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 INTERPOLATED FOURIER TRANSFORMS

 §0. Introduction. In this paper, the general form of transform T on
 o

 L (0, od) defined by a kernel <p is given by

 rU o
 Tf(t) = l.i.m. f(u)y>(tu)du in L (0, ®),

 U-*b J 0

 9

 for f 6 L (0, od). Let C and S denote the cosine and sine transforms on
 2

 L (0, od), i.e.

 rU
 Cf(t) ss l.i.m. V2/7T f(u)cos tu du

 U -♦ 00 ^ 0

 in L2(0, «)
 fü

 Sf(t) = l.i.m. V57* f(u)sin tu du
 U -» o •'O

 for f 6 L2(0, od). The Plancherei 's Theorem states that

 S2 = C2 = Id.

 In this paper, we consider the transform Ca defined by the kernel
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 JTpK cos {0 - ^a) ( a € IR):

 rU ir 9
 (0.1) Cit) = l.i.m. flpk f(u)cos(tu - £a)du ir in L 9 (0, a>)

 U -♦ m J 0

 for f e L2(0, œ). Note first that Cq = C and Cj = S; and Cß is a
 o

 bounded transform on L (0, o), since it is a linear combination of two
 o

 bounded transforms on L (0, œ). The object of this paper is to construct the

 inverse of Ca, and to show the inverse is a bounded transform on L (0, oo)

 for suitable a; see Theorem 1 in §2 below. For the kernel defining the

 inverse, see (0.5). We prove this with the help of the Riemann- Liouville and

 Weyl fractional integral operators, which are defined respectively as follows:

 firo f (<* > °, x > °)
 yw = ■ 0

 f(x) (a = 0, x > 0)

 ITāJ r (y-^^y)^ (a > o, X > 0)
 vw = •

 f(x) (a = 0, x > 0).

 There is a basic property for Ia and Jft:

 (0.2) Ia+ßf« = îjflx), J^x) = IJfix)
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 for a > 0, ß > 0.

 Consider the Mellin transforms of cos 6 and sin 0. It is a

 consequence of (7.9.5) and (7.9.6) of [2] that

 (0.3) J^cos 9 = cos(0 + ^a), Jas*n 0 = sin(0 + f°0

 for 0 < a < 1. On the other hand, by considering the Taylor series

 expansion, we have

 (°-4) lacos 6 = ^^n+i+a)^0 (a - °);

 the series on the right- hand side of (0.4) is defined for Va € IR.

 Note that the kernel in (0.1) is given by (0.3) for suitable a .

 Denote

 (0.5) ka(0) = 107*^ r(feìl+«)^+a (a €

 for negative odd integer a, the term with T- factor is defined to be zero for

 integer 2n+l+a < 0.
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 We show first in Lemma 3 that ka(0) defines a bounded transform
 1 3

 Da for - j < a < j , and then show in Theorem 1 that

 (0.6) CaDaf = DaCaf = £ (-§<«<§)

 for f € L2(0, a»).

 We introduce here the averaging operators which are needed in this
 o

 paper. For f 6 L (0, ®), we define the transforms Aft, as follows:

 Aaf(x) = x~a Joy°^f(y)dy (<* > j)

 B^(x) = x~^ jV^yJdy (ß < ķ

 §1. Some lemmas. To pursue the object of this paper, we need several

 lemmas.

 2

 Lemma 1. The and Bß are bounded operators on L (0, ®),
 and

 l|AJ!2 < (« - ^)"1 , IIB^iij < - ft4-

 Proof. By (9.9.8) and (9.9.9) of [1], the results follow immediately.
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 Lemma 2. Consider (0.5). For a < 2, we have

 V*/2ka(0) = cos(0 - ^a) + |^a_2sin(^-ö)d^ (0 > 0);

 and the integral in the above is defined to be zero for integer a less than

 or equal to 1.

 Proof. Put Ka(0) = V7r/2k(ł(0). By differentiating K^(0) twice, we
 see that

 KW + Ka«> =

 On the other hand, for a < 2

 TT^f/Q^2sin^~*)d*

 is a special solution to the differential equation

 y" + y = iTzaj**"2

 Thus
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 Ka(0) = cos(0 - fa a) + P(q4) JS^^0i ^sin( £- 0)d£

 for some constant depending on a . Now the above and (0.5) yield

 = k;(0) = cos(« - f(aa-l)) + r^sinťí-íOdí.

