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 THE PACKING DIMENSION OP A TYPICAL CONTINUOUS FUNCTION IS 2

 In this paper we consider typical behavior of continuous

 functions f:[0,l] •* [0,1]. Typical properties are derived by
 2

 counting the number of squares of the regular nxn grid in [0,1]

 which intersect the graph of f and dividing by a power, a, of n.

 The (necessarily unique) a for which the lim sup of this quotient
 n-»»

 is not infinite is a rarefaction index for f and we call this

 index the grid dimension of f. First we show that a is the

 packing dimension for f and that typically, a continuous function
 '

 has a grid dimension, and hence a packing dimension of 2.

 Let C denote the space of all continuous functions

 f:[0,l] -» [0,1] with the sup norm. A property of continuous

 functions (e.g. nondif f erentiability ) is said to be typical if

 the set of functions enjoying this property is a residual subset

 of C. There has been a lively typical continuous function

 literature in the past decade and both [B] and [T] contain

 retinues of results and bibliographies. In the next several

 paragraphs we define three distinct notions of the dimension of a

 planar set and then apply these to graphs of functions in C. If
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 U «{U ç [0,1]} we let U U ■ U U .
 n n=l

 For each n € M we define

 frm-l m . , k-1 k . 1 . L [
 L

 [2lŁ, i]x[*lł, i); k < n

 Ck * :
 Pm-1 m v Pn-1 „ , .
 t- - ñ»xt- v • ii: „ , » < . n

 [2^i, U ¡ ■ - k - n.

 Then, we let G s { ln . : i < m,k < n> and refer to G_ as the
 n m, K n

 2 2
 regular grid of index n in [0,1] . If E ç [0,1] we denote by

 N(E,n) the number of squares in Gr which intersect E. It is
 2

 evident that 1 < N(E,n) < n for E * 0 and hence for a small

 enough ,

 / * k ! • N(E,n)
 / (1) * k lim ! • SUp - - :

 n-»® na

 We define the grid dimension of E to be

 (2) a(E) « sup{a : lim sup N(E'n) = •>.
 n-»«® na

 If v is any Increasing sequence of natural numbers, we define the

 grid dimension of E relative to v to be

 (3) a (E) =» sup {a : lim sup N(E,p(n) * - •}.
 ^ / i OL

 n-»œ v ( / n ) i
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 Obviously, a(E) > 0, «^(E) > 0 for any E * 0 . If E is the graph

 of a continuous function, f, it is easy to see that 1 < a^(f) <
 a(f) < 2 whenever v is an increasing sequence. The various grids

 do not, in general, support a concomitant measure theory but the

 dimensions are related to the usual notions of Kausdorff

 dimension and packing dimension. These definitions are given

 below.

 2
 Let B denote the family of all open balls in R of diameter

 £

 less than e and let a e R+ . We denote the diameter of a set E by

 6(E) and define

 (4) a-m(E) ■ lim inf { I öa(B): a and b hold (see below))
 4-»0+ BeF

 (5) a-P(E) ■ lim sup{ J¡ öa(B): a, c and d hold), where
 *-♦0+ BeF

 a. F c Bfc
 b. E ç U F

 c. F is a pairwise disjoint family

 d. BeF implies the center of B is in E

 The Hausdorff dimension, /3(E), 7(E), and the packing dimension,

 7(E), are then defined as

 (6) /3(E) = sup(a:a-m(E)=»}

 (7) 7(E) ■* sup (a :a-P(E)=~) .
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 (8) 7(E) = Inf {sup 7 ( E . ) : E ç UE.).
 ÜEj i

 Once again, it is easy to check that if f e C then 1 < ß(f), t(t)

 < 2. Before proceeding we remark that although a-m is the

 classical Hausdorff measure, a-P is, in general, not a measure.

 It is, however, a premeasure and as such can be extended to a

 measure in the usual manner. The resulting measure is called

 packing measure and the theory of packing measures parallels but

 is distinct from the theory of Hausdorff measures. J. Taylor and

 C. Tricot prove the following result [TT1, Lemma 1 and Corollary

 3.9] in which v denotes the diatic sequence, f(n) = 2~n.

 Theorem TT. If E c R2 then 0 < ß(E) < a (E) ■ 7(E) < 2.
 ~ U1

 The next result implies that a(E) * 7(E) as well.

 ♦

 Lemma 1 . Let v and v be two increasing sequences of natural

 numbers. If there is a constant c > 0 and a function h:W - II

 satisfying

 ď(h(n)) < i>*(n) < t>(h(n))

 2

 for every n, then for every E ç [0,1] , a^(E) > a^*(E).

