Locally Increasing Points of Nowhere Differentiable Functions

1 Introduction

Let H_{f} denote the set of points $x \in[0,1]$ for which $f \in C[0,1]$ is locally increasing at x. It is easy to see that H_{f} is an F_{σ} set for any $f \in C[0,1]$. Since $D f(x)$ (the lower derivative of f at x, see [2]) is non-negative for every x inH $_{f}$, it follows from the Denjoy-YoungSaks Theorem that f is differentiable at a.e. point of H_{f}. In particular, if f is nowhere differentiable, then H_{f} is a set of measure zero. In this paper we prove that if $H \subset[0,1]$ is an arbitrary F_{σ} set of measure 0 , then there exists a nowhere differentiable function $f \in C[0,1]$ such that $x \in H$ iff f is locally increasing at x.

2 Preliminaries

We denote by $\underline{D} \varphi(\bar{D} \varphi)$ the lower (upper) derivative of φ at x and we put $D_{+} \varphi(x)\left(D^{+} \varphi(x)\right)$ for the right hand lower (upper) derivative of φ at x. We define $D_{-} \varphi(x), D^{-} \varphi(x)$ similarly. Lebesgue measure on the interval $[0,1]$ is denoted by m.

Now we need the following lemmas.
Lemma 1 Let $f, g \in C[0,1], f \leq g$ and let $F \subset[0,1]$ be a nonempty, nowhere dense, closed set such that $f(x)<g(x)$ for every $x \in F$. Then there exist functions $u, v \in C[0,1]$ such that:

1. $f \leq u \leq v \leq g$,
2. $u(x)=v(x)$, and $u^{\prime}(x)=v^{\prime}(x)=0$ for every $x \in F$,
3. if $f(x)<g(x)$ and $x \notin F$, then $u(x)<v(x)$.

Proof. Define the set $P=\{x: f(x)=g(x)\}$. We will define u and v so that $\left.u\right|_{P}=\left.v\right|_{P}=$ $\left.f\right|_{P}$. Let (a, b) be an arbitrary interval contiguous to P. Let $\left\{x_{i}\right\}_{i=-\infty}^{\infty} \subset \Re, x_{i}<x_{i-1}$ be a sequence such that:
(i) $\lim _{i \rightarrow-\infty} x_{i}=a$, and $\lim _{i \rightarrow \infty}=b$,
(ii) $\max \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}<\min \left\{g(x): x \in\left[x_{i-1}, x_{i}\right]\right\}$,
(iii) for each $i, x_{i} \notin F$.

Put $\max \left\{f(x): x \in c_{i}<\min \left\{g(x): x \in\left[x_{i-1}, x_{i}\right]\right\}\right.$, and choose y_{i}, z_{i} such that $F \cap$ $\left[x_{i-1}, x_{i}\right] \subset\left[y_{i}, z_{i}\right] \subset\left(x_{i-1}, x_{i}\right)$. In addition select t_{i}, s_{i} so that $x_{i}<t_{i}<y_{i}<z_{i}<s_{i}<x_{i}$ and define

$$
\begin{aligned}
& u(x)=c_{i}-\epsilon \operatorname{dist}^{2}(x, F) \\
& v(x)=c_{i}+\epsilon \operatorname{dist}^{2}(x, F)
\end{aligned}
$$

for every $x \in\left[t_{i}, s_{i}\right]$, where ϵ is chosen such that $\left.f\right|_{\left[t_{i}, s_{i}\right]}<\left.u\right|_{\left[t_{i}, \varepsilon_{i}\right]}<\left.v\right|_{\left[t_{i}, s_{i}\right]}<\left.g\right|_{\left[t_{i}, s_{i}\right]}$. We can now extend u, v so that they are continuous and satisfy the requirements.

Lemma 2 Let $u, v \in C[0,1], u \leq v$, let $H \subset[0,1]$ be a set of the first category, and let $n \in N$ be fixed. Then there exist $f, g \in C[0,1]$ such that:

1. $u \leq f \leq g \leq v, g \leq f+\frac{1}{n}$.
2. For every x with $u(x)<v(x)$ and for every $h \in C[0,1]$ with $f \leq h \leq g$ there exist $y, z \in \Re$ such that $|y-x|<\frac{1}{n},|z-x|<\frac{1}{n}$ and $\frac{h(z)-h(x)}{z-x}>n, \frac{h(y)-h(x)}{y-x}<-n$.
3. If $x \in H$ and $u(x)<v(x)$, then $f(x)<g(x)$.

