
 TOP I CAL SURVEY Rait Analysis Exchange Voi 14 ( 1988-89)
 T. Neubrunn, University of Komenský, Bratislava, Czechoslovakia

 Quasi-continuity
 Introduction

 The quasi-continuous mappings introduced by Kempisty for real functions of
 several real variables have been intensively studied. There are various reasons
 for the interest in this study. Perhaps the following two are the main ones. The
 first is a relatively good connection between the continuity and quasi-continuity
 in spite of the generality of the latter. The second is a deep connection of
 quasi-continuity with mathematical analysis and topology. There are also some
 probabilistic connections.

 The results concerning quasi-continuity are scattered in the literature. The
 survey papers [PT l], [PT 5] of Z. Piotrowski contain among other things also
 various interesting results of this kind, but they are not directly devoted to this
 field.

 In the present paper we would like to give a survey of results about quasi-
 continuous mappings. We include also results about quasi-continuous multifunc-
 tions.

 It is necessary to say that we do not present the list of all results compar-
 ing quasi-continuity with the immense number of various generalized continuity
 notions. Of course, it is not possible to avoid some generalized continuity no-
 tions which are closely related to quasi-continuity such as a-continuity [NO 2],
 somewhat continuity [GH] and cliquishness [TH].

 The proofs are included usually in cases when the assertions are more general
 than those which appear in the literature or when, according to our opinion,
 the result is not known. Otherwise the reader is referred to the corresponding
 papers.

 We are aware of the fact that various results about quasi-continuity which
 may be of interest are not included in this paper. Nevertheless, we hope that
 those which are included will give a comprehensive information concerning quasi-
 continuity.
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 1. Various approaches to the notion of quasi-continuity

 1.1 Quasi-continuous functions and multifunctions

 The words mapping and function have, throughout this paper, the same
 meaning and both mean a single-valued mapping. If a multi-valued mapping
 is considered then it is said explicitly. The word multifunction has the same
 meaning as multi-valued mapping. If nothing else is said, X, Y denote topo-
 logical spaces. The functions (multifunctions) considered are defined on X and
 assume their values in Y (in P[Y) - 0 where P(Y) is the power set of Y). We
 denote functions as a rule by f,g, h, etc. while multifunctions are denoted by
 capital letters F, G, H etc. In case of multifunctions we write simply F : X -*Y
 instead of F : X -* P(Y) - 0. The symbol f : X -> Y (for a function /) has its
 usual meaning. If F : X - ► Y is a multifunction then for A C Y we denote

 F+(A) ={xeX: F(x) C A), F~(A) = {x € X : F(x) n A ¿ 0}.

 A function / : X -*■ Y may be considered as a multifunction assigning to
 x G X the singleton Usually we identify {/(x)} with /(x). In this case
 we have for A C Y

 f+{A) = f~{A) = f_1[A) = {x : f{x) € A}.

 If A C X we use the notation A0, À for the interior and the closure of A,
 respectively. The symbol Fr(A) denotes the frontier of the set A , i.e. the set of
 those points each neighborhood of which has nonempty intersection with both A
 and X - A.

 The definition of quasi-continuity of / : X - ► Y was given for the case
 X = Rn, Y = R by S. Kempisty. Nevertheless, the funtion of two variables being
 quasi-continuous under the assumption that it is continuous in each variable
 separately was mentioned by Volterra (see Baire [BA]). Kempisty 's definition for
 general topological spaces may be reformulated [NE 2] in the following way.

 1.1.1 A mapping f : X -> Y is quasi-continuous at p € X if for any U, V open
 such that p € U, f(p) € V there exists a nonempty open set G C U such that
 f{G) C V. It is called quasi-continuous if it is quasi-continuous at any x € X.

 Evidently any continuous mapping is quasi-continuous. The converse is of
 course not true. Any monotone left or right continuous function / : R - ► R
 is quasi-continuous. There are very general mappings / : R -*■ R which are
 quasi-continuous. They will be discussed in the section 7.

 1.1.2 A multivalued mapping F : X - ► Y is said to be upper (lower) quasi-
 continuous at p € X ([NE 3], [PO 1]) if for any V CY,V open such that F(p) C
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 v (F(p) nv¿ 0) and for any U open containing p there exists G ± 0, G C U,
 open such that F(x) C V (F(x) D V / 0) for any x € G. It is said to be upper
 (lower) quasi-continuous if it is upper (lower) quasi-continuous at any x € X.

 It is easy to see that in case of a single-valued mapping the notion of upper
 quasi-continuity and lower quasi-continuity coincide with the quasi-continuity.

 Another obvious connection in the multi-valued case is between so-called up-
 per (lower) semi-continuous ([BE]) functions and continuous functions. We will
 omit the prefix "semi" in this paper so we will use the terms upper continu-
 ous and lower continuous. The reason is that "semi" is usually used in another
 context. So let us recall the definition.

 1.1.3 A multi-valued mapping F : X - ► Y is said to be upper (lower) con-
 tinuous at p G X if for any V open, V D F(p) (V n F(p) / 0) there exists a
 neighborhood U of p such that F(x) C V {F{x) fi V ^ 0) for any x € U. It is
 called continuous at p if it is both upper and lower continuous.

 Evidently, the upper and lower continuity as well as the continuity at p € X
 in case of a single-valued mapping coincide with the usual notion of continuity.

 Of course, any upper (lower) continuous multifunction is upper (lower) quasi-
 continuous while the converse is not true.

 1.2 Equivalent definitions of quasi-continuity

 In his paper [BL] W.W. Bledsoe introduced for functions of a real variable
 whose ranges are metric spaces the notion of a neighborly function. If we gen-
 eralize it for / : X - ► Y where both X and Y are metric spaces, we get the
 following:

 1.2.1 A function / : X - ► Y where XtY are metric spaces with the metrics
 p,p', respectively, is said to be neighborly at x € X if for any e > 0 there exists
 an open sphere S C X such that

 p(*>y) + p'(/(s),/(y)) <e

 for any y € S.
 S. Marcus [MC l] has proved that the notions of neighborly and quasi-

 continuous are equivalent.
 In 1961 N. Levine [LE l] introduced the notion of a semi-continuous function,

 using the notion of a semi-open set.

 1.2.2 A subset A of a topological space X is said to be semi-open if A C A0.
 For reasons which will be immediately clear (see 1.2.4) we will use the word
 quasi-open instead of semi-open.
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 1.2.3 A function / : X -*■ Y is called semi-continuous if for any V C Y,V
 open, the set /-1(V) is semi-open (i.e. quasi-open in our terminology).

 In this connection one can consider multifunctions for which F+(V) is quasi-
 open whenever V is open. Similarly one can consider those multifunctions for
 which F~(V) is quasi-open whenever V is open.