 *

 Proof. Let n e M be fixed. If u{ h(n)) > v (n), and S is any

 square in Gw(h(n))' then S intersects at most four squares in
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 Gi>*(n)' Hence whenever v (n) < v(h(n)) we have 4N( E , v (h(n) ) ) >
 *

 N(E,u (n) ) . Then, for each a > 0 we have

 N(E,iMh(n))) > N(E,u*(n) ) > v*(n)a N(g,p*(n)) >
 *(h(n))a = 4f ( h( n) )a * 4v(h(n))a v (n)a

 „ ca N(E,p*(n))
 - -j ķ - .

 u (n)

 Hence ,

 lim sup »<'/<">> < lim sup K N<E'"<h<n>>>
 n-+<» v ( n ) n-»« v ( h ( n ) )

 4
 where K » - . The result follows directly from this last

 inequality.

 It 1s an immediate consequence of Lemma 1 that if

 2
 E ç [0,1] , then a ( E ) = a ( E ) and hence , by Theorem TT , we

 "l
 2

 obtain that a(E) = •* ( E ) for any set E ç [0,1] .

 Proposition 2. Let s(n) be any sequence with limit s(n) = ».
 n-»®

 Then, there is a residual set of functions, f, such that

 lim sup s(n) « ».
 n-»» n

 Proof . It suffices to show that for every open set of functions,

 U ç C and every integer k, there is an open set V ç U and an m >

 k such that whenever g e V, then
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 Siâiïi s(m) > k.
 m

 Let U ç C be open, k e M, and suppose f e U. There is an & >0

 such that U ■ {g : li f -gli < e) ç U. Let m > k be so large that
 2k

 s(m) > - and if J = (S € G : S c U„ } , then UJ contains an
 c m i

 element of C and has an area which exceeds half the area of

 . It is easy to see that there is a gQ e C and 0 > 0 such that

 U) gQ £ U J

 (ii) gQ fi S * 0 for every S € J, and

 (iii) if llg-goll < ö then N(gQ,m) = N(g,m).
 Therefore, if llg-g II < 6 then

 O

 N^g¿m) s (m) =
 m m

 Theorem 3. There is a residual set, F, of continuous functions

 such that

 7(f) = 2 (f€F),

 i.e. typical continuous functions have a packing dimension of 2.

 Proof . It is Immediate that Proposition 2 holds relative to any

 open subinterval I c [0,1]. Letting I run through the intervals

 with rational endpoints we obtain that for typical continuous

 functions f, 7(fj) = 2 for every rational interval, I. (Here f^
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 denotes the restriction of f to I.) If, for such a function f, f

 c UE^, then by the Baire Category Theorem there is a set and a

 rational interval I such that E^ is dense in f^. But, by Lemma

 3.2 of [TT2 ] , -ř(E) » 7(C1E) for any E and hence, 7(Eļ) « f(ClEļ)

 Ł t(fļ) ® 2. Hence, y(E^) » 2 and the theorem follows.

 The following proposition is well known, but its proof is

 included for completeness.

 Proposition 4. Let *»:IR+ -» R+ be such that lim y « 0. Then
 x-»0+

 there is a residual set of functions, f, such that

 lim inf I I y(6(B)): F ç B e and f c U f| « 0. e-»0+ (.Be F e J

 Proof ♦ It suffices to show that for each open set U ç C and

 every e > 0 there is an open set V ç U such that if g « V then

 there is an F ç B where
 feo

 (i) g Ç U F, and

 (ii) E *>(ô(B)) < c .
 Be F

 As U ç C is open, there is a rectifiable gQ e U. Let be

 sufficiently small that 0 < y whenever 0 < x < where

 L is the length of g . Let F - c B be a cover of g„ such that
 o - fe ^ o
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 (i) B ç U U for every B e F,

 (ii) I 0(B) - L < 1.
 Be F

 We set V = {ge C: gel) F). Then if g e V, g « U F and

 J T (6{B) ) « I ö(B) (Ü4Í5U) Ô(B) < (f^rr) L+1 E Ö(B) < * ° . B«F BeF Ô(B) L+1 Be F °

 Theorem 3 and Proposition 4 are summarized below.

 Theorem 5. A typical continuous function has a Hausdorff

 dimension of 1 and a packing dimension of 2.

 We return, now, to Lemma 1 which shows that if two sequences

 are comparable ( in the sense of Lemma 1 ) then the grid dimension

 computed with the first sequence will coincide with the grid

 dimension computed with the second sequence. It is natural to

 inquire how different two sequences must be in order that the

 respective grid dimensions differ. There are several ways to

 formulate a response to this question; the following seems to us

 most concise.

 Theorem 6. Let u(n) (n=l,2,...) be an strictly increasing

 sequence of integers such that for any e > 0

 Inf "("I1) ^(n) > o. n ^(n)
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 Then, there exists a continuous function f such that

 ai/(2n)(" " 11
 %(2n+l)(f) " 2-

 Remarks . The proof is a bit simpler if the additional

 divisibility condition 2>v(n) |v(n+l) holds for our sequence. We

 suppose this because obvious modifications in the construction

 easily yield the general case.

 A sequence satisfying all conditions is, for example,

 i>(n) ■ 2(n+1) ! ( n=l , 2 , . . . ) .

