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 On the algebra generated by derivatives of Interval functions

 It is well known (See A. Bruckner [l] ) that the product of

 two derivatives need not itself be a derivative.

 This consideration led to the question of characterizing the

 class of functions expressible as a product of two or more deriv-

 atives and it raised the larger question of characterizing the

 algebra of functions generated by derivatives.

 The second of these questions was solved by D. Preiss in f 6j s

 he showed that every real Baire 1 function u of one variable can

 be expressed in the form u = f'^g'+h*.

 On the other hand, a function of the form f'^g'+h' must be

 Baire 1 . Hence the class of one variable real functions having

 the representation above coincides with the first class of Baire.

 In this note we generalize Preiss ' result to higher dimen-

 sions, that is, we show that a real Baire 1 function u of k vari-

 ables (k> 1 ) also admits a representation u = DF »DG + DH, where
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 F, G and H are additive ordinarily differentiate interval func-

 tions.

 Let r be the collection of all compact intervals in R .

 Fora e (0,1) let r be the collection of all compact inter-
 a

 if

 vals in R having parameter of regularity greater than a .

 For X e r' let

 r (x) = { 1er : X e I } , (x) = { I e : x e I } .

 A function f : XC R - >R is said to be ordinarily approximately

 continuous if it is continuous with respect to the ordinary density

 topology in R^ . ( See T 33 ). The class of ordinarily approximate-

 ly continuous real functions on R will be denoted by íT.

 We refer the reader to [81 (chapter. HI ' ) for the definition

 of absolute continuity of an interval' function.

 We also refer the reader to [8] (chapter IV) arid toC^ (chapter

 VI) for what concerns differentiation of an interval function.

 A* will denote the class of additive ordinarily differenti-

 able real interval functions defined on r. When Fe Á *t DF will

 denote the derivative of F.

 B1 will denote the class of Baire 1 real functions on R .

 U will- denote the Lebesgue measure in R .

 ]ç

 For X 9 R fXv A denote the characteristic function of X. A

 A point x is said to be a Lebesgue point of a real function
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 f defined on R if

 ' i ™
 īeru, "«>

 O

 for every a e (0/1).

 k
 If X is a Lebesgue point of f for every x e R , f is said to

 be a Lebesgue function. The class of all Łebesgue functions on R

 will be denoted by A* .

 Every bounded function f e fl* is a Lebesgue function.

 A, Lebesgue function f is ordinarily approximately continuous

 and it is the derivative (in the ordinary sense) of the interval

 function f dy (See [5j ch. VI) .

 * *

 Proposition 1. Let X Ç R be measurable, , ...,Cn pairwise

 disjoint closed subsets of X contained in the set of ordinary

 density points of X, a^ , ...^a^ real numbers. Then there exists

 a Lebesgue function $ such that $ (x) = a^ for x e C^, $ (x) = 0

 for x ï X and sup | $ (x) | <, max | a | .
 X E R1*

 Proof . The result easily follows from the k-dimensional version

 ( [3ļ , lemma 4 ) of the -analogous result by Zahorski [9] (Also

 see [4] ) .
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 1 1 , ,

 Proposition 2 . Let u e B . There are v e B , a sequence «■ Hn' N

 of pairwise disjoint compact subsets of and a sequence ^n^neu

 of positive numbers such that

 i) u - v e A* ,

 ii) v is ordinarily approximately continuous at every point

 of KJ H_
 neN n '

 iii) v(x) =0 whenever x e Hn is not an ordinary density point

 Of Hn ,

 iV) |v|. < YH 3n XHn »
 neN

 V)SZßn*H e B',
 neN n

 Vi) v is bounded provided that u is bounded.

 1c

 Proof . Put D={ ixi , . . . rx^)eR : 3 ie{ 1 , . . . ,k) : x^ is rational).
 D is a dense set of measure zero.

 k,
 Let M be the measure zero set of points of R at which u is

 not ordinarily approximately continuous.