 In [NA 1] the following was proved.

 1.2.4 A single-valued mapping / : X - ► Y is quasi-continuous if and only if
 it is semi-continuous (in the sense of 1.2.3). The above result is a special case of
 any of the following assertions.

 1.2.5 A multifunction is upper (lower) quasi-continuous if F+(V) (F~(V)) is
 quasi-open for any open V C Y .

 Proof. We give the proof for the "lower" case. So let F be lower quasi-
 continuous. Let V C Y be open. Let p € F~(V) be an arbitrary point and U
 any neighborhood of p. By the lower quasi-continuity of F at p there is G open,
 G 0 such that G C U and F(x) D V ^ 0 for any x € G. So G C F~(V)
 and we have p G (.F~(V))0. Thus F~(V) is quasi-open. Conversely, let F~(V)
 be quasi-open for any V C Y, V open. Let p € X and let V be open such that
 F(p) nv¿0 and U open such that p EU. Since U is open and F (V) quasi-
 open, _F-1(V) n U is quasi-open ([LE 1]). Moreover, since F~(V) fi U ^ 0, we
 have (F~(F) D U)° ± 0. Putting G = (F"(V) f~l U)° we have F(x) Cl V / 0 for
 any x € G. The lower quasi-continuity at p is proved.

 As one may observe we did not define quasi-continuity of a multifunction. A
 natural definition is the following:

 1.2.6 A multifunction F : X -*■ Y is said to be quasi-continuous at p € X if for
 any open sets V,W such that F(p) C V, F(p) D W and for any neighborhood
 U of p there exists a nonempty open set G such that G CU and for any x 6 G
 we have F(x) C V and F(x) D W ^ fy.

 It is evident that a quasi-continuous multifunction is both upper and lower
 quasi-continuous. The converse is not true as the following example shows.

 1.2.7 Consider R with the usual topology and define F : R - ► R as follows:

 ' [0,1] if x < 0
 F(x) = < [- 1, - |] U [0, 1] if x = 0

 [-1,0] if x > 0.

 Then F is both upper and lower quasi-continuous but not quasi-continuous.
 Note that in the case of a single-valued mapping the definition 1.2.6 coincides

 with the usual quasi-continuity.
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 1.3 Quasi-continuity and Vietoris topology

 Given a topological space Y we may consider on the power set P(Y) the finite
 or Vietoris topology [MH]. To describe it denote for any positive integer n by
 (Z7i, . . . , Un), where Z7,(t = 1, . . . , n) are open sets in Y , the collection

 {E e P{Y) : E C 'J E,, E,nt/i^0 (• = 1,. ..,»)}.
 »=i

 1.3.1 The topology on P(Y) generated by the base {{Ui, . . . , Un),n = 1,2,...}
 is called the finite or Vietoris topology on P{Y).

 1.3.2 The topology generated by the base (subbase) of all sets

 {E € P{X) : E C U} ({E€ P{X) :EnU¿Q})

 where U runs through all open sets of Y , is called upper (lower) Vietoris topology
 or upper (lower) semifinite topology. Given a multifunction F : X - ► Y we may
 consider F as a single- valued mapping defined on X with values in P(Y) - 0 and
 we can consider continuity of F relative to the Vietoris topology or the lower or
 upper Vietoris topology on P(V). The following result is well known ([MH]):

 1.3.3 A multifunction F : X -* Y is upper (lower) continuous (definition
 1.1.3) if and only if it is continuous as a single-valued mapping from the topolog-
 ical space X into P(Y) with the upper (lower) Vietoris topology. It is continuous
 exactly if the corresponding single-valued mapping is continuous in the Vietoris
 topology.

 Now we consider quasi-continuity of a multi-valued mapping F : X -+ Y
 in such a way that we consider F as a single-valued mapping into P{Y) and
 the Vietoris topology on P{Y). However, the situation is different from that
 described in 1.3.3.

 If F : X - ► Y is quasi-continuous when considered as a single- valued mapping
 into P(Y) then it is evidently quasi-continuous in the sense of 1.2.6. The converse
 is not true.

 1.3.4 ([EN]) Let X = A U {0} where A = {1, f,..., jj,...}. Consider the
 natural topology on X. Let A+ for i = 1,2,3 be disjoint subsets of A such that
 A = A' U Ai U Aj and 0 € Ā,- for i = 1, 2, 3. Define the multifunction F : R R
 as follows:

 F(0) = {-1,0,1}

 ( {1} if x€Ax
 F(x) = {{0} if xe A2

 ( {-1} if xe Aļ

 263



 Now let Crj, Gļ be open such that F(0) C G' and F(0) fl Gļ ^ 0. Let V be
 any neighborhood of 0. Evidently F(^) c -F(O) c Gļ for n = 1,2, - Since
 F( 0) nGj / 0, contains at least one of the elements of the set {-1,0,1}.
 Without loss of generality we may suppose that 0 € F(0) fl Gj. Choosing no
 sufficiently large and such that ^ € A% we obtain a nonempty subset V =
 {^} C U and evidently

 F(l) c F(G¡), F(i)nG,/0.
 «0 Wo

 Thus F is quasi-continuous at 0. The quasi-continuity at any other point x € A
 is evident.

 Choosing G, = (-f,-|),Gj = (-},}), G, = (f,f) we have F(0) g (GUG,,
 Gj). But if E C X is any set such that F(x)c(Gi,G2,G3) for any x € E, then
 E = {0} which is not an open set. Thus F is not quasi-continuous in the Vietoris
 topology.

 One can easily see that the following holds true.

 1.3.5. A multivalued mapping F : X -*■ Y is upper quasi-continuous if and
 only if it is upper quasi-continuous as a single-valued mapping F : X - ► P(Y").

 Note that there is no analogy to 1.3.5 for the lower quasi-continuity. This is
 easily seen from 1.3.4.

 Recall that a space X is said to be extremally disconnected if the closure
 of every open set G C X is open. The following result gives a condition under
 which various types of quasi-continuity are identical.

 1.3.6 ([EN]) Let X be an extremally disconnected space. Then for any multi-
 valued mapping F : X - ► Y and any topological space Y the simultaneous up-
 per and lower quasi-continuity, quasi-continuity and quasi-continuity in Vietoris
 topology coincide.

 In the paper mentioned above also the converse of 1.3.6 under general condi-
 tions is proved.

 1.3.7 Let X be dense in itself. If for any multifunction F : X -*Y and any
 topological space Y at least two different types of quasi-continuity mentioned in
 1.3.6 are identical, then X is extremally disconnected.

 It is immediate that the following implications are valid and in general none
 of them can be reversed.