 Indeed, 2e(n+1)l « 2n![*<n+l)] > 2n! ^ ļf 4(n+1) >

 It is also clear that the e -condition actually Implies

 vļ +.m
 vTn)

 for any c > 0 (and we shall make use of this fact in our proof):

 * 2
 i>(n+l) ■ [u(n+l)^j > [ci>(n)]2

 and hence

 i>(n+l)6 > v 2 . . w.i > v ° "(n) . . - *•
 In particular,

 - ^ , . u ( n+1 ) . . r(n+l) - ^ , . = -> ® (n . -» •), .

 which again will be needed in the proof.
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 Proof. Por each n we select a subset »_ c G.,.,. Let H_ » U{I:I

 « *n>, r(n) » v(n)/v(n-l). We need the following properties of

 *n

 (i> Hn+1 c Hn' Hn+1 n 1 * 0 for an* 1 e V

 (ii) I *2n+l 1 " ^(2n+l)2|*2n| and
 rUn)!*,,^! < |«2nl < 3r(2n)|*2n_1| (n-1,2,...),

 00

 (iii) n clH is the graph of a continuous function f,
 n=l

 defined on [0,1].

 We show first that these properties really imply our statement.

 Identifying f with its graph we have f c clH^ for any n and
 f fi I # 0 for any I € X (n=l,2,...). Then

 N(f,iMn)) = l»„(n)l »
 and hence by ( i i ) ,

 n 1 2
 N( f ,t> ( 2n+l ) ) > u [¿r<2k+irr(2k)].|* 1 2 M1| .

 k=i K '

 Therefore

 N(f,v(2n+1) , v ( 2n+l )fe . ^Z1 r(2k+l) . 1 ( 1 ) ' v C „ t/(2n+l)e „<2n«)ł- ž , . '¿i . i v C „ Win) •

 Thus we get

 lim N(f = «, for any > 0,
 n-»« i>(2n+l) 6

 i.e. a„(2n+l)^' * 2* Similarly, making use of the obvious
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 estimate l*2k+l' ® r(2k+l) 2 1 * 2lc ' we ol5tain

 N( f ,t»{ 2n) ) < 3n r(2n)r(2n-l)2---r(2)|»1l ^
 v ( 2n) 1+fe = v ( 2n) 1+t

 _ v ( 2n-l ) , ( 2n-3 ) ... ,0i>(3)x tÄl!
 u(2n)€ , y ( 2n-2 ) ... ( 3Zrrrr) v(l).y(2)

 < c.^(2n-l) ^ 0 (n a»)
 p(2n)'

 and this gives «P(2n)(f) = 1#
 To ensure (iii), Hn shall be made to satisfy

 (iila) Hn is connected;

 (iiib) any vertical line e = {(x,y):x=xQ, 0<xq<1)
 o

 meets Hn in a linear segment of length

 (iiic) the projection of Hn onto the x-axis is [0,1].
 CO 00 CO

 Then, as ť fl ( il H ) ■ fi (t n H ) we get a graph f = n clH
 X M Xl ^ JÍ Í1 - Xl
 o n=l M n=l ^ o n= 1 -

 and f c clHn Implies that the oscillation of f at any point is
 _(n-2)

 ~~ 5
 less than 2 ; that is, f is a continuous function. Now

 turning to the construction of *n we apply induction. Let

 - {1:1 e I H <[0,l]x{0}) * 0). Suppose that Hn has
 already been defined and (i), (ii), (iiia), (iiib), (iiic) all

 hold for indices <n. Consider the squares I , ..., 1^ of
 - n

 *n(Pn ■ |*nl ) arranged in a sequence which corresponds to the
 increasing lexicographic order of their midpoints. The sequence
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 I , I splits into blocks
 pn

 II' "" Ikļ ' Ikļ+1 ' xk2'

 where the midpoints of any two of the squares in *n have equal
 X coordinates if any only if they belong to the same block.

 These blocks are called the columns of * . This term is
 n

 justified by (iiib) because the squares I. I.
 j j+1

 themselves form a connected union. The grid Gy(n+i) induces a
 2

 subdivision of each I e *n into r(n+i) smaller squares, and

 half of these squares will be selected for *n+1 if n even
 but only r(n+l) will be taken to if n *8 odd. Let

 n « 2k and consider a column I. . , , . . . , I. in X . The
 V1 . , , . . . , "j+i n

 grid G . . induces a vertical subdivision of
 v ( n+l )

 I. i U ... U I. into r(n+l) thin strips. We cut each of
 j j+1

 these horizontally into two equal parts and we select the upper

 or lower part of each strip. At the first and last position we

 choose the upper or lower section to make sure it will be

 connected to the previous column and the successor column of *n#
 respectively. Otherwise the selection of the upper or lower part

 is arbitrary (see the shaded area on Figure 1).
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 Figure 1  Figure 2

 If n ■ 2k-l, we simply take the shaded part (as shown on Figure

 2) of the induced subdivision of the given column.

 It is trivial that (iiia), (iiib), (iiic) all hold by

 induction and hence our proof is complete.
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