R. Menkyna, Technical Üniversity of Liptovský Mikuláš, Cédrová 490, 03101 Liptovský iikuláš, Czechoslovakia.

CLASSIFYING THE SET WHERE A BAIRE 1 FUNTCTION IS APPROXIMATELY CONTINUOUS

The aim of this paper is to give full characterization of the set of points at which a Baire 1 function $f(a, b) \rightarrow R$ is approximately continuous. We show that this characterization coincides with the characterization of the set of points at which a derivative is approximately continuous, which is the problem mentioned in monograph [2].

Throughout this paper β_{1} is the family of all Baire 1 functions, Δ the family of all derivatives and C the family of all continuous functions. The set A_{f} is the set of points at which the function f is not approximately continuous and $\lambda(B)$ the Lebesque measure of the set E.

We first need the concept of density of a set at a point. Let A be a measurable subset of R and let $x_{0} \in R$. The number

$$
\bar{d}\left(x_{0}, A\right)=\lim _{h \rightarrow 0} \sup \frac{1}{2 h} \lambda\left(A \cap\left[x_{0}-h, x_{0}+h\right]\right)
$$

is called the upper density of A at x_{0}. The lower density $d\left(x_{0}, A\right)$ is defined analogously. If $\mathbb{d}\left(x_{0}, A\right)=\underline{d}\left(x_{0}, A\right)$, we call this number the density of A at x_{0} and denote it by $d\left(x_{0}, A\right)$.

It is easy to verify that the following lemmas hold.
Lemma 1. Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be a sequence of intervals such that $\lambda\left(I_{n}\right) \rightarrow 0$ and $x_{0} \in \bar{I}_{n}$ for every $n=1,2, \ldots$. If for a measurable set $B \quad \lambda\left(B \cap I_{n}\right)>\frac{1}{m} \lambda\left(I_{n}\right)$ for every n, then $\bar{d}\left(x_{0}, B\right) \geq \frac{1}{2 m}$.

Lemma 2. Let $U=\bigcup_{n=1}^{\infty} I_{n}$, where I_{n} are open intervals,
$\lambda(U)<+\infty$ and E be a measurable set. If $\lambda\left(B \cap I_{n}\right)>\frac{1}{m} \lambda\left(I_{n}\right)$ for every n, then $\lambda(B \cap U) \geq \frac{1}{2 m} \lambda(U)$.

Lemma 3. Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint intervals such that $x_{0} \notin \bigcup_{n=1}^{\infty} I_{n}$ and $\bar{d}\left(x_{0}, \bigcup_{n=1}^{\infty} I_{n}\right)>0$. If for a measurable set $B \quad \lambda\left(B \cap I_{n}\right)>\frac{1}{m} \lambda\left(I_{n}\right)$ for every $n=1,2, \ldots$, then $\bar{d}\left(x_{0}, B\right)>0$.

Definition 1 ([2]). A function $f(a, b) \rightarrow R$ is said to be approximately continuous at an $x \in(a, b)$ if for each given $\mathcal{E}>0$ the set $A(x, \mathcal{E})=\{t,|f(t)-f(x)|<\mathcal{E}\}$ has the density 1 at $x ;$ that is $\underline{d}(x, A(x, \mathcal{E}))=\bar{d}(x, A(x, \mathcal{E}))=1$.

We give Corollary 3.11 ([3]) as our Theorem 1.
Theorem 1. If a function $f \in \mathcal{B}_{1}$ and $\lambda(E)=0$, then there exists an approximately continuous function g such that $f(x)=g(x)$ for every $x \in E$.

Because any Baire 1 function is approximately continuous almost everywhere ([2], page 19), without loss of generality we may assume that

$$
\begin{equation*}
f(x)=0 \text { for every } x \in A_{f} . \tag{1}
\end{equation*}
$$

Theorem 2. If the function $f \in B_{1}$, then the set A_{f} is of type G $_{\sigma б}$ •

Proof. Let $A_{n, k, 1}$ be the set of all $x_{0} \in(a, b)$ for which there exist an open interval $\mathrm{I}^{\mathrm{n}}\left(\mathrm{x}_{0}\right)$ such that

$$
\begin{equation*}
\lambda\left(\left\{x \in I^{n}\left(x_{0}\right),|f(x)| \geq \frac{1}{k}\right\}\right)>\frac{1}{1} \lambda\left(I^{n}\left(x_{0}\right)\right), \tag{2}
\end{equation*}
$$