 1.3.8 Let F : X - ► Y be a multifunction. Then

 a) F is lower (upper) continuous ^ F is lower (upper)
 quasi-continuous

 264



 b) F is continuous =» Ķ is quasi-continuous
 c) F is continuous => F is quasi-continuous in the

 Vietoris topology

 A necessary and sufficient condition for reversing the implications a), b), c)
 is included in

 1.3.0 A necessary and sufficient condition for reversing the implication a) in
 1.3.8 is the following: For any closed set Z C X the restriction F | Z is lower
 (upper) quasi-continuous. The quasi-continuity of F ' Z for any closed set Z
 guarantees the reversing of b). The situation in the case c) is analogous.

 Proof. Since the cases b) and c) follow from a) and from the known relations
 between quasi-continuity, upper quasi-continuity and lower quasi-continuity as
 well as the quasi-continuity in Vietoris topology, we investigate only the case a).
 The upper case may be reduced to single-valued functions (see 1.3.5 and 1.3.3);
 but the single valued case is known [MT]. So we prove the assertion for the lower
 case. Suppose F not to be lower continuous. We have to show that there exists a
 closed set Z such that F | Z is not lower quasi-continuous. Let p € X be a point
 at which F is not lower continuous. Then there is V open such that Vr> F(p)#0
 and in any neighborhood U of p there is x such that F(x) n V = 0. We choose
 in any neighborhood U of p a point y such that F(y) D V = 0. Let A be the set
 of all such points. Put Z = Ā. Evidently p € Z. Let U' be any open set in Z
 containing p. Then U' = U n Z where U is open in X. Now, let G C U' be a
 nonempty open set in U'. Then G C Z. If G ý {p} then G contains a point y
 in A and we have F(y) n V = 0. But the case G = {p} is impossible because we
 would have G - V fi Z where V is open and contains p and thus a point different
 from p and belonging to A , hence to Z. So F ' Z is not lower quasi-continuous
 at p. Since there exists a quasi-continuous mapping which is not continuous, we
 see from 1.3.8 that quasi-continuity is not a hereditary property with respect to
 closed sets.

 But the following is well known.

 1.3.10 Let F : X - » Y be a quasi-continuous (upper quasi-continuous, lower
 quasi-continuous) multifunction and G C X an open set. Then F | G is quasi-
 continuous (upper quasi-continuous, lower quasi-continuous).

 1.3.11 The assertion 1.3.10 holds true if the open set G is replaced by a dense
 set.

 265



 2. Continuity types closely jelated to quasi-continuity

 2.1 Somewhat continuity

 Somewhat continuous mappings were introduced in [GH].

 2.1.1 A mapping / : X - ► Y is said to be somewhat continuous if for any
 open V C Y such that /-1(V) ^ 0 we have (/- 1(V))° ^ 0.

 As can immediately be seen, any quasi-continuous mapping is somewhat con-
 tinuous. The converse is not true.

 2.1.2 Example. Let / : R - ► R be defined as

 (0 0 1 1 if if if if X X z X €[0,1] 6 < < (1, 0, 0, oo) X z is is rational irrational

 1 if X < 0, z is irrational
 0 if z €[0,1]
 1 if X 6 (1, oo)

 Then / is somewhat continuous but not quasi-continuous. The restriction of
 a somewhat continuous mapping need not be somewhat continuous even in the
 case when it is a restriction to an open set. As an example we can take / from
 2.1.2 with the open set (- oo,0). But the following assertion is useful and gives
 a connection between somewhat continuity and quasi-continuity.

 2.1.3 ([NE 2]) A mapping f : X -* Y va quasi-continuous if and only if there
 exists a basis B of open sets such that / | B is somewhat continuous for every
 ß € fl.

 A useful characterization of somewhat continuity is the following.

 2.1.4 ([GH]) A mapping / : X - *■ Y is somewhat continuous if and only if
 for any dense set D C X the set f(D) is dense in f(X).

 As an easy consequence of 2.1.3 and 2.1.4 we have

 2.1.5 A mapping / : X - ► Y is quasi-continuous if and only if for any dense
 D C X the set f(D fl G) is dense in /(G) for any G open.

 The following is a natural extension of somewhat continuity to multifunctions.

 2.1.6 ([NE 3]) A multifunction F : X -* Y is upper (lower) somewhat con-
 tinuous if for any open V c 7 for which F+(V) ^ 0 (_F"(V) ^ 0) we have
 (F+(V"))° ^ 0 (F~(F))° ^ 0)-

 In case of a single-valued mapping both the upper and the lower somewhat
 continuity coincide with the somewhat continuity.

 Similarly, the upper somewhat continuity of F : X - ► Y may be characterized
 as the somewhat continuity of F : X - » P(Y) when F is considered as a single-
 valued mapping and the topology on P(Y) is the upper Vietoris topology. The
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 situation is different with the lower somewhat continuity. Example 1.3.4 may
 serve to show that F is lower somewhat continuous but considered as a single
 valued mapping it is not somewhat continuous in the lower Vietoris topology on
 P(Y).

 A natural definition of somewhat continuity for a multifunction F : X -*■ Y
 may be stated as follows:

 2.1.7 ([EN]) A multifunction F : X - * Y is called somewhat continuous if
 for any two open sets V,W such that F+(V) H F~(W) / 0 we have (F+(V) n
 F-{W))°¿0.

 The above type of somewhat continuity again cannot be characterized by
 means of the Vietoris topology.

 To formulate 2.1.3 and 2.1.4 for multifunction we need the notions of upper
 and lower density of a collection of sets.

 2.1.8 ([NE 10]) A collection A of subsets of a topological space Y is said to
 be upper (lower) dense in a collection 3 of subsets of Y if for any B G B and
 for any G open such that G D B (G D B ^ 0) there exists A E A such that
 G D A (G n A ^ 0).

 It is easy to see that the upper density of A in B is the density of A in B in the
 upper Vietoris topology. Since the upper somewhat continuity of a multifunction
 F : X -*■ Y is the upper somewhat continuity in Vietoris topology when F is
 considered as a single-valued mapping into P{Y), we obtain from 2.1.4 and 2.1.3
 the following results ([NE 10]).

 2.1.9 A multifunction F : X - ► Y is upper quasi-continuous if and only if
 its restriction F | B is upper somewhat continuous for any set B belonging to a
 base B of open sets in X.

 2.1.10 A multifunction F : X - ► Y is upper somewhat continuous if and
 only if for any dense set D C X the collection (F(x) : x € D} is upper dense in
 {F(x) : x € X}.

 2.1.11 A multifunction F : X -*■ Y is upper quasi-continuous if and only if
 for any dense D C X the set {.F(x) : x € DC'G} is upper dense in {F(x) : x G G}
 for amy open set G C X.