 Then there is <J>i e A* such that <ļ> x (x) = u(x) for x e DUM

 (cf. [2] , th 2.5 and [4] ). (In case u is bounded, 4^ may

 be taken to be bounded) .

 Since u - (1) ; e B1 , we have logļu - <ļ> Ł | e B1 on the space

 A = {x e R^ : ( u - <ļ>ļ ) (x) 7* 0} .

 310



 Then there is a function g e B1 such that g (A) is an isolated

 set and sup | log| u - <ļ> x |(x) - g(x)| <, 1 (cf. [7] / I, 27, VII).
 xeA

 Since A is an F^ set and a zero-dimensional space, there is a
 sequence { H } „of pairwise disjoint compact sets such that

 n ne N

 A = H and the restriction of g to H is constant (cf. [ 7~| ,
 « n n

 ne « N

 II, 26, V).

 Thus, if we call w the function assuming the values w (x) = 0

 for x ý A and w (*) = e9(x)+1 ^ Qr x £ caļļ ^ wriļ-ten as fol-

 lows: w (x) = 3n xH * where ß are positive numbers for every
 neN n

 ne N. Moreover, w _> 0 and, for every a > 0, the sets
 k k'

 { x e R : w (x) > a } and {x e R : o> (x) < a}

 are F sets.
 a

 That proves V).

 Let now E be a set of measure zero containing all points of

 each Hn that are not ordinary density points of and all points

 at which u - <ļ>iis not ordinarily approximately continuous; we can

 construct <ļ> e A* such that <1>=u-<t>xonE.

 Put <ļ>2 (x)=max{min{<1> (x) ,max{ (u- <ļ> x ) (x) ,01 > ;min{ (u-<ļ> j ) (x) ,0)}.

 Using the argument of [6] , Lemma 3, we can show that <f>2 e A*

 and the function v = u - <ļ»l - <ļ>2 satisfies i) , ii) , iii) , ivi, v)

 and vi) .
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 Proposition 3. Let ^Kn^j^N ke a sequence of pąirwise disjoint com

 pact subsets of R and let ^n) be a sequence of nonnegative
 numbers such that Y X „ e Bl . Then there is a sequence of rt N n K „

 n

 positive numbers i^nJneN satisfying the following properties:

 a) if, for each ne N, is a real additive and absolutely

 continuous (with respect to u) interval function defined on T ,

 satisfying:

 i) F n e A* , sup |F n J < A n , sup I DF n I < Y n , n p n n rK n n

 ii) ( I e r , I n Kn = 0 ) =$> Fn(I) = O ,
 then F converges on r to Ft A A such that DF = DF ;
 nēN n n£N n

 k
 b) if, for each n e N, <|> is a real function on R such that

 n

 ò n e A*, sup U n I < Yn n , lv K I <ļ> n (x) I dli < A n , n r n n K n n
 R n

 (x e R^ : <|> (x) 7* 0} Ç K ,
 n n

 then <1>n converges to <j> e A*.

 Proof . Let {C } be a sequence of compact subsets of R such

 that for each t > 0 the set ix e R^ : Y Xv (x) < t) can
 neN n k

 n

 be expressed by a union of a subsequence of ^cn^neu*

 Put, for every neN,

 K'=Uk U U(C Ł ;C m r> K=0}, n ' x = - min {dk+1 (K ,K' ) , 1} n m Ł m m n ' n_n nn
 m<n m<n 2

 312



 To prove a), let íFníneN be a sequence of real functions

 with the properties described there. > F and DF
 ne N n ne N n

 are well-defined (on T and R respectively) .

 It will be shown that D > F ■ T~" DF
 * - n - n
 r.eN neN

 For this purpose, let xq e Kn and let m e N be such that
 X e K
 o m

 If n is a positive integer such that n>m, then x £ K and
 o ' n

 x e K' . *
 o n . *

 Let a e (0,1) and let 1er (x ) . There are two possibilities:
 ot o

 either I is empty or it is. not.

