded by the constant 7k °r the

e
set Ak, 1e Hence

(5) 12 [£(x) - g, (2)] +[g (DI<zE for every x€ Ki’l.
From the definition of the set ‘A‘lj;,l it is evident that for every
xeAi 1 We may choose an open interval I(x) CU such that

1
Afte 1(x), IOIREH> T AT, Let v = UfT(x), xe4; 1.

It Ts is a component of the set U?, then according to Lemma 2

Adter,, £(6)2EH2HA(,). since by (5)
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fte v, leOREICT N (~EL 1), we bave (4).

The set AL ; 1s of type G5 end measure O; that is,

00
Aljé,l = Q,Vn where Vn are open sets, )\(vn)-.o. By Lemma 4,

there is an open set V; such that Ai.lCV§CV1 and for each of

its component T? (4) holdse In every set Tsﬁ(NIik l) choose
e finite number of closed, palrwise disjoint intervals Jf 1,..
) -
033018801 gucn that 'A(u 3322 AN (~EL 1)), Becau-
l(s, ) 1(s,1

se the set W, = V} - U(r=1 ,r) = \SJ(Tf -\ J?,r) is

open, by Lemma 4 there is an open set Vé such that Ai lC VéC
9
Vzﬂ‘.’v'1 and for each of its component Tg (4) holds. In every

set Tsﬂ(NIi 1) choose a finite number of closed, pairwise

disjoint intervels J5*',...,3901(802) gucn that

1(s,

2) - .
’A(rk=')1 JZ:I')E%‘)\(TZ('\(A, Ai’l))gfr)(Tg). Inductively we

may construct a sequence of open sets V’ satisfing (4),
ﬁTvn = Ak 1° )\(V’ )—oO and a sequence of closed, pairwise dis-
joint intervals Jn s D31,2, 000y 81925000y I=1,2,000,1(3,n0)

1(s,yn)
such that g:,n i‘%’rC)Ts me and
Syn
(6) A, TN 400D,

where Ti are components of the set VE .

Let F be a family of sets. Define
(x,¥) = d(x,Ufac P, a(x,4) = a}).
Further we show thet the sequence of closed intervals Js,r.
N=1y29e00y 8=1,25000y r=1,2,000,1(8,n), constructed above

satisfies the following Theorem 4.
Theorem 4. AsD{x, a*(x, {Ji’r})>0}) All:,l .

Proof. Let X, be a point of the set Alji,l’ Then there is

a sequence of components Ti(n) of sets V;l such that x €n1Ts(n)
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Because }(Tg(n) )»0 , by Lemma 1, (6) implies that

?(xo,{Jg’r})?_d(xo, & Jg(“)'r)gg‘r , which proves

the second inclusion.
Now let 3'(:0,{Ji’r})> O. #e shell show that x & A,. Since

H(xo,Ji’r)>0 for one interval Jg’r at most, we may assume

- o 2 1(
that d(x,, \J U qun)

i1 s=1 =1 Jg’r)>0 and xo¢.J§’r for every n,s,r.

If for every n there is a component T:(n) of V! such that

x,€ 124", then x € X} | and by (5) |£(x I<gg. Since for come
ponents Tz(n)’ n=1,2,e¢sy (4) holds and since ’A(Tg(“))—-o ’
Lemme 1 implies a(xo.{x, If(x)lé%})é-&. From above it follows
thet d(x_, {x, l£(x) - f(xo)légﬂ)éa(xo,{x’, lf(x)l}%})}fr, eels
X,€ Af .

In the opposite case there is n, such thet x°¢ 53 for every s.

o}
From the assumption it follows that

™ o 1l(s,n) % 1(s,n)

v U U Js,r)>0 or'a(xo, s=1 1

o> n=n, s=1 r=1 Js,r)>0 for so-

o
s.-.1 n )>0, x ¢Ts° or

o)>0, x,¢ Tko for s2s . In

d(x

me k € {152y 000yn -1} Therefore d(x

there is s  such that d(xo, s&.zlso

both cases x EZ; 1 and |£(x )l<%. Applying Lemma 3 from (4)
we obtain d(xo, {x, 1£(x)|2> 4 }) >0. Because

d(xo,{x, I£(x) - f(xo)léﬂ}) > d(xo.{x, lf(x)l?%}), it follows
that xoe 'Af which finishes the proof.

Corollary 1. For every set Ai 1 there is an open set V

such that Af) {x, d (x, {Ts} 1)>O})Ak 19 where T8 are the

components of the set V.

00 © 1(s,n)

Proof. It is sufficient to put V = ¥1 inth’r.

s=1 r=1
The statement of Corollery 1 is obvious, because

a¥(x, {a207}) = d*(x, {inta* T},
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We are now ready to state the main result of this paper.

Theorem 5, If f is & Baire 1 function, then there is
a sequence of open sets Vn, n=1,2,.¢¢y such that
(7 by = Shin T {zdl >0l
where Ti are the components of Vn, and conversely,
for every sequence of open sets Vn, n=1,2,+0¢y there is

a Baire 1 function f such that (7) holds.

Proof. Combining Corollery t with the fact that

0o 00 (<]
Ap = ﬁ;g i;Q f;ﬁ Ai,l , We obtain the proof of the first part

of Theorem 5.
Now let {Vn}:;1 be a sequence of open sets and let Tz, S=1,25 e 0y
be the sequence of components of the set Vn¢ For every n=1,2,¢0¢
we shall define & function fn in the following way:
( ® 8 .s |

0, if xe ~§d, (e ,b))

£ (x) = 4
a%) 251 T (xme?)
sin

S 8
> bn an

, if x€ (a3,b5) ,

where (a:,b:) is the middle open third of T:. It is easy to
compute that fn€lZS eand evidently Ap = {x, d (x,{Tn}8=1)2>0}.

0o n
The function f = 2 1 '%'fn is a derivative ([2],page 17) and
n=1 4
Qo
therefore a Baire 1 function. lloreover Af = é;g Af =
n

o - bo
= Y ix, %=, {Tg}s=1)>o}, which completes the proof of

Theorem 5.

In closing we observe that the function f of the proof
of Theorem 5 is & derivative, This together with the argument

A C By yields the following result.

Corollary 2. Theorem 5 is true, if we replace the concept

"a Baire 1 function" by "a derivative" ,
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