Proof. Let $P=\{x: u(x)=v(x)\}$. We define $f(x)=g(x)=u(x)$ for every $x \in P$. Let (a, b) be an arbitrary interval contiguous to P. Select a monotone increasing sequence $\left\{x_{i}\right\}_{i=-\infty}^{\infty} \subset(a, b) \backslash H$ such that:
(a) $\lim _{i \rightarrow-\infty} x_{i}=a$, and $\lim _{i \rightarrow \infty}=b$,
(b) $0<x_{i+3}-x_{i}<\frac{1}{n}, \frac{v\left(x_{i+3}\right)-u\left(x_{i}\right)}{x_{i+3}-x_{i}}>n, \frac{u\left(x_{i+3}\right)-v\left(x_{i}\right)}{x_{i+3}-x_{i}}<-n$ for every $i \in N$.

We put

$$
\begin{aligned}
& f\left(x_{i}\right)=g\left(x_{i}\right)=u\left(x_{i}\right) \text { if } i \text { is even } \\
& f\left(x_{i}\right)=g\left(x_{i}\right)=v\left(x_{i}\right) \text { if } i \text { is odd },
\end{aligned}
$$

and we define f, g on (a, b) such that $u \leq f \leq g \leq f+\frac{1}{n} \leq v, f$ and g are continuous and $f(x)<g(x)$ for every $x \in(a, b) \backslash\left\{x_{i}\right\}_{i=-\infty}^{\infty}$. We prove that f and g satisfy the requirements. Properties 1 and 3 are obviously fulfiled. To prove 2 let x be such that $u(x)<v(x)$. Suppose $x \in(a, b)$, where (a, b) is an interval contiguous to P and let $x_{i}<x<x_{i+1}$. Suppose that i is even. Since $\frac{v\left(x_{i+3}\right)-u\left(x_{i}\right)}{x_{i+3}-x_{i}}>n$, it follows that for every function h satisfying $h\left(x_{j}\right)=f\left(x_{j}\right)=g\left(x_{j}\right)$ for every j, we have either $\frac{h\left(x_{i+3}\right)-h(x)}{x_{i+3}-x}>n$, or $\frac{h\left(x_{i}\right)-h(x)}{x_{i}-x}>n$. Similarly since $\frac{u\left(x_{i+2}\right)-v\left(x_{i-1}\right)}{x_{i+2}-x_{i-1}}<-n$, we have either $\frac{h\left(x_{i+2}\right)-h(x)}{x_{i+2}-x}<-n$ or $\frac{h\left(x_{i-1}\right)-h(x)}{x_{i-1}-x}<-n$.

Lemma 3 For each n let F_{n} be a nowhere dense, closed subset of $[0,1]$ with the property $F_{n} \subset F_{n+1}$. Put $H=\cup_{n=1}^{\infty} F_{n}$. Then there exist sequences of functions $\left\{f_{n}\right\}_{n=1}^{\infty},\left\{g_{n}\right\}_{n=1}^{\infty} \subset$ $C[0,1]$ such that for every $n \in N$

1. $f_{n} \leq f_{n+1} \leq g_{n+1} \leq g_{n}$
2. $f_{n}(x)=g_{n}(x)$ for every $x \in F_{n}$
3. $f_{n}(x)<g_{n}(x) \leq f_{n}(x)+\frac{1}{n}$ for every $x \in\left(H \backslash F_{n}\right)$
4. $f_{n}^{\prime}(x)=g_{n}^{\prime}(x)=0$ for every $x \in F_{n}$
5. For each $x \notin F_{n}$ and for every $h \in C[0,1]$ with $f_{n} \leq h \leq g_{n}$ there exist y, z with $|y-x|<\frac{1}{n},|z-x|<\frac{1}{n}$ such that $\frac{h(z)-h(x)}{z-x}>n$, and $\frac{h(y)-h(x)}{y-x}<n$.