$x_{0} \in I^{n}\left(x_{0}\right)$ and $\lambda\left(I^{n}\left(x_{0}\right)\right)<\frac{1}{n}$. Wie denote $N_{f}=\{x, f(x)=0\}$. Using (1), (2) and Lemma 1 we obtain $A_{f}=\bigcup_{1=1}^{\infty} \bigcup_{k=1}^{\infty}\left(N_{f} \cap \bigcap_{n=1}^{\infty} A_{n, k, l}\right)$ and moreover,

$$
\begin{equation*}
\bar{d}\left(x_{0},\left\{x,|f(x)| \geq \frac{1}{k}\right\}\right) \geq \frac{1}{2 I} \text { for every } x_{0} \in N_{f} \cap \bigcap_{n=1}^{\infty} A_{n, k, I} . \tag{3}
\end{equation*}
$$

Because $\bigcap_{n=1}^{\infty} A_{n, k, 1}=\bigcap_{n=1}^{\infty} \cup\left\{I^{n}(x), x \in \bigcap_{n=1}^{\infty} A_{n, k}, 1\right\}$ and the set N_{f} ([2], page 1) are sets of type G_{δ}, the set A_{f} is of type $G_{\delta \sigma}$ •

In the following part we shall deal with some properties of the set A_{f}.

Definition 2 ([1]). A function f is a member of the family [C] if and only if there are functions $g_{i} \in C, i=1,2, \ldots$, and closed sets K_{i} such that $\bigcup_{i=1}^{\infty} K_{i}=R$ and $f(x)=g_{i}(x)$ for every $x \in K_{i}$.

The paper [1] contains Theorem 3 below.
Theorem 3. Let $f \in B_{1}$. Then there are $f_{n} \in[C], n=1,2, \ldots$, such that $f_{n} \rightarrow f$ uniformly.

For a given $f \in \beta_{1}$ and for every $k=1,2, \ldots$ we choose a function $g_{k} \in[C]$ such that $\left|f(x)-g_{k}(x)\right|<\frac{1}{4 k}$ for every x. Let K_{i}^{k}, $i=1,2, \ldots$, be closed sets, $\bigcup_{i=1}^{\infty} K_{i}^{k}=(a, b)$ and $g_{k /} K_{i}^{k}$ is the continuous function. We set $A_{k, 1}^{i}=\bigcap_{n=1}^{\infty} A_{n, k, 1} \cap N_{f} \cap K_{i}^{k}$.

Lemma 4. Let $U \supset A_{k, 1}^{i}$ be an open set. Then there is an open set U ' such that $U \supset U ' \supset A_{k, 1}^{i}$ and for each of its component, T_{s},

$$
\begin{equation*}
\lambda\left(T_{s} \cap\left(\sim \bar{A}_{k, 1}^{i}\right)\right) \geq \lambda\left(T_{s} \cap\left\{x,|f(x)| \geq \frac{1}{k}\right\}\right) \geq \frac{1}{21} \lambda\left(T_{s}\right) \tag{4}
\end{equation*}
$$

Proof. The function g_{k} is continuous on the set $\bar{A}_{k, 1}^{i} C K_{i}^{k}$ and $\left|f(x)-g_{k}(x)\right|<\frac{1}{4 k}$ for every $x \in K_{i}^{k}$. Because f is 0 at all $x \in A_{k, 1}^{i}$, the function g_{k} is bounded by the constant $\frac{1}{4 k}$ on the set $\bar{A}_{k, 1}^{i}$. Hence

$$
\begin{equation*}
|f(x)| \leq\left|f(x)-g_{k}(x)\right|+\left|g_{k}(x)\right|<\frac{1}{2 k} \text { for every } x \in \bar{A}_{k, 1}^{i} \tag{5}
\end{equation*}
$$

