## INTERPOLATED FOURIER TRANSFORMS

§0. Introduction. In this paper, the general form of transform $T$ on $L^{2}(0, \infty)$ defined by a kernel $\varphi$ is given by

$$
T f(t)=\underset{U \rightarrow \infty}{1 . i . m} \cdot \int_{0}^{U} f(u) \varphi(t u) d u \text { in } L^{2}(0, \infty)
$$

for $f \in L^{2}(0, \infty)$. Let $C$ and $S$ denote the cosine and sine transforms on $L^{2}(0, \infty)$, i.e.

$$
\begin{aligned}
& C f(t)=\underset{U \rightarrow \infty}{1 . i . m} \cdot \sqrt{2 / \pi} \int_{0}^{U} f(u) \cos t u d u \\
& S f(t)=\underset{U \rightarrow \infty}{1 . i . m .} \sqrt{2 / \pi} \int_{0}^{U} f(u) \sin t u d u
\end{aligned}
$$

for $f \in L^{2}(0, \infty)$. The Plancherel's Theorem states that

$$
S^{2}=C^{2}=I d
$$

In this paper, we consider the transform $C_{\alpha}$ defined by the kernel
$\sqrt{2 / \pi} \cos \left(\theta-\frac{\pi}{2} \alpha\right) \quad(\alpha \in \mathbb{R}):$
(0.1) $\quad C_{\alpha} f(t)=\underset{U \rightarrow \infty}{1 . i . m .} \sqrt{2 / \pi} \int_{0}^{U} f(u) \cos \left(t u-\frac{\pi}{2} \alpha\right) d u \quad$ in $\quad L^{2}(0, \infty)$
for $f \in L^{2}(0, \infty)$. Note first that $C_{0}=C$ and $C_{1}=S$; and $C_{\alpha}$ is a bounded transform on $L^{2}(0, \infty)$, since it is a linear combination of two bounded transforms on $L^{2}(0, \infty)$. The object of this paper is to construct the inverse of $C_{\alpha}$, and to show the inverse is a bounded transform on $L^{2}(0, \infty)$ for suitable $\alpha$; see Theorem 1 in §2 below. For the kernel defining the inverse, see (0.5). We prove this with the help of the Riemann-Liouville and Weyl fractional integral operators, which are defined respectively as follows:

$$
\begin{aligned}
& I_{\alpha} f(x)= \begin{cases}\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-y)^{\alpha-1} f(y) d y & (\alpha>0, x>0) \\
f(x) & (\alpha=0, x>0)\end{cases} \\
& J_{\alpha} f(x)= \begin{cases}\frac{1}{\Gamma(\alpha)} \int_{x}^{\infty}(y-x)^{\alpha-1} f(y) d y & (\alpha>0, x>0) \\
f(x) & (\alpha=0, x>0)\end{cases}
\end{aligned}
$$

There is a basic property for $\mathrm{I}_{\alpha}$ and $\mathrm{J}_{\alpha}$ :

$$
\begin{equation*}
\mathrm{I}_{\alpha+\beta^{f}}(\mathrm{x})=\mathrm{I}_{\alpha} \mathrm{I}_{\beta^{f}(\mathrm{x}),} \quad \mathrm{J}_{\alpha+\beta^{\prime}}(\mathrm{x})=\mathrm{J}_{\alpha} \mathrm{J} \beta^{\mathrm{f}}(\mathrm{x}) \tag{0.2}
\end{equation*}
$$

for $\alpha \geq 0, \beta \geq 0$.

Consider the Mellin transforms of $\cos \theta$ and $\sin \theta$. It is a consequence of (7.9.5) and (7.9.6) of [2] that

$$
\begin{equation*}
\mathrm{J}_{\alpha} \cos \theta=\cos \left(\theta+\frac{\pi}{2} \alpha\right), \quad \mathrm{J}_{\alpha} \sin \theta=\sin \left(\theta+\frac{\pi}{2} \alpha\right) \tag{0.3}
\end{equation*}
$$

for $0<\alpha<1$. On the other hand, by considering the Taylor series expansion, we have

$$
\begin{equation*}
I_{\alpha} \cos \theta=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(2 \mathrm{n}+1+\alpha)} \theta^{2 \mathrm{n}+\alpha} \quad(\alpha \geq 0) \tag{0.4}
\end{equation*}
$$

the series on the right-hand side of (0.4) is defined for $\forall \alpha \in \mathbb{R}$.

Note that the kernel in (0.1) is given by (0.3) for suitable $\alpha$.

## Denote

$$
\begin{equation*}
\mathbf{k}_{\alpha}(\theta)=\sqrt{2 / \pi} \sum_{\mathrm{n}=0}^{\infty} \frac{(-1)^{\mathrm{n}}}{\Gamma(2 \mathrm{n}+1+\alpha)} \theta^{2 \mathrm{n}+\alpha} \quad(\alpha \in \mathbb{R}) \tag{0.5}
\end{equation*}
$$

for negative odd integer $\alpha$, the term with $\Gamma$-factor is defined to be zero for integer $2 \mathrm{n}+\mathrm{l}+\alpha \leq 0$.