 The analogues of 2.1.9, 2.1.10, 2.1.11 for the lower case may be obtained di-
 rectly. Since their proofs are similar to the single-valued case, we omit them. The
 same type of results may be obtained for somewhat continuity of multifunctions.

 2.1.12 Remark. Since the somewhat continuity of a mapping does not
 coincide with its quasi-continuity, it is evidently different in general from its
 continuity. Nevertheless if / is a linear somewhat continuous mapping from a
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 linear topological space X into a linear topological space Y then it is continuous
 [PT 6]. (See also [EW 5] for related results.)

 2.2 Strong and weak quasi-continuity

 Denote Q(X) the collection of all quasi-open sets in X and G(X) the topology
 on X. As we have seen, G(X) C Q{X) and in general G(X) ± Q{X). In general
 Q{X) is not a topology. A simple result shows that the case when Q(X) is a
 topology is rather exceptional.

 2.2.1 ([NS]) Q{X) is a topology if and only if the space X is extremally
 disconnected.

 A class of sets closely related to Q(X) has been studied [NS]. They are usually
 called a-sets.

 2.2.2 A set A C X is said to be an a-set if A C ((A0))0. Denoting by a(X)
 the collection of all a-sets in X we have

 G{X) C a(X) C Q{X).

 It is not difficult to show that the above inclusions are in general strict. We will
 see later that G(R) ^ ot(i2) ^ Q{R)>

 While Q{X) is in general not a topology we have the following result.

 2.2.3 ([NS]) If X is an arbitrary topological space then a(X) is a topology.

 2.2.4 A function / : X - ► Y is said to be a-continuous (or strongly quasi-
 continuous [NO 1]) if it is continuous with respect to the topology a(X ) on X.

 The following implications are obvious:

 2.2.5 Continuity => a-continuity => quasi-continuity. In general none of the
 implications can be reversed.

 2.2.6 ([NO 2]) Let X = {a,6,c} and let G(X) = {0,{a},{a,6},X}. Let
 Y = X with the topology G(Y) = {0,{a},{a,b},{a,c},Y}. Then the identity
 function is strongly quasi-continuous but not continuous.

 2.2.7 Let X = Y = R with the usual topology. Then / : R - ► R defined
 as f(x) = 0, if X < 0, and f(x) = 1, if x > 0, is quasi-continuous but not
 a-continuous.

 Every real function which is a-continuous is continuous as the following result
 shows:

 2.2.8 Let X, Y be topological spaces, Y regular. Then any / : X -*Y which
 is a-continuous is also continuous.
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 This assertion follows from a more general result which will be proved for
 multifunctions.

 2.2.9 A multifunction F : X - ► Y is called a-continuous (a-upper continuous,
 a-lower continuous) if it is continuous (upper continuous, lower continuous) when
 the topologies a(X) on X and G(Y) on Y are considered.

 Obviously, if / is single-valued then a-upper continuity, a-lower continuity
 and a-continuity coincide.

 2.2.10 ([NE 5]). Let X = {a,6,c} and G(X) = {0,{a},X}. Let Y = {x,y}
 with the discrete topology. Then a(X) = {0, {a}, X, {a, 6}, {a, c}}. Define F :
 X - *■ Y such that F (a) = {x,y},F(b) = {x}, F(c) = {y}. The space Y is normal,
 F is a-lower continuous but not lower continuous.

 2.2.11 Example ([NE 5]). Let X = [0,1], y = R. Let E € a(X) such that
 E £ G(X). Put F(x) = {1} if X € EtF (x) = {0, 1} if x £ E. Then F is a-upper
 continuous but not upper continuous.

 The next result [NE 5] shows some connection between the lower continu-
 ity and a-lower continuity of a multi-function. It involves also upper quasi-
 continuity.

 2.2.12 Let X, Y be topological spaces, Y regular. Let F : X -* Y be an
 a-lower continuous and upper quasi-continuous multifunction. Then F is lower
 continuous.

 As a corollary of 2.2.12 we obtain 2.2.8.
 A result analogous to 2.2.12 may be proved for the a-upper continuity ([NE

 5]).

 2.2.13 Let X,y be topological spaces, Y normal. Let a closed-valued mul-
 tifunction F : X - ► Y be a-upper continuous and lower quasi-continuous. Then
 F is upper continuous.

 As a corollary of 2.2.12 and 2.2.13 we have

 2.2.14 ([NE 5]). Let X,Y" be topological spaces, Y normal. Let F : X - ► Y
 be a closed-valued a-continuous multifunction. Then F is continuous.

 Note that results analogous to 2.2.12 - 2.2.14 may be obtained involving some
 other notions of generalized continuity. We omit these types of results since they
 are not in the main line of our discussion. We refer the interested reader to [HL].

 We omit also discussion concerning the so-called weak quasi-continuity. Nev-
 ertheless we will meet this notion in some places of our paper so we introduce
 the definition which is motivated by the notion of weak continuity (see e.g. [LE
 2]).
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 2.2.15 A mapping / : X - ► Y is called weakly quasi-continuous at p € X if for
 any open V containing f(p) and any open U containing p there exists a nonempty
 open set G C U such that f{G) C V . It is called weakly quasi-continuous if it is
 weakly quasi-continuous at any x € X.

 We refer e.g. to [NO 3] for some relations between weak continuity and several
 other continuity notions.

 3. Continuity points of quasi-continuous functions

 3.1 Continuity points of quasi-continuous functions with values in a space
 with a base of given cardinality

 Denote by C(f), D(f) the sets of all continuity (discontinuity) points of /.
 A fundamental result concerning continuity points of quasi-continuous func-

 tions is due to N. Levine [LE 1].

 3.1.1 If / : X - ► Y is a quasi-continuous mapping and Y is second countable,
 then D(f) is of first category.

 A generalization of the above result may be obtained in two directions. The
 first one is that we consider multi- valued mappings; the second one is that we
 consider spaces more general than the second-countable spaces.

 To this end let us recall the notion of fc-Baire space ([HC]).

 3.1.2 Let fc be an uncountable cardinal number. A topological space X is
 said to be a fc-Baire space if the intersection of any collection of cardinality less
 than k of open dense sets in X is dense in X.

 3.1.3 A set E is said to be of first ^-category in X if it can be written as a
 union of fewer than k nowhere dense subsets of X. E is of second ^-category if
 it is not of first ¿-category.

 From the definitions 3.1.2, 3.1.3 easily follows

 3.1.4 The complement of a set of first ¿-category in a fc-Baire space X is
 dense in X.

 Denote by Dt{F) and DU{F) the set of all such points in which the multi-
 function F : X -*■ Y is not lower (upper) continuous. Further, put Ct(F) =
 X - D4F),CU(F) = X - DU(F).