 Thus we may take

 (1.0) aa - 1 = aa-l •

 By taking 0 = 0, we have for 0 < a < 2

 0 = Ka(°) = cos ?aa + r(c3J J¡^2sin ^ d^

 Since

 r(a4) f0t*~2si* t = ~ cos fa '

 we may take aa = a for 0 < a < 2.

 This completes the proof of Lemma 2 by virtue of (1.0).
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 Lemma 3. For - j < a < | , the series kjfl) iņ (0.5) defines a
 o

 bounded transforms on L (0, œ).

 Proof. We assume a # 0, 1. It is convenient to consider K a(ff) =

 Vtt/2 ka(ö). Define

 '1, 0 < a < b
 a, b) = ■

 ļo, 0 < b < a

 and

 M = e" -W, 1), 1(6) = tf01-2. á(l. í)

 V(í) = Ko(l¡0-í(l, O), i(«) = cos(tf - 5«).<(1, Ķ

 Write as

 *¿«1 = (*„(«) - 'K«)) + (<*«) - <(«)) + «O-

 Considering the power series expansion of Ka(0), we see that

 iKa(ťo - m = O(^(ÍO)

 and by Lemma 2
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 m - <(4 1 = omy

 So, it suffices to show that

 M, iW, <«0

 o

 axe all the kernels of bounded transforms on L (0, ®).

 o

 Given any f 6 L (0, a>), we have first for ß(0)

 F(u) = J™ f(t)/?(tu)dt ^ J ^ f(t)(tu)adt

 = u_lAa+if(u-1)-

 Since a+1 > j , and

 (j>(u)|2du)1/2 = ( I Aa+1f(«) 1 2du)'/2 < (a + ļrtfllj

 by Lemma 1, which shows that ß(6) is the kernel of a bounded transform on
 2

 L (0, ®). As for t(0), we have

 F(u) = J0" f(t)7(tu)dt = J _jf(t)(tu) 0 ^dt
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 Since a-l < j , and

 (jV(u)|2du)l/2 = < (ļ - (o-l))-1ļ|f|ļ2

 by Lemma 1, which shows that 7 (0) is the kernel of a bounded transform on
 9

 L (0, od). Finally, to show e(0) is the kernel of a bounded transform on
 2

 Ł (0, o), it is enough to work on

 7(0) = cos(0 - £<*).¿(0, 1),

 since cos(0 - ^a) = e(0) + 7(0). Obviously

 7(0) = o(M)

 for any fixed a < 0. And we have shown that /7(0) is the kernel of a

 bounded transform for - ^ < a < 0, which implies that 7(0) is the
 9

 kernel of a bounded transform on L (0, od).

 This completes the proof of Lemma 3.
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 §2. Proof of Theorem 1. Note first that

 (2.0) ka(0) = Iacos 0 (a > 0).

 Denote

 T

 (2.1) Daf(u) = l.i.m. J f f(t)ka(tu)dt (- ' < a < |) T -> od J 0

 2
 for f € L (0, ao). Lemma 3 shows that is a bounded transform on

 L2(0, cd).

 Theorem 1. Consider the transform Ca in (0.1). We have

 (2.2) CaDa£ = DaCaf = £ (- 1 < o, < |)

 for f 6 L2(0, ®).

 Proof. By the Plancherel's Theorem, (2.2) holds good for a = 0, 1.

 Step 1. We show first that (2.2) holds good for 0 < a < 1.

 Let f € Cœ(0, œ) with support a compact subset of (0, <n). Note

 that supp Jaf(v) C [0, A] for V large A. By the definition of I^cos 0,
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 we have

 (2.3) F(u) = Daf(u) = Jlpk j^f(t)Iacos(tu)dt

 = JZpK Q(t) J (tu- v)0^ cos v dvdt

 = V57? J™ uv J"" (t- v)**- ^f(t)dtdv.

 This gives

 (2.4) u aF(u) = yß ļr P Jaf(v)cos uv dv
 Jo

 and

 (2.5) F(u) = 0(ua) (u - 0+)

 (2.6) F(u) = Oiu®"2) (u - +«,),

 by taking integration by parts twice in (2.4).

 By Plancherel's Theorem, (2.4) yields
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 (2.7) Jaf(v) = fZpk J>- aF(u)cos uvdu.