We show first in Lemma 3 that $\mathbf{k}_{\alpha}(\theta)$ defines a bounded transform $D_{\alpha}$ for $-\frac{1}{2}<\alpha<\frac{3}{2}$, and then show in Theorem 1 that

$$
\begin{equation*}
\mathrm{C}_{\alpha} \mathrm{D}_{\alpha} \mathrm{f}=\mathrm{D}_{\alpha} \mathrm{C}_{\alpha} \mathrm{f}=\mathrm{f} \quad\left(-\frac{1}{2}<\alpha<\frac{3}{2}\right) \tag{0.6}
\end{equation*}
$$

for $f \in L^{2}(0, \infty)$.

We introduce here the averaging operators which are needed in this paper. For $f \in L^{2}(0, \infty)$, we define the transforms $A_{\alpha^{\prime}} B_{\beta}$ as follows:

$$
\begin{array}{ll}
A_{\alpha} f(x)=x^{-\alpha} \int_{0}^{x} y^{\alpha-1} \\
f(y) d y & \left(\alpha>\frac{1}{2}\right) \\
B_{\beta^{\prime}}(x)=x^{-\beta} \int_{x}^{\infty} y^{\beta-1} f(y) d y & \left(\beta<\frac{1}{2}\right)
\end{array}
$$

§1. Some lemmas. To pursue the object of this paper, we need several lemmas.

Lemma 1. The $A_{\alpha}$ and $B_{\beta}$ are bounded operators on $L^{2}(0, \infty)$, and

$$
\|\mathrm{A}\|_{2} \leq\left(\alpha-\frac{1}{2}\right)^{-1}, \quad\left\|\mathrm{~B}_{\beta}\right\|_{2} \leq\left(\frac{1}{2}-\beta\right)^{-1} .
$$

Proof. By (9.9.8) and (9.9.9) of [1], the results follow immediately.

Lemma 2. Consider (0.5). For $\alpha<2$, we have

$$
\sqrt{\pi / 2} \mathrm{k}_{\alpha}(\theta)=\cos \left(\theta-\frac{\pi}{2} \alpha\right)+\frac{1}{\Gamma(\alpha-1)} \int_{\theta}^{\infty} \xi^{\alpha-2} \sin (\xi-\theta) \mathrm{d} \xi \quad(\theta>0)
$$

and the integral in the above is defined to be zero for integer $\alpha$ less than or equal to 1 .

Proof. Put $\mathrm{K}_{\alpha}(\theta)=\sqrt{\pi / 2} \mathrm{k}_{\alpha}(\theta)$. By differentiating $\mathrm{K}_{\alpha}(\theta)$ twice, we see that

$$
\mathrm{K}_{\alpha}^{\prime \prime}(\theta)+\mathrm{K}_{\alpha}(\theta)=\frac{1}{\Gamma(\alpha-1)} \theta^{\alpha-2}
$$

On the other hand, for $\alpha<2$

$$
\Gamma(\alpha-1) \int_{\theta}^{\infty} \xi^{\alpha-2} \sin (\xi-\theta) \mathrm{d} \xi
$$

is a special solution to the differential equation

$$
\mathrm{y}^{\prime \prime}+\mathrm{y}=\frac{1}{\Gamma(\alpha-1)} \theta^{\alpha-2}
$$

Thus

$$
\mathrm{K}_{\alpha}(\theta)=\cos \left(\theta-\frac{\pi}{2} \mathrm{a} \alpha\right)+\frac{1}{\Gamma(\alpha-1)} \int_{0}^{\infty} \xi^{\alpha-2} \sin (\xi-0) \mathrm{d} \xi
$$

for some constant $\mathrm{a}_{\alpha}$ depending on $\alpha$. Now the above and (0.5) yield

$$
\mathrm{K}_{\alpha-1}(\theta)=\mathrm{K}_{\alpha}^{\prime}(\theta)=\cos \left(\theta-\frac{\pi}{2}\left(\mathrm{a}_{\alpha}-1\right)\right)+\frac{1}{\Gamma(\alpha-2)} \int_{\theta}^{\infty} \xi^{\alpha-3} \sin (\xi-\theta) \mathrm{d} \xi .
$$

Thus we may take

$$
\begin{equation*}
a_{\alpha}-1=a_{\alpha-1} \tag{1.0}
\end{equation*}
$$

By taking $\theta=0$, we have for $0<\alpha<2$

$$
0=K_{\alpha}(0)=\cos \frac{\pi}{2} a_{\alpha}+\frac{1}{\Gamma(\alpha-1)} \int_{0}^{\infty} \xi^{\alpha-2} \sin \xi \mathrm{~d} \xi .
$$

Since

$$
\frac{1}{\Gamma(\alpha-1)} \int_{0}^{\infty} \xi^{\alpha-2} \sin \xi \mathrm{~d} \xi=-\cos \frac{\pi}{2} \alpha,
$$

we may take $\mathrm{a}_{\alpha}=\alpha$ for $0<\alpha<2$.