 The following lemma will be useful ([EL]).

 3.1.5 If A is a quasi-open set then Fr(A) is nowhere dense.
 Now we are able to prove the following results.
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 3.1.6 Let XyY be topological spaces. Let Y possess a base of cardinality
 less than k. Let F : X - ► Y be lower quasi-continuous. Then D¿(F} is of first
 fc-category.

 3.1.7 Let X , Y be topological spaces. Let Y possess a base of cardinality less
 than k. Let F : X - ► Y be upper quasi-continuous compact valued multifunction.
 Then the set DU(F) is of first ¿-category.

 Proof. We give the proof of 3.1.7 only; that of 3.1.6 is similar. Let V = {V( :
 ieT} be a base of Y of cardinality less than k. Let Z be the collection of all
 finite unions of sets belonging to V. The collection Z is of cardinality less than
 k. Let p € DU(F). Then there exists an open set V D F(p) such that for every
 open U containing p there exists q € U such that F(q) fi (Y - V) ^ 0. Thus
 p € Fr(F+(V)). Since F(p) is compact, V may be taken from Z. Thus

 D»(F) C (J Fr(F+(2)).
 Z€Z

 Since F+(Z) is quasi-open, by upper quasi-continuity of F, the set Fr(F+(Z))
 is nowhere dense by 3.1.5. Thus from the above inclusion we have that DU(F) is
 of first fc-category.

 As a corollary of 3.1.6 and 3.1.7 (see also 3.1.4) we have

 3.1.8 Let X, Y be topological spaces, X a fc-Baire space and let Y possess a
 base of cardinality less than k. If the assumptions of 3.1.6 and 3.1.7 are satisfied
 then the sets C¿(F) and CU(F) are dense in X.

 As a special case of 3.1.8 we have

 3.1.9 Let / : X - ► Y be a quasi-continuous function. Let X be a &-Baire
 space and let Y have a base of cardinality less than k. Then C(f) is dense in X.

 Considering X as the classical Baire space (which is fc-Baire space of the first
 uncountable cardinality k) and Y second countable we obtain from 3.1.8 and
 3.1.9 well-known results about continuity points of quasi-continuous functions
 and multifunctions. One of them is 3.1.1. For the others see [EL].

 In connection with upper and lower continuity of multifunctions the follow-
 ing question has been discussed [FT], [KN]: If a multifunction is upper (lower)
 continuous, what is the structure of its lower (upper) continuity points? Analo-
 gous questions have been discussed also for quasi-continuity. As to the last we
 mention [EW 1], [MD 1].
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 3.2 Continuity points of quasi-continuous functions with values in uniform
 spaces

 If y is a metric space then (see [BL]) the result stated in 3.1.1 is true without
 any assumption on the cardinality of the open base of Y , i.e. the following
 theorem holds.

 3.2.1 Let X be a topological space, Y a metric space. Let / : X - ► Y be
 quasi-continuous. Then D{f) is of first category.

 The last result motivates further study of continuity points of quasi - contin-
 uous functions and multifunctions with values in uniform spaces.

 Since such a study is closely related to that of quasi-continuity points of more
 general functions, called cliquish functions, we recall the last notion.

 3.2.2 ([TH]) A mapping / : X - ► Y where (F, p) is a metric space is said to
 be cliquish at p € X if for any e > 0 and any neighborhood U of p there exists a
 nonempty open set G such that for any u,v € G we have p(/(u),/(v)) < e. It is
 said to be cliquish if it is cliquish at any z € X.

 Evidently, any quasi-continuous function with values in a metric space is
 cliquish. Simple examples show that the converse is not true.

 Denote A(f) the set of cliquishness of a function f : X -*Y. Then A(f) is a
 closed ([LS]) set and the following generalization of 3.2.1 is true.

 3.2.3 ([NA 1], cf. also [MC 1]) Let X be a topological space, Y a metric
 space. Let / : X -*Y. Then the set A(f) - C(f) is of first category in X.

 All the above results can be looked at from the point of view of multifunctions
 and so we prove such a result.

 3.2.4 ([EW 2]) A multivalued mapping F : X - ► Y> where F is a uniform
 space with uniformity II, is said to be cliquish at p 6 X if for every V E U and
 for every neighborhood U of p there exists a nonempty open set G C U such that
 (F(u) X F(t;)) fi V ^ 0 for any u,v € G. It is said to be cliquish if it is cliquish
 at any x G X.

 The above definition coincides with 3.2.2 in case of a single-valued mapping.
 For a multi-valued function F : X -*Y denote ([EW 2]) by Cx{F) the set of

 all points x 6 X for which the following is satisfied: For every open set V C Y
 such that F(x) C V there exists a neighborhood U of x such that F(x) n V ^ 0
 for any x € U. Further, let A(F) be the set of points where F is cliquish. It can
 be immediately seen that A(F) is closed.

 3.2.5 Let U be a uniformity on Y which has a base of cardinality less than
 k. Let F : X - ► Y be a compact valued multifunction. Then A(F) - Cx{F) is
 of first category.
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 Proof. Let {Vt : t € T} be a base of U of cardinality less than k. Let Ht be
 the set of all points x € X such that any neighborhood U of x contains a point
 y such that (F(y) x F(x)) n Vt = 0. Then we have

 A{F)-CxW = l_U(F)nfl,.
 t€T

 Let G be a nonempty open subset of X. Take x € G and a set W belonging to
 the uniformity U such that W2 C Vt. Let x 6 A{F). Since F is cliquish at x
 there exists a nonempty open set H C G such that (F(u) x F(v)) n W ^ 0 for
 any «, v G H, and we have H C' Ht = If x ^ A(F) then there is a neighborhood
 E of x such that E fi A{F) = 0 because A(F) is closed. In any case there is
 a nonempty open subset G disjoint with A(F) D Hf. So A (F) D Ht is nowhere
 dense. Since it is true for any t €. T, the set A(F) - Cx{F) is of first k- category.

 As a corollary we obtain

 3.2.6 Let X be a fc-Baire space and let Y possess a base of uniformity of
 cardinality less than k. Let F : X - ► Y be lower quasi-continuous multifunction.
 Then Cx{F) is of first ^-category.

 It is easy to see that for a single-valued function / we have Cx{f) = G(f) so
 from 3.2.5 and 3.2.6 we obtain 3.2.1 and 3.2.3 and also the following.

 3.2.7 If / : X -► Y is a quasi-continuous function where X is a Baire space,
 then the set C(f) is dense in X.

 There are results about quasi-continuous functions which are in a sense con-
 verse to those contained in 3.2.1, 3.2.3 and similar theorems. In this connection
 we refer the reader to [EI 1], [EI 2], [EI 3]. The following is an example of such
 a result.