 If I O K =0, from the hypothesis we have F (I) =0.
 n n

 If in K 7* 0, we have for every x e KOI d(K',K )<d(x ,x) .
 n n n n o

 Thus

 I F_ (I) I dk+1(K',K) dk+1 (x ,x) diamk+1 (I) diam(I)
 -2-_ <

 y(I) " 2nu(I) " 2nu(I) " 2ny (I) " 2n

 where M is a constant, depending, only on k and a , such that

 diamk(I) <, M m (I) for every I e T .

 Consequently, D ļ ^ Fn) <x ° ) ■ 0. 'n>m / °

 Ön the other hand, from the hypothesis we have DF^ (xq) = O

 if n > m.

 Hence D ( I > - F I ) (x ) » J DF (x ). I - n I o n o
 ' n>m / n>m
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 k v. j
 Let now X e R - jr'. K . o re N n

 For each t > 0, let's call p a positive integer such that

 X e C and A ) v xv (*) < t for every xe C . o p A n K . ť
 ne N n

 For n £ p we have
 k i /

 Fn(!) = O for every I e r (xq) with ICR- .

 For n > ť p we assume first that K O C - 0. p ť n p

 In this case C ("K' , so that x e K' . Then let Ie r(x ° ). p - n , on °

 If I r' K = 0 , from the hypothesis we have F (I) =0.
 n n

 If I r' K fi 0 , let x e I r' K . Then we have
 n n

 d(K',K ) < d(x ,x) < diam(I)
 n n o

 and, consequently,

 lc+1 k+1

 If (DI . d (KA'V . diam U) .
 n < ----- <

 2n 2n

 Now assume K C' C ¥ 0 and let x e K A C . Then we have
 « P n p

 Yn * ITïnXK (x) < t.
 neN n

 From this and since | DF n | < y Xv ' we have (cf .f8l • ,th. (7.8) n n i' • • >
 n

 page 121 )

 I F (I)| < t p (IAK ) .
 n n

 To sum up. we may assert that for I e F (x ) with sufficient-
 ao

 ly small diameter we have
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 IF (I) I M y(IAK )
 -

 U(I) = 2n U(I)

 where M is the constant mentioned above.

 Thus

 m Fn(D i
 lim sup neN

 I X - I X
 o y (I) o

 Ierfï(xr,) ao Ier«(x«) ao ao ao

 This shows that D / F ' (x ) » O , which togheter with
 V neN /

 ) DFn(xQ) = 0 proves (1).
 neN

 In order to prove b) , first observe that <|> = <t> is
 n£ N n

 well-defined; then, let x e R . Putting

 ♦(x) Vx) ' ł(x) - Sk Vx> '
 n n

 we have <ļ> (x) = (x) + ij> (x) .

 Since <ļ> is bounded and ordinarily approximately continuous,

 x is a Lebesgue point of i¡t .

 On the other hand, a) implies that |$| is a derivative, which

 togheter with $ (x) = 0 implies that x is a Łebesgue point of $ .

 Hence x is a Łebesgue point of $ .
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 Proposition 4. Let X be a bounded measurable subset of R , c a po

 sitive number, v a measurable function such that sup | v| c.
 X

 Then for every e > 0 there are two real additive and

 absolutely continuous (with respect to y ) interval functions F

 ąnd G defined on F snçh that

 i) (IeT , I r' X = 0) => F (I) = G (I) = O ,

 ii) sup I F (I) I < e 7 sup I G (I) I < e ,
 le r le r

 iii) F e L* , G e A* , DF e A* , DG e A* ,

 i'j)sup I DF! £ max{c,/c} , sup | DG| ^ mini /0,1} ,
 Rk Rk

 V) I v - ĎF *DG I dy < e .

 Proof . Let J be an interval containing X. Let e > 0. We can con-

 struct a finite family 6 covering X of nonover lapping intervals

 with the following property: whenever I is an interval contained

 in J, the measure of the union of the intervals from 6 which inter

 sect the boundary of I is less than e / 3max(l,c} .