This completes the proof of Lemma 2 by virtue of (1.0).

Lemma 3. For $-\frac{1}{2}<\alpha<\frac{3}{2}$, the series $\mathrm{k}_{\alpha}(\theta)$ in ( 0.5 ) defines a bounded transforms on $L^{2}(0, \infty)$.

Proof. We assume $\alpha \neq 0,1$. It is convenient to consider $\mathrm{K}_{\alpha}(\theta)=$ $\sqrt{\pi / 2} \mathbf{k}_{\alpha}(\theta)$. Define

$$
\delta(\mathrm{a}, \mathrm{~b})= \begin{cases}1, & 0<\mathrm{a} \leq \mathrm{b} \\ 0, & 0<\mathrm{b}<\mathrm{a}\end{cases}
$$

and

$$
\begin{array}{rlrl}
\beta(\theta)=\theta^{\alpha} \cdot \delta(\theta, 1), & & \gamma(\theta)=\theta^{\alpha-2} \cdot \delta(1, \theta) \\
\eta(\theta)=\mathrm{K}_{\alpha}(\theta) \cdot \delta(1, \theta), & \epsilon(\theta)=\cos \left(\theta-\frac{\pi}{2} \alpha\right) \cdot \delta(1, \theta) .
\end{array}
$$

Write as

$$
\mathrm{K}_{\alpha}(\theta)=\left(\mathrm{K}_{\alpha}(\theta)-\eta(\theta)\right)+(\eta(\theta)-\epsilon(\theta))+\epsilon(\theta) .
$$

Considering the power series expansion of $\mathrm{K}_{\alpha}(\theta)$, we see that

$$
\left|\mathrm{K}_{\alpha}(\theta)-\eta(\theta)\right|=O(\beta(\theta))
$$

and by Lemma 2

$$
|\eta(\theta)-\epsilon(\theta)|=O(\gamma(\theta)) .
$$

So, it suffices to show that

$$
\beta(\theta), \quad \gamma(\theta), \quad \epsilon(\theta)
$$

are all the kernels of bounded transforms on $L^{2}(0, \infty)$.

Given any $f \in L^{2}(0, \infty)$, we have first for $\beta(\theta)$

$$
\begin{aligned}
\mathrm{F}(\mathrm{u}) & =\int_{0}^{\infty} \mathrm{f}(\mathrm{t}) \beta(\mathrm{tu}) \mathrm{dt}=\int_{0}^{1 / u} \mathrm{f}(\mathrm{t})(\mathrm{tu})^{\alpha} \mathrm{dt} \\
& \left.=u^{-1} \mathrm{~A}_{\alpha+1^{f}} \mathrm{u}^{-1}\right) .
\end{aligned}
$$

Since $\quad \alpha+1>\frac{1}{2}$, and

$$
\left(\int_{0}^{\infty}|\mathrm{F}(\mathrm{u})|^{2} \mathrm{du}\right)^{1 / 2}=\left(\int_{0}^{\infty} \left\lvert\, \mathrm{A}_{\left.\alpha+\left.\mathrm{l}^{\mathrm{f}}(\mathrm{u})\right|^{2} \mathrm{du}\right)^{1 / 2} \leq\left(\alpha+\frac{1}{2}\right)^{-\mathrm{l}}\|f\|_{2}}\right.\right.
$$

by Lemma 1 , which shows that $\beta(\theta)$ is the kernel of a bounded transform on $L^{2}(0, \infty)$. As for $\gamma(\theta)$, we have

$$
F(u)=\int_{0}^{\infty} f(t) \gamma(t u) d t=\int_{u}^{\infty}-\mathrm{l}^{f}(t)(t u)^{\alpha-2} d t
$$

$$
\left.=u^{-1} \mathrm{~B}_{\alpha-1} \mathrm{f}^{\mathrm{f}} \mathrm{u}^{-1}\right)
$$

Since $\quad \alpha-1<\frac{1}{2}$, and

$$
\left(\int_{0}^{\infty}|F(\mathrm{u})|^{2} \mathrm{du}\right)^{1 / 2}=\left(\int_{0}^{\infty}\left|\mathrm{B}_{\alpha-1} \mathrm{f}(\mathrm{u})\right|^{2} \mathrm{du}\right)^{1 / 2} \leq\left(\frac{1}{2}-(\alpha-1)\right)^{-1}\|\mathrm{f}\|_{2}
$$

by Lemma 1 , which shows that $\gamma(\theta)$ is the kernel of a bounded transform on $\mathrm{L}^{2}(0, \infty)$. Finally, to show $\epsilon(\theta)$ is the kernel of a bounded transform on $\mathrm{L}^{2}(0, \infty)$, it is enough to work on

$$
\bar{\epsilon}(\theta)=\cos \left(\theta-\frac{\pi}{2} \alpha\right) \cdot \delta(\theta, 1),
$$

since $\cos \left(\theta-\frac{\pi}{2} \alpha\right)=\epsilon(\theta)+\bar{\epsilon}(\theta)$. Obviously

$$
\bar{\epsilon}(\theta)=O(\beta(\theta))
$$

for any fixed $\alpha<0$. And we have shown that $\beta(\theta)$ is the kernel of a bounded transform for $-\frac{1}{2}<\alpha<0$, which implies that $\bar{\epsilon}(\theta)$ is the kernel of a bounded transform on $L^{2}(0, \infty)$.