 3.2.8 ([EI 1]). Let X, Y be real normed spaces and X a Baire space. Let
 C, E, A be sets such that C C E C A = Ä where C is a Gg and A - C of first
 category. Then there exists a function / : X - ► Y such that C = C(f),A = A(f)
 and E is the set of quasi-continuity points of /.

 3.3 Continuous restrictions of quasi-continuous functions and multifunctions

 It is possible to characterize the quasi-continuity of a function / at a point x
 as follows:

 3.3.1 Let X, Y be first countable topological spaces, X a Hausdorff space.
 Then a function / : X - ► Y is quasi-continuous at a point x G X if and only
 if there exists a quasi-open set A containing x such that the restriction / | A is
 continuous at x.
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 The above result follows from more general results which will be given for
 multifunctions.

 3.3.2 Given a collection K of subsets of Y we say that Y is first countable
 at K if for any K € K there exists a sequence {V*}^ of open sets such that
 Vn D K (n = 1, 2, . . .) and for any open G D K there exists no such that Vno C G.

 3.3.3 ([NN]) Let X be a first countable topological space. Let F : X - ► Y be
 a multifunction and let Y be first countable at the collection K = {F(x) : x € X}.
 Then F is upper quasi-continuous at a point x € X if and only if there exists a
 quasi-open set A containing x such that the restriction F | A is upper continuous
 at x.

 As an immediate corollary we obtain

 3.3.4 ([NN]) Let X be a first countable Hausdorif space and Y a second
 countable topological space. Let F : X - ► Y be a compact valued multifunction.
 Then F is upper quasi-continuous at a point x € X if and only if there exists a
 quasi-open set A containing x such that F | A is upper continuous at x.

 Obviously 3.3.1 follows from 3.3.4.
 Moreover, it may be shown that an analogous characterization of lower quasi-

 continuous multifunctions is not possible.
 Nevertheless a certain sequential characterization of quasi-continuity is pos-

 sible even in the case when the characterization by means of the restriction fails.
 In this connection we mention the following result.

 3.3.5 ([NE 6]) Let X, Y be first countable Hausdorif topological spaces. A
 multifunction F : X - ► Y is lower quasi-continuous at x € X if and only if for
 any y € F(x) there is a quasi-open set A containing x such that for any sequence
 {xn}£ i,*n G A,xn -* x there exists {y„}¡?=1,yn 6 -F(xn),y„ -+• y.

 In general the quasi-open set A in 3.3.4 depends on the choice of the point
 y € F(x). In a special case when the set A is independent of y € F(x) we
 may obtain also the characterization of lower quasi-continuity by means of the
 continuity of restriction. Namely, we have the following

 3.3.6 ([NE 6]) Let X, Y be Hausdorif topological spaces. Let x € X. In order
 that a quasi-open set A containing x exists such that F | A is continuous at x,
 the following condition (C) is necessary and sufficient.

 (C) There exists a quasi-open set A containing x (not depending on y € F(x))
 such that for any y € F(x) and any sequence {xn}^.1,xn € A,xn - » x, there are
 !/n € F(xn),yn ► y.
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 4. Quasi-continuity and product spaces

 4.1 Separate and joint quasi-continuity

 The well-known property of a continuous function / : X x Y - *■ Z where
 X, Y, Z are topological spaces is the continuity of all x-sections where x € X and
 all y-sections where y 6 Y . Here the x-section will be denoted by fx and means
 the function fs:Y -*■ Z; /x(y) = /(x,y). In a similar way the y-section fv : X - ►
 Z is defined. It is also a well-known fact that the continuity of all x-sections where
 x € X and all y-sections where y € Y does not imply the continuity of /. As
 to the connection between separate and joint continuity we refer the reader to
 [PT 1]. Further, the continuity (quasi-continuity, somewhat continuity) of all
 x and y-sections of / is called separate continuity (quasi-continuity, somewhat
 continuity).

 Here the connection between separate and joint quasi-continuity will be dis-
 cussed. First of all it is necessary to say that the situation is different from that
 of continuity. The following may serve as an example.

 4.1.1 ([MT]). Let / : (0, 1) x (0, 1) - ► R be defined as

 'l if 0<x<|, 0<y<l
 / ft ' _ 0 if j < * < 1, 0<y<l
 / ft Ia5» yj _ j £ x j = |, y € (0,1), y rational

 k 0 if x = j, y € (0,1), y irrational

 The function / is quasi-continuous but the x-section /1 is not quasi-continuous.
 It is not even somewhat continuous.

 On the other hand under general conditions on the spaces X , Y, Z the quasi-
 continuity of x-sections and y-sections implies the quasi-continuity of /. The first
 result in this direction, where the quasi-continuity of the sections is explicitly
 used, is due to S. Kempisty ([KP]). The Kempisty's result, roughly speaking,
 says that a real function / : (0, 1) x (0, 1) - ► R which has quasi-continuous x-
 sections and quasi-continuous y-sections is quasi-continuous as a function of two
 variables. (Note that under the assumption that fx and fv are continuous the
 quasi-continuity of / as a function of two variables was observed earlier.)

 There are many generalizations of Kempisty's result ([NE 2], [NE 3], [NP],
 [BN]).

 The following is a general version covering various of those which appear in
 the literature.

 4.1.2 Let X be a fc-Baire space, Y a space which possesses at each point a
 neighborhood which has a base of cardinality less than k and Z a regular space.
 îî f : X x Y Z is separately quasi-continuous, then it is quasi-continuous.
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 To prove 4.1.2 we give some results related to separate somewhat continuity.
 Note that the sections Fz, Fv of a multifunction F : X xY - ► Z are defined in
 an obvious way. Further, note that the separate somewhat continuity does not
 imply somewhat continuity even in the case of a function / : Rx R - ► R ([NE
 7]). But the following is true.

 4.1.3 Let X be a fc-Baire space, let Y possess a base of cardinality less
 than k and let Z be a regular space. Let F : X x Y - ► Z be a multifunction
 such that Fx is lower somewhat continuous for every x € X and J P" both lower
 somewhat continuous and upper quasi-continuous for every y € Y . Then Y is
 lower somewhat continuous.

 Proof. Suppose F not to be somewhat continuous. Then there exists an open
 set H G Z such that

 F~{H) ^ 0 and ( F~{H))° = 0.

 So there is a dense set D C X x Y such that for any (u,t>) € D we have
 F{u, v) D H = 0. Let (p, q) 6 F~(H) and z € F(p, q) fl H. Choose Hi such that

 z e Hi C Hi C H.

