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 Locally Increasing Points of Nowhere Differentiate
 Functions

 1 Introduction

 Let Hf denote the set of points x € [0, 1] for which / € C[0, 1] is locally increasing at x. It
 is easy to see that Hj is an F„ set for any / G C[0, 1], Since Df(x) (the lower derivative
 of / at x, see [2]) is non-negative for every x inHf , it follows from the Denjoy-Young-
 Saks Theorem that / is diíFerentiable at a.e. point of H/. In particular, if / is nowhere
 differentiate, then Hf is a set of measure zero. In this paper we prove that if H C [0, 1]
 is an arbitrary F„ set of measure 0, then there exists a nowhere diíFerentiable function
 / € C[0, 1] such that x G H iff / is locally increasing at x.

 2 Preliminaries

 We denote by Qy> (D<p) the lower (upper) derivative of (p at x and we put D+(p( x) (D+tp(x))
 for the right hand lower (upper) derivative of <p at x. We define D-(p(x), D~tp(x ) similarly.
 Lebesgue measure on the interval [0, 1] is denoted by m.

 Now we need the following lemmas.

 Lemma 1 Let f,g € C[0, 1], / < g and let F C [0,1] be a nonempty, nowhere dense,
 closed set such that f(x) < g(x) for every x € F . Then there exist functions u, v € C[ 0, 1]
 such that :

 1. f < u < v < g,

 2. u(x) = u(x), and u'(x) = v'(x) = 0 for every x € F ,

 8. if /(x) < g(x) and x £ F, then u(x) < v(x).

 Proof. Define the set P = {x : /(x) = </(x)}. We will define u and v so that u'p = v'p =
 f'p. Let (a, 6) be an arbitrary interval contiguous to P. Let C 9ft, x, < x,_i be
 a sequence such that:
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 (i) lim.w-00 Xi - a, and lim,_oo = 6,

 (ii) max{/(x) : x G } < min{^(x) : x G [xi_i,xt] },

 (iii) for each i , x¿ ^ F.

 Put max{/(x) : x G c, < min{gr(x) : x G [x,_j,x,] }, and choose y¿, z, such that F D
 [xj_x,x,] C [y i, z,] C (x,_i, Xj). In addition select U, Si so that x,- < ť, < y¿ < < s¿ < x¿
 and define

 u(x) = C{ - edist2(x, F)

 v(x) = C{ + c dist2(x, F)

 for every x G where e is chosen such that /| [tiił|] < it| < 0I [<„*]• We
 can now extend u, v so that they are continuous and satisfy the requirements.

 Lemma 2 Let u,v G C[0, 1], u < v, let H C [0,1] be a set of the first category, and let
 n G N be fixed. Then there exist f,g G C[0, 1] such that:

 1 • u< f <g <v, g < / + £.
 2. For every x with u(x) < v(x) and for every h G C[ 0, 1] with f < h < g there exist

 y, z G such that |y - x| < 'z - x| < £ and > n, < ~n-
 3. If x G H and tt(x) < u(x), then f(x) < g(x).

 Proof. Let P = {x : u(x) = v(x) }. We define f(x) = g(x) = u(x) for every x G P.
 Let (a, b) be an arbitrary interval contiguous to P. Select a monotone increasing sequence
 {xflfss-oo C (a, b)'H such that:

 (a) lim^-oo Xi = a, and lim.woo = b ,

 (b) 0 < x,.ł3 - », < 1, •frg.tff'1 > n, üla^íil < -„ for every ¿ S iv.
 We put

 f(xi ) = <7(xt) = «(x,-) if i is even

 /(x.) = g(xi) = v(xi) if ¿ is odd ,

 and we define /, g on (a, 6) such that u<f<g<f + ^<v, f and g are continuous and
 /(x) < g(x) for every x G (a, &)'{®t)S-oo- We prove that / and y satisfy the requirements.
 Properties 1 and 3 are obviously fulfiled. To prove 2 let x be such that u(x) < v(x).
 Suppose x G (a,b), where (a, b) is an interval contiguous to P and let x,- < x < xt+1.
 Suppose that i is even. Since > ni it follows that for every function h satisfying

 h(xj) = f(xj) = g(xj) for every j , we have either > n, or *^1*^ > n- Similarly
 since < _n we have either *(«*»)-*(«) < -n or