This completes the proof of Lemma 3.
§2. Proof of Theorem 1. Note first that

$$
\begin{equation*}
\mathbf{k}_{\alpha}(\theta)=\sqrt{2 / \pi} \mathrm{I}_{\alpha} \cos \theta \quad(\alpha \geq 0) \tag{2.0}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\mathrm{D}_{\alpha} \mathrm{f}(\mathrm{u})=\underset{\mathrm{T} \rightarrow \infty}{\mathrm{l} . \mathrm{i} . \mathrm{m} .} \int_{0}^{\mathrm{T}} \mathrm{f}(\mathrm{t}) \mathrm{k}_{\alpha}(\mathrm{tu}) \mathrm{dt} \quad\left(-\frac{1}{2}<\alpha<\frac{3}{2}\right) \tag{2.1}
\end{equation*}
$$

for $f \in L^{2}(0, \infty)$. Lemma 3 shows that $D_{\alpha}$ is a bounded transform on $L^{2}(0, \infty)$.

Theorem 1. Consider the transform $C_{\alpha}$ in (0.1). We have

$$
\begin{equation*}
\mathrm{C}_{\alpha} \mathrm{D}_{\alpha}^{\mathrm{f}}=\mathrm{D}_{\alpha} \mathrm{C}_{\alpha}^{\mathrm{f}}=\mathrm{f} \quad\left(-\frac{1}{2}<\alpha<\frac{3}{2}\right) \tag{2.2}
\end{equation*}
$$

for $f \in L^{2}(0, \infty)$.

Proof. By the Plancherel's Theorem, (2.2) holds good for $\alpha=0,1$.

Step 1. We show first that (2.2) holds good for $0<\alpha<1$.

Let $f \in C^{\infty}(0, \infty)$ with support a compact subset of $(0, \infty)$. Note that $\operatorname{supp} J_{\alpha} f(v) \subset[0, A]$ for $\forall$ large $A$. By the definition of $I_{\alpha} \cos \theta$,
we have

$$
\begin{align*}
F(u)= & D_{\alpha} f(u)=\sqrt{2 / \pi} \int_{0}^{\infty} f(t) I_{\alpha} \cos (t u) d t  \tag{2.3}\\
& =\sqrt{2 / \pi} \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} f(t) \int_{0}^{t u}(t u-v)^{\alpha-1} \cos v d v d t \\
& =\sqrt{2 / \pi} \frac{u^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} \cos u v \int_{v}^{\infty}(t-v)^{\alpha-1} f(t) d t d v .
\end{align*}
$$

## This gives

$$
\begin{equation*}
u^{-\alpha} F(u)=\sqrt{2 / \pi} \int_{0}^{\infty} J{ }_{\alpha}^{f(v) \cos u v d v} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
F(u)=O\left(u^{\alpha}\right) \quad\left(u \rightarrow 0^{+}\right) \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
F(u)=O\left(u^{\alpha-2}\right) \quad(u \rightarrow+\infty) \tag{2.6}
\end{equation*}
$$

by taking integration by parts twice in (2.4).

By Plancherel's Theorem, (2.4) yields

$$
\begin{equation*}
\mathrm{J}_{\alpha} \mathrm{f}(\mathrm{v})=\sqrt{2 / \pi} \int_{0}^{\infty} \mathrm{u}^{-\alpha} \mathrm{F}(\mathrm{u}) \cos \mathrm{uvdu} . \tag{2.7}
\end{equation*}
$$

By using (0.2), equation (2.7) yields
(2.8)

$$
\begin{aligned}
& \sqrt{\pi / 2} \Gamma(1-\alpha) J_{1} f(v)=\sqrt{\pi / 2} \int_{v}^{\infty}(t-v)^{-\alpha} J_{\alpha} f(t) d t \\
& =\int_{v}^{\infty}(t-v)^{-\alpha} \int_{0}^{\infty} u^{-\alpha} F(u) \cos \text { tududt } \\
& =\int_{v}^{\infty}(t-v)^{-\alpha}\left\{-\frac{1}{t} \int_{0}^{\infty}\left[u^{-\alpha} F(u)\right]^{\prime} \sin t u d u\right\} d t, \\
& \text { since } u^{-\alpha} F(u) \operatorname{sint} u \left\lvert\, \begin{array}{l}
u=\infty \\
u=0
\end{array}=0\right. \text {, by (2.5) and (2.6), } \\
& =\int_{0}^{\infty}\left[u^{-\alpha} F(u)\right]^{\prime} \int_{v}^{\infty}(t-v)^{-\alpha}\left(-\frac{1}{t}\right) \sin \text { tudtdu, }
\end{aligned}
$$