 Since z 6 F9(p) fl Hi, we have (Fq)~(Hi) ^ 0. So the lower somewhat
 continuity of F* implies that a nonempty open set G exists such that for any
 x€G

 F«(x) fl Hx Ý 0.

 Let {Vf : t G T} be a base of Y of cardinality less than k. Put

 At = {xeG: F(x, y)r'Hi^(H for every y 6 Vt }.

 Using ¿-somewhat continuity of the sections Fx we obtain that

 G='jAt.
 ter

 To obtain a contradiction with the fact that X is a fc-Baire space, it is sufficient
 to prove that each At is nowhere dense. So, let W C G be a nonempty open set.
 Let t be fixed and (tt, v) € W x Vt be a point such that F(u, t>) c Y - H. The
 set Y - Hi is an open set containing F(u, v). Using the upper quasi-continuity
 of Fv at u we get a nonempty open set W C W such that F(x, v) C Y - Hļ for
 any x € W. Thus

 F(x, v)r'Hi = Fv{x) n Hi = 0.
 Since v E Vt, we have x & At. Hence W n At = 0. Thus At is nowhere dense.

 The proof is finished.
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 In a similar way the following may be proved.

 4.1.4 Let X be a fc-Baire space and let Y possess a base of cardinality less
 than k. Let Z be a normal space. Let F : X x Y - ► Z be a closed-valued
 multifunction such that Fx is upper somewhat continuous for every x € X and
 Fv both upper somewhat continuous and lower quasi-continuous for every y € Y.
 Then F is upper somewhat continuous.

 From 4.1.3 and 4.1.4 we obtain results concerning product quasi-continuity.

 4.1.5 Let X be a fc-Baire space, let y be a space such that for any y € Y
 there exists a neighborhood V (y) possessing a base of cardinality less than k,
 and let Z be a regular space. Let the multifunction F : X x Y -> Z be such
 that Fx is lower quasi-continuous and Fv both upper quasi-continuous and lower
 quasi-continuous (x G X,y € Y'). Then F is lower quasi-continuous.

 4.1.6 Let X be a fc-Baire space, let y be a space such that for any y € Y
 there exists a neighborhood V (y) possessing a base of cardinality less than k, and
 let Z be a normal space. Let F : X x Y -* Z be a closed valued multifunction
 such that Fx is upper quasi-continuous and Fy both upper quasi-continuous and
 lower quasi-continuous (x G X,y € Y). Then F is upper quasi-continuous.

 Since the proofs of 4.1.5 and 4.1.6 are similar we give only the proof of 4.1.5.

 Proof of 4.1.5. The collection {17 x V } where U, V are open in X, Y re-
 spectively, is a base in X x Y . From the assumptions it follows that we can take
 as a base such collection {17 x V} where V as a subspace of Y has a base of
 cardinality less than k. The restriction F|ř7xVofFtoZ7xV satisfies on
 U x V the assumptions of 4.1.3. So F | U x V is lower somewhat continuous.
 Using the analogue of 2.1.9 for lower quasi-continuity we see that F is lower
 quasi-continuous.

 4.1.6 If we consider the quasi-continuity of a multifunction (in the sense of
 Definition 1.2.6) then proofs similar to those of theorems 4.1.3 and 4.1.5 give the
 following results (for their special case see [EN]).

 4.1.7 Let X be a A;-Baire space and let Y possess a base of cardinality less
 than k. Let Z be a normal space. Let F : X x Y -»Z be a closed-valued
 multifunction such that

 (i) Fx is somewhat continuous for every x € X

 (ii) Fv is both upper and lower quasi-continuous for every y & Y.

 Then F is somewhat continuous:
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 4.1.8 Let X be a fc-Baire space. Suppose that for every y G Y there exists
 a neighborhood possessing a base of cardinality less than k. Let Z be a normal
 space and F : X x Y - ► Z a closed valued multifunction such that Fx is quasi-
 continuous for every x € X and Fv quasi-continuous for every y G F . Then F is
 quasi-continuous.

 It is easy to see that the condition (i) in 4.1.7 may be weakened in such
 a way that we assume the somewhat continuity with the exception of a set of
 first ^-category. Some assumptions of the other theorems of this section may be
 weakened in a similar way.

 The case of a real function of n variables which covers the Kempisty theorem
 is also an easy consequence of our results. We give here a sufficiently general
 formulation which is useful for applications. Of course, it is not the most general
 version obtainable from the above results.

 4.1.0 If Xi (t' = 1, 2, ... , n) are second countable Baire spaces and / a function
 on Xi x Xi x ... x Xn to a metric space Y such that for any (xi,...,xn) €
 X' x ... x Xn the sections fXi (t = 1,2, ...,n) are quasi-continuous, then / is
 quasi-continuous.

 The question whether the condition of regularity of the range Z in theorems
 on product quasi-continuity is essential is discussed in [BZ 1]. It is shown that
 the condition of regularity cannot be replaced by quasi-regularity.

 Recall that Z is quasi-regular if for any nonempty open V C Z there exists a
 nonempty open G such that G C V .

 Results closely connected with product quasi-continuity are contained in [FD],
 [GR 1] and [SA 3].

 4.2 Symmetrical quasi-continuity

 Studying quasi-continuous functions on product spaces Kempisty ([KE]) in-
 troduced also a useful notion which he called symmetrical quasi-continuity. We
 state a generalized version of his definition.

 4.2.1 A function / : X x Y - * Z is called symmetrically quasi-continuous at
 (p, q) with respect to y if for any neighborhood U x V of (p, q) where U, V are
 neighborhoods of p,<f, respectively, and for any neighborhood W of / (p, q) there
 exist a neighborhood H of q such that H C V and a nonempty open set G C U
 such that for any (x,y) € G x H we have /(x,y) G W. If / is symmetrically
 quasi-continuous with respect to y at any (p,fl) € X x Y then it is said to be
 symmetrically quasi-continuous with respect to y.

 The definition of symmetrical quasi-continuity with respect to x is analogous.
 If / is symmetrically quasi-continuous both with respect to x and y at (p, q) G
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 X X Y it is said to be symmetrically quasi-continuous at (p, q).
 If / is symmetrically quasi-continuous at any (p, q) 6 X x Y , then it is said to

 be symmetrically quasi-continuous. One may show easily that if / is symmetri-
 cally quasi-continuous then all the x-sections and y-sections are quasi-continuous.
 The converse is not true even in the case when /, and p are continuous as the
 following example shows.

 4.2.2 ([MT]) Let / be defined by

 /(««) n'V> = / sinWF if /(««) n'V> = '0 if x* + y> = 0
 For the sake of shortness we omit the definition of symmetrical quasi-conti-

 nuity for multifunctions. Obviously there will be lower and upper cases. In
 this section we investigate only single-valued functions giving at the end some
 remarks for multifunctions.