Proof. We define f_{n}, g_{n} by induction. Without loss of generality we can take

$$
F_{1}=\emptyset, f_{1}(x)=\left\{\begin{array}{lll}
8 x & \text { if } & x \in\left[0, \frac{1}{8}\right] \\
-8 x+2 & \text { if } & x \in\left[\frac{1}{8}, \frac{3}{8}\right) \\
8 x-4 & \text { if } & x \in\left[\frac{3}{8}, \frac{5}{8}\right), \\
-8 x+6 & \text { if } & x \in\left[\frac{5}{8}, \frac{7}{8}\right), \\
8 x-8 & \text { if } & x \in\left[\frac{7}{8}, 1\right]
\end{array}\right\} \text { and } g_{1}(x)=f_{1}(x)+\frac{1}{10}
$$

Suppose that $n \in N$ and f_{n}, g_{n} fulfil the conditions 2 through 5. We can use Lemma 1 with $f=f_{n}, g=g_{n}, F=F_{n+1}$. Thus from Lemma 1 we get two functions u, v. Now we use Lemma 2 for these functions and for H, and we get f_{n+1}, g_{n+1} from Lemma 2 as f, g. It is easy to see that the sequence of functions f_{n}, g_{n} constructed in this was satisfy the requiremnets of Lemma 3.

3 Main Results

Theorem 1 For every F_{σ} set of the first caregory $H \subset[0,1]$, there exists a function $h \in C[0,1]$ such that
(i) $\underline{D} h(x)=-\infty$ and $\bar{D} h(x)=\infty$ for every $x \in[0,1] \backslash H$
(ii) $h^{\prime}(x)=0$ for every $x \in H$.

Proof. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$, $\left\{g_{n}\right\}_{n=1}^{\infty}$ be as in Lemma 3. We define $h=\lim _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty} g_{n}$. Let $x_{0} \in[0,1] \backslash H$. Then for each $n \in N, x_{0} \notin F_{n}$. Thus it follows from Lemma 3 that there are y, z such that $\left|y-x_{0}\right|<\frac{1}{n},\left|z-x_{0}\right|<\frac{1}{n}$ and $\frac{h(z)-h\left(x_{0}\right)}{z-x_{0}}>n, \frac{h(y)-h\left(x_{0}\right)}{y-x_{0}}<-n$ because $f_{n} \leq h \leq g_{n}$. So we get (i).

We take $x_{0} \in H$. Then there exists $n \in N$ such that $x_{0} \in F_{n+1}$ but $x_{0} \notin F_{j}$ if $j<n+1$. It follows from properties 2 and 4 that $h^{\prime}\left(x_{0}\right)=0$. So we get (ii).

Casper Goffman proved in [1] that if $H \subset[0,1]$ is a set of measure 0 , then there exists a measurable set S whose metric density does not exist at any point of H. If for $x \in[0,1]$ we define $\varphi_{H}(x)=m(S \cap[0, x])$. Then $\varphi_{H} \in C[0,1]$, and
(i) $0 \leq \underline{D} \varphi_{H}(x) \leq \bar{D} \varphi_{H}(x) \leq 1$ for every $x \in[0,1]$
(ii) $\underline{D} \varphi_{H}(x)<\bar{D} \varphi_{H}(x)$ for every $x \in H$.

Using this function φ_{H} we will prove our main result.
Theorem 2 For every $H \subset[0,1]$ the following are equivalent:
(a) H is an F_{σ} set of measure zero
(b) There exists a function $f \in C[0,1]$ such that f does not have a finite or infinite derivative at any point and $H=H_{f}$ (the set of x for which f is locally increasing at x).

Proof. If $H \subset[0,1]$ is an F_{σ} set of measure zero, then let $f(x)=h(x)+\varphi_{H}(x)+x$ for every $x \in[0,1]$ where h was constructed in Theorem 1 and φ_{H} was constructed by C. Goffman in [1]. It is easy to see that:
1.

$$
\underline{D} f(x)=-\infty, \bar{D} f(x)=\infty \text { for every } x \in[0,1] \backslash H
$$

2.

$$
0<\underline{D} f(x)<\bar{D} f(x) \text { for every } x \in H .
$$

Thus we have (a) \Longrightarrow (b). As we saw in the introduction, (b) implies (a).
Acknowledgement. The author would like to thank Professor Miklós Laczkovich for his suggestions.

References

[1] C. Goffman, On Lebesgue's density theorem, Proc. Amer. Math. Soc. 1(1950), 384-388
[2] A. C. M. Van Rooij and W. H. Schikhof, A second course on real functions, Cambridge University Press, 1982, page 47

Received April 25, 1988