by the fact $\left[u^{-\alpha} F(u)\right]^{\prime}=\min \left(O(1), O\left(u^{-2}\right)\right)$ following from (2.4) and hence

$$
\begin{aligned}
& {\left[u^{-\alpha} F(u)\right]^{\prime}(t-v)^{-\alpha} t^{-1} \in L_{(0, \infty)}^{1}(u) \times L_{(v, \infty)}^{1}(t)} \\
& \quad=\left[u^{-\alpha} F(u)\right] \int_{v}^{\infty}(t-v)^{-\alpha}\left(-\frac{1}{t}\right) \sin \text { tudu }\left.\right|_{u=0} ^{u=\infty} u=0
\end{aligned}
$$

$$
\begin{aligned}
& -\int_{0}^{\infty} u^{-\alpha} F(u) \int_{v}^{\infty}(t-v)^{-\alpha}\left(-\frac{1}{t}\right)(\cos \text { tu }) t d t d u \\
= & \int_{0}^{\infty} u^{-\alpha} F(u) \int_{v}^{\infty}(t-v)^{-\alpha} \cos \text { tudtdu } \\
= & \Gamma(1-\alpha) \int_{0}^{\infty} u^{-1} F(u) J_{1-\alpha} \cos (u v) d u
\end{aligned}
$$

Differentiating both sides of (2.8) gives rise to

$$
\begin{align*}
f(v)= & \sqrt{2 / \pi} \int_{0}^{\infty} F(u) J_{1-\alpha} \sin (u v) d u  \tag{2.9}\\
& =\sqrt{2 / \pi} \int_{0}^{\infty} F(u) \cos \left(u v-\frac{\pi}{2} \alpha\right) d u, \quad \text { by }(0.3) \\
& =C \cdot F(v)=C_{\alpha} D_{\alpha} f(v)
\end{align*}
$$

Conversely, consider again $f \in C^{\infty}(0, \infty)$ with support a compact subset of $(0, \infty)$. By ( 0.3 ), we have

$$
\begin{align*}
F(v)= & C_{\alpha} f(v)=\sqrt{2 / \pi} \int_{0}^{\infty} f(u) J_{1-\alpha} \sin (u v) d u  \tag{2.10}\\
& =\sqrt{2 / \pi} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{\infty} f(u) \int_{u v}^{\infty}(t-u v)^{-\alpha} \sin t d t d u
\end{align*}
$$

$$
=\sqrt{2 / \pi} \frac{1}{\Gamma(1-\alpha)} \int_{v}^{\infty}(t-v)^{-\alpha} \int_{0}^{\infty} u^{1-\alpha_{f}(u) \sin \text { tududt. } . ~ . ~}
$$

Taking integration by parts, we see that

$$
\begin{equation*}
\int_{0}^{\infty} u^{1-\alpha_{f}(u) \sin \operatorname{tudu}}=O\left(t^{-k}\right) \quad(t \rightarrow+\infty) \tag{2.11}
\end{equation*}
$$

for any integer $k>0$. So

$$
\begin{equation*}
F(v)=O\left(v^{-k}\right) \quad(v \rightarrow+\infty) \tag{2.12}
\end{equation*}
$$

for any integer $k>0$. Now by (0.2), (2.10) gives rise to

$$
\mathrm{J}_{\alpha} \mathrm{F}(\mathrm{v})=\sqrt{2 / \pi} \int_{\mathrm{v}}^{\infty} \int_{0}^{\infty} \mathrm{u}^{1-\alpha} \mathrm{f}(\mathrm{u}) \sin \text { tududt }
$$

and hence

$$
\left(\mathrm{J}_{\alpha} \mathrm{F}\right)^{\prime}(\mathrm{v})=-\sqrt{2 / \pi} \int_{0}^{\infty} \mathrm{u}^{1-\alpha_{\mathrm{f}}(\mathrm{u}) \sin u v d u .}
$$