From the definition of the set $A_{k, 1}^{i}$ it is evident that for every $x \in A_{k, l}^{i}$ we may choose an open interval $I(x) \subset U$ such that $\lambda\left(\left\{t \in I(x),|f(t)| \geq \frac{1}{k}\right\}\right)>\frac{1}{I} \lambda(I(x))$. Let $U^{\prime}=U\left\{I(x), x \in A_{k, I}^{i}\right\}$. If T_{s} is a component of the set U ', then according to Lemma 2 $\lambda\left(\left\{t \in T_{s},|f(t)| \geq \frac{1}{K}\right\}\right) \geq \frac{1}{2 I} \lambda\left(T_{s}\right)$. Since by (5)
$\left\{t \in \mathbb{T}_{s},|f(t)| \geq \frac{1}{K}\right\} \subset T_{s} \cap\left(\sim \overline{\mathbb{A}}_{k, I}^{i}\right)$, we have (4).
The set $A_{k, I}^{i}$ is of type G_{δ} and measure 0 ; that is, $A_{k, 1}^{i}=\bigcap_{n=1}^{\infty} V_{n}$ where V_{n} are open sets, $\lambda\left(V_{n}\right) \rightarrow 0$. By Lemma 4, there is an open set V_{1} such that $A_{k, 1}^{i} \subset V_{1} \subset V_{1}$ and for each of its component \mathbb{T}_{1}^{s} (4) holds. In every set $\mathbb{T}_{1}^{s} \cap\left(\sim \sim_{k}^{i}, 1\right)$ choose a finite number of closed, pairwise disjoint intervals $J_{1}^{s, 1}, \ldots$., $J_{1}^{s, 1(s, 1)}$ such that $\lambda\left(\sum_{r=1}^{1(s, 1)}{ }_{J_{1}^{s}, r}\right) \geq \frac{1}{2} \lambda\left(\mathbb{T}_{1}^{s} \cap\left(\sim \bar{A}_{k, 1}^{i}\right)\right)$. Because the set $W_{1}=V_{1}^{\prime}-\bigcup_{S}\left(\bigcup_{r=1}^{1(s, 1)}{ }_{J_{1}^{s}, r}\right)=\bigcup_{\mathcal{S}}(\mathbb{T}_{1}^{s}-\underbrace{1(s, 1)_{J_{1}^{s}}^{s}, r}_{r=1})$ is open, by Lemma 4 there is an open set V_{2}^{\prime} such that $A_{k, 1}^{i} \subset V_{2}^{\prime} \subset$ $V_{2} \cap \pi_{1}$ and for each of its component T_{2}^{s} (4) holds. In every set $\mathbb{T}_{2}^{\mathbf{S}} \cap\left(\sim \mathbb{A}_{k, 1}^{i}\right)$ choose a finite number of closed, pairwise disjoint intervals $J_{2}^{s, 1}, \ldots, J_{2}^{s, 1(s, 2)}$ such that $\lambda\left(\bigcup_{r=1}^{1(s, 2)}{ }_{J_{2}^{s}, r}^{s}\right) \geq \frac{1}{2} \lambda\left(T_{2}^{s} \cap\left(\sim \bar{A}_{k, 1}^{i}\right)\right) \geq \frac{1}{4 I} \lambda\left(T_{2}^{\mathbf{s}}\right)$. Inductively we may construct a sequence of open sets V_{n}^{\prime} satisfing (4), $\bigcap_{n=1}^{\infty} V_{n}^{\prime}=A_{k, l}^{i}, \quad \lambda\left(V_{n}^{\prime}\right) \rightarrow 0$ and a sequence of closed, pairwise disjoint intervals $J_{n}^{s, r}, n=1,2, \ldots, s=1,2, \ldots, r=1,2, \ldots, 1(s, n)$ such that $\underbrace{1(s, n)}_{r=1}{ }_{J_{n}^{s}, r}^{S_{n}} \mathbb{T}_{n}^{s}-V_{n+1}^{s}$ and

$$
\begin{equation*}
\lambda\left({ }_{r=1}^{I(s, n)}{ }_{J_{n}^{s}, r}^{s}\right) \geq \frac{1}{4 I} \lambda\left(T_{n}^{s}\right), \tag{6}
\end{equation*}
$$

where \mathbb{T}_{n}^{s} are components of the set V_{n}^{\prime}.
Let φ be a family of sets. Define
$\bar{d}^{*}(x, \mathscr{Y})=\bar{d}(x, \cup\{A \in \mathcal{Y}, d(x, A)=0\})$.
Further we show that the sequence of closed intervals $J_{n}^{s, r}$, $n=1,2, \ldots, s=1,2, \ldots, r=1,2, \ldots, 1(s, n)$, constructed above satisfies the following Theorem 4 .