 It follows that X can be written as a union of nonempty, di-

 sjoint, measurable sets Xj , . . • ,X such that for each ie{1,...,n}

 sup |v(x) - v(y) I < e / 3( y(X)+1 )
 x,yeX±
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 and is contained in only one element of 0 .

 If I is an interval contained in J, put

 Nj= {ie{ 1 , . . . ,n } : intersect the boundary of I ) .

 We have y j X ļ < e / 3max{1 ,c > .
 ' ie Nl I

 Then let and Q be closed, disjoint subsets of such

 that d^XjX^ ■ 1 for xe P± u Q± / U (P^ - M (Q^) and

 u (Xi - (Pi 'j q) ) < e/ 3nmax{1,c}.

 If X. e X. , put
 i i

 a¿ » max{|v(xi)ļ ,/¡ v(xi)| } , b¿ - min{/ļ~vTx^) 1,1} sgn v(x¿) .

 By proposition 1 there are f e A* and g e A * such that

 f(x)=a¿ if X e P¿ -i fíxH-a^^ if x e , f(x)=0 if x tf X ,

 g(x)=bi if x g , g(x)=-bi if x e P¿ , g(x)=0 if x tf X

 and I f I <max a. 1 , | g| < max b. . i 1 "i

 Then define F and G by

 F ( I) = / j f dy , 6(I)> /x g dv

 for every I e r .

 Since

 ■fx. f du I < k ' X
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 for 1er , I c J , we have

 |/l 1 f dU I i Î»J II I IAX.f at I + fV I |'x.f I dU I - 1 II I I

 max{c, /c} m i yj X.Al) + r 3 < e . v 1£Ni 1 / 3

 Applying the same argument to g, we obtain for I e T, i ç j

 ļ/j g dy J. < e

 Hence F and G satisfy i) and ii) . In order to prove iii) and

 iv), it's enough to observe that for x e R we have DF(x) = f (x)

 and DG(x) = g(x) (cf. I5] ).

 In .order to prove vj , we observe' that

 DF (x) • DG (x) = a^*b^ = v(x^) for x e , so

 'p UQ 'V(Xi) " DF*DGJdM = °*
 i i

 Hence

 n

 Jx|v - DF*DG| d 41 < ^ /x |v -■ vC*±) I dfv +

 n

 S /x -(P VQ )lV(Xi> - DP'DG| au 6
 i i i

 which completes the proof.
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 Proposition 5 . Let u e B1 . Then there are F, G and H belonging

 to A* such that u = DF* DG + DH. Moreover, one can find this re-

 presentation such that DG is bounded, DH e A* and, if u is

 bounded, such that DF and DH are also bounded.

 Proof. Let v e B1 , let íHn^neN a sequence of pairwise
 jç

 disjoint compact subsets of R and let {$ } . be a sequence of
 n neN .

 positive numbers as in proposition 2.

 For neN, put y -2 max{ß ,/ß" }. For the sequences {H }
 n n n n ne N

 and {y } „ we find a sequence of positive r numbers {X } n neN „ r n neN

 according to proposition 3 .

 Since, for each neN, sup [v(x)| <, ß ,we use proposition 4
 xeH

 n

 with X =H , c = ß and e = X to construct functions F and
 n n n n

 Gn with the properties described there.

 Proposition 3 implies that F^ and Gr converge to

 F e A* and G e A* respectively c J and DF = DF , DG = ZZL DG . c J neN n , nēTī n

 Using ii) from proposition 2, the properties of F^ and G^

 described in proposition 4 and b) from proposition 3, we obtain

 v - DF.DG = 2Z neN (v - DF n -DG n )x„ H e A* • neN n n H
 n
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 Since u- v also belong to k* , (u - v) + (v - DF*DG) = DH ,

 where H e A* .

 The proof is complete when we observe that

 u = (u - v) + (v - DF .DG) + DF. DG.
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