Consequently, we have by using (2.12)

$$
\begin{equation*}
u^{l-\alpha_{f}}(\mathrm{u})=-\sqrt{2 / \pi} \int_{0}^{\infty}\left(\mathrm{J}_{\alpha} F\right)^{\prime}(\mathrm{v}) \sin u v d v \tag{2.13}
\end{equation*}
$$

$$
=\mathrm{u} \sqrt{2 / \pi} \int_{0}^{\infty}\left(\mathrm{J}_{\alpha} \mathrm{F}\right)(\mathrm{v}) \cos \mathrm{uvdv},
$$

and

$$
\begin{aligned}
& u^{-\alpha} f(u)=\sqrt{2 / \pi} \frac{1}{\Gamma(\alpha)} \lim _{A \rightarrow \infty} \int_{0}^{A} \cos u v \int_{v}^{\infty}(t-v)^{\alpha-1} F(t) d t d v \\
= & \sqrt{2 / \pi} \frac{1}{\Gamma(\alpha)} \lim _{A \rightarrow \infty}\left\{\int_{0}^{A} F(t) \int_{0}^{t}(t-v)^{\alpha-1} \cos u v d v d t+\int_{A}^{\infty} F(t) \int_{0}^{A}(t-v)^{\alpha-1} \cos u v d v d t\right\} \\
= & \sqrt{2 / \pi} u^{-\alpha} \int_{0}^{\infty} F(t) I_{\alpha} \cos (t u) d t .
\end{aligned}
$$

So

$$
\mathrm{f}(\mathrm{u})=\int_{0}^{\dot{\infty}} \mathrm{F}(\mathrm{t}) \mathrm{k}_{\alpha}(\mathrm{tu}) \mathrm{dt}=\mathrm{D}_{\alpha} \mathrm{F}(\mathrm{u})=\mathrm{D}_{\alpha} \mathrm{C}_{\alpha} \mathrm{f}(\mathrm{u})
$$

By a standard continuity argument, we see that (2.2) holds good for $0<\alpha<1$.

Step 2. We now show that (2.2) holds good for $1<\alpha<\frac{3}{2}$. Note first that $I_{\alpha} \cos \theta=I_{\alpha-1} \sin \theta$, and $0<\alpha-1<\frac{1}{2}$. We proceed the same argument as in Step 1 with $I_{\alpha-1} \sin \theta$ in the place of $I_{\alpha-1} \cos \theta$. Put $\beta=\alpha-1$.

Corresponding to (2.3), we have
(2.14) $\quad \mathrm{F}(\mathrm{u})=\mathrm{D}_{\beta^{f}(\mathrm{u})}=\sqrt{2 / \pi} \frac{u^{\beta}}{\Gamma(\beta)} \int_{0}^{\infty} \sin u v \int_{v}^{\infty}(\mathrm{t}-\mathrm{v})^{\beta-1} \mathrm{f}(\mathrm{t}) \mathrm{dtdv}$.

This gives

$$
\begin{equation*}
u^{-\beta} F(u)=\sqrt{2 / \pi} \int_{0}^{\infty} J_{\beta^{f}(v) \sin u v d v} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
F(u)=O\left(u^{\beta+1}\right) \quad\left(u \rightarrow 0^{+}\right) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{-\beta} F(u)=\sqrt{2 / \pi} J_{\beta^{f}(0) u^{-1}}+O\left(u^{-2}\right) \quad(u \rightarrow+\infty) \tag{2.17}
\end{equation*}
$$

by taking integration by parts in (2.15).

By Plancherel's Theorem and (2.17), we see that
(2.18)

$$
\mathrm{J}_{\boldsymbol{\beta}} \mathrm{f}(\mathrm{v})=\sqrt{2 / \pi} \int_{0}^{\infty} \mathrm{u}^{-\beta} \mathrm{F}(\mathrm{u}) \sin \mathrm{uvdu}
$$

Corresponding to (2.8), we have by (2.18)

$$
\begin{aligned}
& \mathrm{J}_{1} \mathrm{f}(\mathrm{v}) \\
& =\frac{1}{\Gamma(1-\beta)} \int_{v}^{A}(t-v)^{-\beta} J_{\beta} f(t) d t \\
& =\sqrt{2 / \pi} \frac{1}{\Gamma(1-\beta)} \int_{v}^{A}(t-v)^{-\beta} \int_{0}^{\infty} u^{-\beta} F(u) \sin t u d u d t \\
& =\sqrt{2 / \pi} \frac{1}{\Gamma(1-\beta)} \lim _{B \rightarrow \infty}\left\{\int_{0}^{B} u-\beta_{F(u)}^{A}(t-v)^{-\beta} \sin \right. \text { tudtdu } \\
& \left.+\int_{v}^{A}(t-v)^{-\beta} \int_{B}^{\infty} u^{-\beta} F(u) \sin \text { tududt }\right\} \\
& =\sqrt{2 / \pi} \frac{1}{\Gamma(1-\beta)} \int_{0}^{\infty} u^{-\beta} F(u) \int_{v}^{A}(t-v)^{-\beta} \sin \text { tudtdu, by (2.17) } \\
& =\sqrt{2 / \pi} \frac{1}{\Gamma(1-\beta)} \int_{0}^{\infty} u^{-1} F(u) \int_{u v}^{\infty}(t-u v)^{-\beta} \sin \text { tdtdu, by making } A \rightarrow \infty,
\end{aligned}
$$

since by writing

$$
\int_{v}^{A}(t-v)^{-\beta} \sin \text { tudt }=\int_{v}^{v+1}(t-v)^{-\beta_{\sin } t u d t}+\int_{v+1}^{A}(t-v)^{-\beta} \sin t u d t
$$

and by taking integration by parts

$$
\int_{v+1}^{A}(t-v)^{-\beta} \sin t u d t=O\left(u^{-1}\right)
$$

uniformly with respect to $A \rightarrow+\infty$. So the above gives

$$
\begin{equation*}
\mathrm{J}_{1} \mathrm{f}(\mathrm{v})=\sqrt{2 / \pi} \int_{0}^{\infty} \mathrm{u}^{-\mathrm{l}} \mathrm{~F}(\mathrm{u}) \mathrm{J}_{1-\beta} \sin (\mathrm{uv}) \mathrm{du} . \tag{2.19}
\end{equation*}
$$