 ' Xi+2-X Xi-i-X
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 Lemma 3 For each n let Fn be a nowhere dense, closed subset of [0, 1] with the property
 Fn C Fn+ 1. Put H = U~=1Fn. Then there exist sequences of functions {/n}£Li, {<7n}£Li C
 C[0, 1] such that for every n G N

 1' fn /n+l ^ 9n+ 1 ^ 9n

 2. fn(x) = gn(x) for every x G Fn

 8- fn(x) < gn(x) < fn(x) + Ì for every x G (H ' Fn)

 4. ft(x) = g'n(x) = 0 for every x G Fn

 5. For each x £ Fn and for every h G CÍO, 1] with fn < h < gn there exist y, z with
 'y ' - x' 1 < «> n 1 'z 1 - x' • < k n such z-x > n, 1 and y-x < n. ' 1 «> n 1 1 • n z-x 1 y-x

 Proof. We define /n, gn by induction. Without loss of generality we can take

 8x if x€ [0, 5]

 -Sx + 2 if x G [§, I)

 -Fi = 0, /i(x) = < 8x - 4 if »€[},{), 1 and <7i(*) = /i(») + ^

 -8x + 6 if x € [§, g) ,

 . 8x - 8 if x G [5, l] ,

 Suppose that n G N and /n, gn fulfil the conditions 2 through 5. We can use Lemma 1
 with / = /„, <7 = gn, F = Fn+i. Thus from Lemma 1 we get two functions u, ü. Now we
 use Lemma 2 for these functions and for H, and we get fn+u gn+i from Lemma 2 as /, g.
 It is easy to see that the sequence of functions /n, gn constructed in this was satisfy the
 requirem.net s of Lemma 3.

 3 Main Results

 Theorem 1 For every Fc set of the first caregory H C [0, 1], there exists a function
 h G C[ 0, 1] such that

 (i) Dh(x) = -00 and Uh(x) = 00 for every x G [0, 1] ' H

 (ii) h'{x ) = 0 for every x G H.
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 Proof. Let {/„}^°=1, {^„}~ i be as in Lemma 3. We define h = lim^^ /„ = lim^^ gn.
 Let xQ G [0, 1] ' H. Then for each n G N, xQ ^ Fn. Thus it follows from Lemma 3 that
 there axe y, z such that |y - xo| < | z - xo| < £ and > n, < - n
 because fn<h< gn. So we get (i).

 We take x0 6 H. Then there exists n G N such that x0 G Fn+1 but x0 ^ Fj if j <n + 1.
 It follows from properties 2 and 4 that h'(x 0) = 0. So we get (ii).

 Casper Goffman proved in [1] that if H C [0, 1] is a set of measure 0, then there exists
 a measurable set S whose metric density does not exist at any point of H. If for x € [0, 1]
 we define <ph(x) = m(5 fl [0, x]). Then <pn € C[0, 1], and

 (i) 0 < D(pff(x) < ~Ďipij(x) < 1 for every x € [0, 1]

 (ii) Dçph(x) < Dipij(x) for every x G H.

 Using this function ^we will prove our main result.

 Theorem 2 For every H C [0, 1] the following are equivalent:

 (a) H ia an Fa set of measure zero

 (b) There exists a function f G C[0, 1] such that f does not have a finite or infinite
 derivative at any point and H = Hf (the set of x for which f is locally increasing at
 x).

 Proof. If H C [0, 1] is an Fa set of measure zero, then let /(x) = h(x) + <ph(x) + x for
 every x G [0, 1] where h was constructed in Theorem 1 and <pu was constructed by C.
 Goffman in [1]. It is easy to see that:

 1.

 Df(x) = -oo, T5f(x) = oo for every x G [0, 1] ' H

 2.

 0 < Df(x) < Df(x) for every x G H.

 Thus we have (a) =>• (b). As we saw in the introduction, (b) implies (a).
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