Theorem 4. $A_{f} \supset\left\{x, \bar{d}^{*}\left(x,\left\{j_{n}^{s, r}\right\}\right)>0\right\} \supset A_{k, 1}^{i} \cdot$
Proof. Let x_{0} be a point of the set $A_{k, 1}^{i}$. Then there is a sequence of components $\mathbb{T}_{n}^{s(n)}$ of sets V_{n}^{\prime} such that $x_{0} \in \bigcap_{n=1}^{\infty} T_{n}^{s(n)}$.

Because $\lambda\left(T_{n}^{s(n)}\right) \rightarrow 0$, by Lemma 1 , (6) implies that
$\bar{d}^{*}\left(x_{0},\left\{J_{n}^{s, r}\right\}\right) \geq \bar{d}(x_{0}, \bigcup_{n=1}^{\infty} 1(\underbrace{s(n), n)}_{r=1} J_{n}^{s(n)}, r) \geq \frac{1}{81}$, which proves the second inclusion.
Now let $\bar{d}^{*}\left(x_{0},\left\{J_{n}^{s, r}\right\}\right)>0$. He shall show that $x_{0} \in A_{f}$. Since $\bar{d}\left(x_{0}, J_{n}^{s, r}\right)>0$ for one interval $J_{n}^{s, r}$ at most, we may assume that $\bar{d}(x_{0}, \bigcup_{n=1}^{\infty} \bigcup_{s=1}^{\infty} \underbrace{l(s, n)}_{r=1} J_{n}^{s, r})>0$ and $x_{0} \notin J_{n}^{s, r}$ for every n, s, r. If for every n there is a component $T_{n}^{s(n)}$ of V_{n}^{\prime} such that $x_{0} \in \bar{T}_{n}^{s(n)}$, then $x_{0} \in \bar{A}_{k, 1}^{i}$ and by (5) |f($\left.x_{0}\right)<\frac{1}{2 k}$. Since for components $\mathbb{T}_{n}^{s(n)}, n=1,2, \ldots$, (4) holds and since $\lambda\left(\mathbb{T}_{n}^{s(n)}\right) \rightarrow 0$, Lemma 1 implies $\bar{d}\left(x_{0},\left\{x,|f(x)| \geq \frac{1}{k}\right\}\right) \geq \frac{1}{41}$. From above it follows that $\bar{d}\left(x_{0},\left\{x,\left|f(x)-f\left(x_{0}\right)\right| \geq \frac{1}{2 k}\right\}\right) \geq \bar{d}\left(x_{0},\left\{x,|f(x)| \geq \frac{1}{k}\right\}\right) \geq \frac{1}{41}$, e.i. $x_{0} \in A_{f}$.
In the opposite case there is n_{0} such that $x_{0} \notin \bar{T}_{n_{0}}^{s}$ for every s. From the assumption it follows that
$\bar{d}(x_{0}, \bigcup_{n=n_{0}}^{\infty} \bigcup_{s=1}^{\infty} \underbrace{I(s, n)}_{r=1}{ }_{J_{n}^{s}, r}^{s})>0$ or $\bar{d}\left(x_{0}, \bigcup_{s=1}^{\infty} 1(s, n){ }_{J_{k}, r}^{s, r}\right)>0$ for some $k_{0} \in\left\{1,2, \ldots, n_{0}-1\right\}$. Therefore $\bar{d}\left(x_{0}, \bigcup_{s=1}^{\infty} T_{n_{0}}^{s}\right)>0, x_{0} \notin \bar{T}_{n_{0}}^{s}$ or there is s_{0} such that $\bar{d}\left(x_{0}, \bigcup_{s=s_{0}}^{\infty} T_{k_{0}}^{s}\right)>0, x_{0} \notin \bar{T}_{k_{0}}^{s}$ for $s \geq s_{0}$. In both cases $x_{0} \in \bar{A}_{k, 1}^{i}$ and $\left|f\left(x_{0}\right)\right|<\frac{1}{2 x}$. Applying Lemma 3 from (4) we obtain $\bar{d}\left(x_{0},\left\{x,|f(x)| \geq \frac{1}{k}\right\}\right)>0$. Because $\bar{d}\left(x_{0},\left\{x,\left|f(x)-f\left(x_{0}\right)\right| \geq \frac{1}{2 k}\right\}\right) \geq \bar{d}\left(x_{0},\left\{x,|f(x)| \geq \frac{1}{k}\right\}\right)$, it follows that $x_{0} \in A_{f}$ which finishes the proof.