Now by using (2.17), we can differentiate both sides of (2.19) and get

$$
\begin{aligned}
f(v)= & -\sqrt{2 / \pi} \int_{0}^{\infty} F(u) J_{1-\beta} \cos u v d u \\
& =\sqrt{2 / \pi} \int_{0}^{\infty} F(u) \cos \left(u v-\frac{\pi}{2} \alpha\right) d u . \\
& =C_{\alpha} F(v)=C_{\alpha} D_{\alpha} f(v), \quad\left(1<\alpha<\frac{3}{2}\right)
\end{aligned}
$$

To justify the above equation, it is enough to show

$$
\frac{d}{d v} \int_{1}^{\infty} u^{-1} F(u) J_{1-\beta^{\sin } u v d u}=\int_{1}^{\infty} u^{-1} F(u) \frac{d}{d v}\left(J_{1-\beta}^{\sin u v) d u .}\right.
$$

Now (2.17) gives

$$
u^{-1} F(u)=\lambda u^{\beta-2}+O\left(u^{\beta-3}\right)
$$

for some constant $\lambda$. By appealing to (0.3), we see that

$$
\frac{d}{d v} \int_{1}^{\infty} u^{\beta-2} J_{1-\beta} \sin u v d u=\int_{1}^{\infty} u^{\beta-2} \frac{d}{d v}\left(\mathrm{~J}_{1-\beta} \sin u v\right) d u
$$

and since $F(u)-\lambda u^{\beta-1}=O\left(u^{\beta-2}\right) \in L^{1}(0, \infty)$, which combined together prove what we want.

Conversely, corresponding to (2.10), we have

$$
\begin{align*}
F(v)= & C_{\alpha} f(v)=-\sqrt{2 / \pi} \int_{0}^{\infty} f(u) J_{1-\beta} \cos (u v) d u  \tag{2.20}\\
& =-\sqrt{2 / \pi} \frac{1}{\Gamma(1-\beta)} \int_{v}^{\infty}(t-v)^{-\beta} \int_{0}^{\infty} u^{1-\beta_{f}(u) \cos \text { tududt }}
\end{align*}
$$

and to (2.11), (2.12) we have

$$
\begin{align*}
& \int_{0}^{\infty} \mathrm{u}^{1-\beta_{\mathrm{f}}(\mathrm{u}) \cos \mathrm{tudu}}=0\left(\mathrm{t}^{-\mathrm{k}}\right)(\mathrm{t} \rightarrow+\infty)  \tag{2.21}\\
& \mathrm{F}(\mathrm{v})=0\left(\mathrm{v}^{-\mathrm{k}}\right)  \tag{2.22}\\
&(\mathrm{v} \rightarrow+\infty)
\end{align*}
$$

for any integer $\mathbf{k}>\mathbf{0}$.

In view of (0.2), (2.20) gives rise to

$$
\mathrm{J}_{\beta} \mathrm{F}(\mathrm{v})=-\sqrt{2 / \pi} \int_{\mathrm{v}}^{\infty} \int_{0}^{\infty} \mathrm{u}^{1-\beta_{f}(\mathrm{u}) \cos \text { tududt }, ~}
$$

and hence

$$
\left(\mathrm{J}_{\beta^{F}}\right)^{\prime}(\mathrm{v})=\sqrt{2 / \pi} \int_{0}^{\infty} \mathrm{u}^{1-\beta_{\mathrm{f}}(\mathrm{u}) \cos u v d u .}
$$

Consequently, we have

$$
\begin{align*}
u^{l-\beta_{f}(u)}=\sqrt{2 / \pi} & \int_{0}^{\infty}\left(J_{\beta} F\right)^{\prime}(v) \cos u v d v  \tag{2.23}\\
& =c+\sqrt{2 / \pi} u \int_{0}^{\infty}\left(J_{\beta} F\right)(v) \sin u v d v
\end{align*}
$$

for some constant $c$; by virtue of (2.22) and by making $u \rightarrow 0^{+}$in (2.23), we see that $c=0$. So, we have, by using (2.22),