 By using (0.2), equation (2.7) yields

 (2.8) 4*P rii-^j^v) = y/tp j"(t-v)-aJaf(t)dt

 = J™ (t-v)-f u-ûF(u)cos tududt

 = J™ (t-v)-«{- [u_aF(u)]'sin tudu}dt,

 since u"aF(u)sintu|¡1lJ = 0, by (2.5) and (2.6),

 = j" [u^FMl'j* (t-v)-a(- ì)sin tudtdu,

 by the fact [u-0^)]' = min(0(l), 0(u-2)) following from (2.4) and hence

 [u-^OOHt-vrV1 e l10od)(u) - L[vœ)(t),

 = [u"ûF(u)]1^(t-vrû(- ļ)sin tuduļjīj
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 - fu «F(u)f (t-y) a(- ļ)(cos tu)tdtdu

 = P u~aF(u) P (t- v)- acos tudtdu
 Jo Jv

 = iXl-cOj00 u~ 1F(u)Jļ_acos(uv)du.

 Differentiating both sides of (2.8) gives rise to

 (2.9) f(v) = Jipi J" F(u)Jj_asin(uv)du

 = V2/* J™ F(u)cos(uv - jû)du, by (0.3),

 = C¿F(v) = CaDaf(v).

 Conversely, consider again f € C°(0, ®) with support a compact subset

 of (0, <d). By (0.3), we have

 (2.10) F(v) = Caf(v) = Jlfī J^f(u)ji_asin(uv)du

 = JÏT* j^f(u)j^(t-uv)~asin t dtdu
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 = yß Jť J™ (t- v)~ aj^V~af(u)sin tududt.

 Taking integration by parts, we see that

 (2.11) [ u^- af(u)sin tudu = 0(t~^) (t - » +00)
 J0

 for any integer k > 0- So

 (2.12) F(v) = 0(v"k) (v - +m)

 for any integer k > 0. Now by (0.2), (2.10) gives rise to

 J F(v) = V2/1T f* f" u^~ af(u)sin tududt
 Jy JQ

 and hence

 (JaF)'(v) = ->JTpK J" u1- ' af(u)sin uvdu.

 Consequently, we have by using (2.12)

 (2.13) u1_af(u) = - v/2/ir J™ (JaF)'(v)sin uvdv
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 = iW27* |^(JaF)(v)cos uvdv ,

 and

 u-af(u) = JTpK pi- r lim f cos uv i" (t-v)a~^F(t)dtdv * ' A-»œ Jy

 = V57i nm^F^jJ^t-vJ^cos uvdvdt + J^F(t)J^ (t- v)°!-1cos uvdvdt}
 ' (

 = y/TpK U"® J" F(t)IaCOS(tu)dt .

 So

 f(u) = rF(t)k>)d, = DaF(«) = D0Cai(u).

 By a standard continuity argument, we see that (2.2) holds good for

 0 < a < 1.

 O

 Step 2. We now show that (2.2) holds good for 1 < a < 5. Note

 first that I^cos 0 = I^sin 0, and 0 < at- 1 < j. We proceed the same

 argument as in Step 1 with I^^in 0 in the place of I^cos 0. Put
 ß = a-l.
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 Corresponding to (2.3), we have

 «

 (2.14) F(u) = D^f(u) = V2/tt J™ sin uv J™ (t- v)^~*f(t)dtdv.

 This gives

 (2.15) u"%(u) = v/2/t J" J ^f(v)sin uv dv

 and

 (2.16) F(u) = 0(u^+1) (u - 0+)

 and

 (2.17) u"^F(u) = J2/ir J^f(0)u + 0(u~~ ^) (u - » +œ),

 by taking integration by parts in (2.15).

 By PlanchereTs Theorem and (2.17), we see that

 (2.18) J^f(v) = JïpK J™ u"*^F(u)sin uvdu.
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 Corresponding to (2.8), we have by (2.18)

 Jlf(v)

 = r(l-/ď) J v (t- v)

 A rw

 = V2/t (t-v)-y rw u_/3F(u) sin tududt

 = JZpK r(l- ft) 1 im{J u~%(u)| (t- v)- ^sin tudtdu

 A 00

 + [ (t- v)- 00 u~^F(u)sin tududt}
 J y Jß

 = V2/* r(l-ff)f u"^F(u)| (t- v)~~^sin tudtdu, by (2.17)

 = VB7i r(l^)f u^F(u)f (t- uv)- ^sin tdtdu, by making A -» o,

 since by writing

 f (t- v)- ^sin tudt = f (t- v)~^sin tudt + [ (t- v)- ^sin tudt Jy Jy Jy+1
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 and by taking integration by parts

 [ (t- v)~~^sin tudt = 0(u- *)
 J v+1

 uniformly with respect to A -» +œ. So the above gives

 (2.19) J]f(v) = V2/* J u^F(u)Jļ_^sin (uv)du .