Corollary 1. For every set $A_{k, 1}^{1}$ there is an open set V such that $\left.A_{f}\right)\left\{x, \bar{d}^{*}\left(x,\left\{T^{s}\right\}_{S=1}^{\infty}\right)>0\right\} \supset A_{k, I}^{i}$, where T^{s} are the components of the set V .

Proof. It is sufficient to put $V=\bigcup_{n=1}^{\infty} \bigcup_{s=1}^{\infty} l_{r=1}^{l(s, n)}$ intJ $_{n}^{s, r}$. The statement of Corollary 1 is obvious, because $\overline{\mathrm{a}}^{*}\left(\mathrm{x},\left\{\mathrm{J}_{\mathrm{n}}^{\mathbf{s}, r}\right\}\right)=\overline{\mathrm{d}}^{*}\left(\mathrm{x},\left\{\right.\right.$ int $\left.\left._{\mathrm{n}}^{\mathrm{S}}, \mathrm{r}\right\}\right)$.

We are now ready to state the main result of this paper.
Theorem 5. If f is a Baire 1 function, then there is
a sequence of open sets $V_{n}, n=1,2, \ldots$, such that

$$
\begin{equation*}
A_{f}=\bigcup_{n=1}^{\infty}\left\{x, \overline{\mathrm{~d}}^{*}\left(x,\left\{T_{n}^{s}\right\}_{S=1}^{\infty}\right)>0\right\}, \tag{7}
\end{equation*}
$$

where T_{n}^{s} are the components of V_{n}, and conversely, for every sequence of open sets $V_{n}, n=1,2, \ldots$, there is
a Baire 1 function f such that (7) holds.
Proof. Combining Corollary 1 with the fact that $A_{f}=\bigcup_{k=1}^{\infty} \bigcup_{l=1}^{\infty} \bigcup_{i=1}^{\infty} A_{k, l}^{i}$, we obtain the proof of the first part of Theorem 5.
Now let $\left\{V_{n}\right\}_{n=1}^{\infty}$ be a sequence of open sets and let $T_{n}, s=1,2, \ldots$, be the sequence of components of the set V_{n}. For every $n=1,2, \ldots$ we shall define a function f_{n} in the following way:

$$
f_{n}(x)=\left\{\begin{array}{l}
0, \text { if } x \in \sim \bigcup_{s=1}^{\infty}\left(a_{n}^{s}, b_{n}^{s}\right) \\
\sin \frac{2^{s+1} \pi\left(x-a_{n}^{s}\right)}{b_{n}^{s}-a_{n}^{s}}, \text { if } x \in\left(a_{n}^{s}, b_{n}^{s}\right),
\end{array}\right.
$$

where $\left(a_{n}^{s}, b_{n}^{s}\right)$ is the middle open third of T_{n}^{s}. It is easy to compute that $I_{n} \in \Delta$ and evidently $A_{f_{n}}=\left\{x, \bar{d}^{*}\left(x,\left\{T_{n}^{s}\right\}_{s=1}^{\infty}\right)>0\right\}$. The function $f=\sum_{n=1}^{\infty} \frac{1}{4^{n}} \cdot f_{n}$ is a derivative ([2], page 17) and therefore a Baire 1 function. Moreover $A_{f}=\bigcup_{n=1}^{\infty} A_{f_{n}}=$ $=\bigcup_{n=1}^{\infty}\left\{x, \overline{\mathrm{~d}}^{*}\left(x,\left\{\mathbb{T}_{n}^{s}\right\}_{s=1}^{\infty}\right)>0\right\}$, which completes the proof of Theorem 5.

In closing we observe that the function f of the proof of Theorem 5 is a derivative. This together with the argument $\triangle C B_{1}$ yields the following result.

Corollary 2. Theorem 5 is true, if we replace the concept "a Baire 1 function" by "a derivative" .
[1] AGRONSKY,S.J.-BISKNER,R.-BRUCKNER,A.M.-MAŘIK, J.: Representations of functions by derivatives. Trans. Amer. Math. Soc. 263 (1981), 493-500.
[2] BRUCKNER, A.M.: Differentiation of real functions. Lecture Notes in Mathematics, 659, Springer, 1978.
[3] PREISS,D.-VIIIMOVSKÝ,J.: In-betwen theorems in uniform spaces. Trans. Amer. Math. Soc. 261 (1980), 483-501.