$$
\begin{aligned}
u^{-\beta} f(u)= & \sqrt{2 / \pi} \frac{1}{\Gamma(\beta)} \underset{A \rightarrow \infty}{\lim } \int_{0}^{A} \sin u v \int_{v}^{\infty}(t-v)^{\beta-1} F(t) d t d v \\
& =\sqrt{2 / \pi} \frac{1}{\Gamma(\beta)} \lim _{A \rightarrow \infty}\left\{\int_{0}^{A} F(t) \int_{0}^{t}(t-v)^{\beta-1} \sin u v d v d t\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+\int_{A}^{\infty} F(t) \int_{0}^{A}(t-v)^{\beta-1_{\sin }} u v d v d t\right\} \\
& =u^{-\beta} \sqrt{2 / \pi} \int_{0}^{\infty} F(t) I_{\beta^{2}} \sin (t u) d t
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{f}(\mathrm{u})= & \sqrt{2 / \pi} \int_{0}^{\infty} \mathrm{F}(\mathrm{t}) \mathrm{I}_{\alpha} \cos (\mathrm{tu}) \mathrm{dt} \\
& =\int_{0}^{\infty} \mathrm{F}(\mathrm{t}) \mathrm{k}_{\alpha}(\mathrm{tu}) \mathrm{dt}=\mathrm{D}_{\alpha} \mathrm{F}(\mathrm{u})=\mathrm{D}_{\alpha} \mathrm{C}_{\alpha} \mathrm{f}(\mathrm{u}) .
\end{aligned}
$$

By a standard continuity argument, we see that (2.2) holds good for $1<\alpha<\frac{3}{2}$.

Step 3. Finally we show that (2.2) holds good for $-\frac{1}{2}<\alpha<0$. Suppose $f \in C^{\infty}(0, \infty)$ with support a compact subset of $(0, \infty)$.

Consider first

$$
\begin{aligned}
D_{\alpha} f(u) & =\int_{0}^{\infty} f(t) k_{\alpha}(t u) d t \\
& =\left.u^{-1} f(t) k_{\alpha+1}(t u)\right|_{t=0} ^{t=\infty}-u^{-1} \int_{0}^{\infty} f^{\prime}(t) k_{\alpha+1}(t u) d t .
\end{aligned}
$$

By Lemma 2, we have the estimate

$$
D_{\alpha^{\prime}}(u)=O\left(u^{\alpha-2}\right) \quad(u \rightarrow+\infty)
$$

and hence

$$
u D_{\alpha} f(u) \in L^{l}(0, \infty)
$$

Since $\frac{1}{2}<\alpha+1<1,(2.2)$ gives rise to

$$
-f^{\prime}(t)=\int_{0}^{\infty} u D_{\alpha} f(u) \cos \left(t u-\frac{\pi}{2}(\alpha+1)\right) d u
$$

from which it follows

$$
f(t)=\int_{0}^{\infty} D_{\alpha} f(u) \cos \left(t u-\frac{\pi}{2} \alpha\right) d u=C_{\alpha} D_{\alpha} f(t)
$$

Consider next

$$
\left.\mathrm{C}_{\alpha} \mathrm{f}(\mathrm{u})=\int_{0}^{\infty} \mathrm{f}(\mathrm{t}) \cos \left(\mathrm{tu}-\frac{\pi}{2} \alpha\right)\right) \mathrm{dt} .
$$

Note that

$$
\left(\mathrm{C}_{\alpha}\right)^{(\ell)}(u)=O\left(u^{-k}\right) \quad(u \rightarrow+\infty)
$$

for any integers $k>0, \ell \geq 0$, and

$$
\begin{aligned}
\left(\mathrm{C}_{\alpha} \mathrm{f}\right)^{\prime}(\mathrm{u})= & -\int_{0}^{\infty} \mathrm{tf}(\mathrm{t}) \sin \left(\mathrm{tu}-\frac{\pi}{2} \alpha\right) \mathrm{dt} \\
& =-\int_{0}^{\infty} \mathrm{tf}(\mathrm{t}) \cos \left(\mathrm{tu}-\frac{\pi}{2}(\alpha+1)\right) \mathrm{dt} .
\end{aligned}
$$

Since $\frac{1}{2}<\alpha+1<1$, (2.2) gives rise to

$$
\begin{aligned}
& t f(t)=-\int_{0}^{\infty}\left(C_{\alpha}\right)^{\prime}(u) k_{\alpha+1}(t u) d u
\end{aligned}
$$

Thus we see that

$$
\mathrm{f}(\mathrm{t})=\int_{0}^{\infty} \mathrm{C}_{\alpha}^{\mathrm{f}(\mathrm{u}) \mathbf{k}_{\alpha}(\mathrm{tu}) \mathrm{du}=\mathrm{D}_{\alpha} \mathrm{C}_{\alpha} \mathrm{f}(\mathrm{t}) . . . . . .}
$$

Similarly as before, (2.2) holds good for $f \in \mathrm{~L}^{2}(0, \infty)$ and $-\frac{1}{2}<\alpha<0$.

This completes the proof of Theorem 1.
References
[1] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, 1951.
[2] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford University Press, 1948.