 Now by using (2.17), we can differentiate both sides of (2.19) and get

 f(v) = - V2/t J™ F(u)Jj_^cos uvdu

 = JZpK J™ F(u)cos (uv - ^a)du.

 = CaF(v) = CaDaf(v), (1 < o < |).

 To justify the above equation, it is enough to show

 ^u^iu^in uvdu = j^u^Fiu^J^in uv)du.

 Now (2.17) gives
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 u~ 1F(u) = Ai/"2 + 0(u^~3)

 for some constant A. By appealing to (0.3), we see that

 3vf^u"~2ji-/?sil1 uvdu = j^u"~2 aī<Ji-^in UT)du

 and since F(u) - Xvß~ ^ = 0(u^~2) 6 L^(0, œ), which combined together

 prove what we want.

 Conversely, corresponding to (2.10), we have

 (2.20) F(v) = Caf(v) = -V2 7i j^f(u)Ji_ _^cos(uv)du

 = -V2/t r(l?fl)f (t- v)"*^!" u1_/3f(u)cos tududt

 and to (2.11), (2.12) we have

 (2.21) f* u1_/?f(u)cos tudu = 0(t"k) (t - » +a>)
 JO

 (2.22) F(v) = 0(v~k) (v - » +»)

 for any integer k > 0.
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 In view of (0.2), (2.20) gives rise to

 J^F(v) = -J2ļir J" J0* u^~ ^f(u)cos tududt,

 and hence

 (JjjF)'(v) = J2ļir J0" u^~ ^f(u)cos uv du.

 Consequently, we have

 (2.23) u1_^(u) = JIJ* j™ (J^F)'(v)cos uv dv

 = c + Jlpk u J^(y)(v)sin uv dv

 for some constant c; by virtue of (2.22) and by making u - » 0"*" in

 (2.23), we see that c = 0. So, we have, by using (2.22),

 u~Ą(u) = V2/* TTTw 'p' lim [ sin uv P° (t- v)^~*F(t)dtdv 'p' A-»® JO Jv

 = V2/* jrgjj nm{| F(t)| (t- v)^~~*sin uVdvdt
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 + J^F(t)j (t- v)^~*sin uvdvdt}

 = u- ^/2/ T j" F(t)I^sin(tu)dt

 and

 f(u) = -JTpK j" F(t)Ia cos(tu)dt

 = ťWLjW = ū/(u) = DaCaf(u).

 By a standard continuity argument, we see that (2.2) holds good for

 1 < a < I .

 Step 3. Finally we show that (2.2) holds good for - j < a < 0.
 Suppose f € C®(0, «) with support a compact subset of (0, o).

 Consider first

 Daf(u) =

 = u"^f(t)ka+1(tu) I (t)ka+1(tu)dt.
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 By Lemma 2, we have the estimate

 DafM = Otu®"2) (u - » +cd)

 and hence

 uDaf(u) 6 1/(0, 00).

 Since j < a+1 < 1, (2.2) gives rise to

 -f'(t) = j™ uDaf(u)cos(tu - J(a+l))du

 from which it follows

 f(t) = j^Daf(u)cos(tu - |a)du = C0Daf(t)

 Consider next

 Caf(u) = J^f(t)cos(tu - Ja))dt.

 Note that
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 (Caf)W(u) = 0(«-k) (u _ +„)

 for any integers k > 0, i > 0, and

 (Caf)'(u) = -j^tf(t)sin(tu - £a)dt

 = - j^tf(t)cos(tu - j(a+l))dt.

 Since j < a+1 < 1, (2.2) gives rise to

 tf(t) = -j^(Caf)r(u)kcH-l(tu)du

 = _Caf(u)ka+l(tu)|u_0 + tJ^Caf(u)ka(tu)du-

 Thus we see that

 i(0 = rcaf(u)ka(tu)du = DaCaf(t).

 2 1

 Similarly as before, (2.2) holds good for f € L (0, ®) and - j < a < 0.

 This completes the proof of Theorem 1.
 References
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