 Fundamental theorems concerning symmetrical quasi-continuity on various
 levels of generality have been stated successively in [KE], [MT], [BN], [PT 2],
 [PT 3], [LT]. We prove the following version to cover the mentioned results.

 4.2.3 Let X be a fc-Baire space, let Y possess at any y € Y a basis of
 neighborhoods of cardinality less than k and let Z be a regular space. Let
 / : X x Y -> Z be such that fv is quasi-continuous for any y belonging to
 a dense set H C Y. Let fx be continuous on H for any x € X. Then / is
 symmetrically quasi-continuous with respect to y at any (p, q) € X x Y for which
 qeH.

 To prove 4.2.3 we use the notion of symmetrical somewhat continuity.

 4.2.4 A mapping / : X x Y - ► Z is said to be symmetrically somewhat
 continuous with respect to y at a point (p, q) if for any neighborhood V of /(p, q)
 there exists a nonempty open set G C X and a neighborhood H of q such that
 G x H C /~1(Vr). It is said to be symmetrically somewhat continuous with
 respect to y if it is symmetrically somewhat continuous with respect to y at any
 {p,q)eXxY.

 The symmetrical somewhat continuity with respect to x is defined in an anal-
 ogous way. If / is symmetrically somewhat continuous (at (p,?)) with respect to
 both x and y, it is said to be symmetrically somewhat continuous (at (p, 9)).

 The proofs of the following assertions are simple and therefore they are omit-
 ted.

 4.2.5 If / is symmetrically quasi-continuous with respect to x (with respect to
 y, symmetrically quasi-continuous) then it is symmetrically somewhat continuous
 with respect to x (with respect to y, symmetrically somewhat continuous) .
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 4.2.6 If / is symmetrically quasi-continuous with respect to x (with respect
 to y, symmetrically quasi-continuous) and G C X x Y is an open set then / | G
 is symmetrically quasi-continuous with respect to x (with respect to y, symmet-
 rically quasi-continuous).

 4.2.7 A mapping / : X x Y - ► Z is symmetrically quasi-continuous with re-
 spect to x (with respect to y, symmetrically quasi-continuous) if and only if there
 exists a basis B of open sets in X x Y such that / | B is symmetrically some-
 what continuous with respect to x (with respect to y, symmetrically somewhat
 continuous) for each B 6 B.

 It is a matter of easy examples to show that the somewhat continuity does not
 imply the symmetrical somewhat continuity as well as the symmetrical somewhat
 continuity does not imply quasi-continuity.

 Proof of Theorem 4.2.3. It is sufficient to prove that / is symmetrically
 somewhat continuous with respect to y at any (p, q) where q G H and then to
 apply 4.2.7. So suppose that / is not symmetrically somewhat continuous with
 respect to y at (p, q) where q € H. Then there is an open set W C Z such that
 z = f(p, q) 6 W and that for any G x V where G 0 is open in X and V is a
 neighborhood of q there exists (u,v) such that /(u,v) £ W. From the regularity
 of Z we get an open set W' such that z E Wļ C Wi C W. Using quasi-continuity
 of fq we have ((/ł)- 1(W)) = U / 0. Let {Vi : t € T} be a basis at q of cardinality
 less than k. Put

 At = {x € U : f;'Vt) C Wl}.

 From the continuity of fx we obtain immediately U = (Jt6r At. Now, if we prove
 that At is nowhere dense for any t E T, we obtain that U is of first ¿-category.
 It will be a contradiction. So let G C U be an open set. According to the
 assumption there is a point (u,v) G G x Vj such that /(u,v) ^ W. Using the
 quasi-continuity of fv we obtain a nonempty set E C G such that E fi At = 0.
 So At is nowhere dense.

 As a corollary we obtain the following theorem on product quasi-continuity
 (see [BN] for a more special case).

 4.2.8 Let X be a Ar-Baire space, let Y possess at each point y a base of
 cardinality less than k and let Z be regular. If /, is continuous for any x € X
 and fv quasi-continuous for any y belonging to a dense set H C Y, then / is
 quasi-continuous.

 Proof. Let (p,q) € X x Y be any point. Let W be a neighborhood of /(p, q)
 and U x V any neighborhood of (p,q). By continuity of fp we have q' € V such
 that /(p,<7i) € W. Now it is sufficient to use the symmetrical quasi-continuity
 with respect to y at (p, qi) and the proof is finished.
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 A result for symmetrical quasi-continuity with respect to x, analogous to
 4.2.8, is obvious. Hence we have the following well known result (the more
 general formulation for fc-Baire spaces is left to the reader).

 4.2.0 Let X , Y be first countable Baire spaces and Z a regular space. Let /
 be separately continuous. Then / is symmetrically quasi-continuous.

 It is also known that the converse to 4.2.9 is not true. As an example we can
 take 4.2.2.

 Now we formulate a theorem on symmetrical quasi-continuity of multifunc-
 tions.

 4.2.10 Let X be a fc-Baire space, let Y have at each point a basis of cardinality
 less than k and let Z be regular. Let F : X x Y -* Z be a multifunction such
 that Fx is continuous for any x € X and Fv is lower quasi-continuous and upper
 quasi-continuous for any y belonging to a dense set H C Y. Then F is lower
 symmetrically quasi-continuous with respect to y at any (p, q) for which q € H.

 Analogous theorems may be formulated and proved for upper symmetrical
 quasi-continuity when compact valued multifunctions are considered. In this
 connection we refer the reader to [BZ 2] where slightly weaker variants are proved.

 The symmetrical quasi-continuity of a function / (or a multifunction F) has
 an influence on the set of its continuity points. Results concerning this fact are,
 in a sense, a continuation of the classical result of Baire [BA] who proved that
 if / : [0,1] x [0, l] - ► R is separately continuous then there is a residual set
 A C [0, l] and a residual set B C [0, l] such that / is continuous on {x} x [0, 1]
 for any x € A and is also continuous on [0, 1] x {y} for every y € B.

 For the symmetrically quasi-continuous functions we have weaker but parallel
 results which appear again on various levels of generality in [KE], [LT], [PT 3],
 [PT 4], [BB].

 As an example we include without proof such a result of Piotrowski [PT 4].

 4.2.11 Let X be a topological space, Y a quasi-regular strongly countable
 complete space and Z a metric space. Let / : X x Y - ► Z be symmetrically
 quasi-continuous with respect to x. Then the set of continuity points of / which
 lie on {x} X y is a dense G¡ subset of {x} X Y .

 The notion of strongly countably complete space is due to [FL 1]. A space Y is
 said to be strongly countably complete if there exists a sequence {Ai : » = 1, 2, . . .}
 of open coverings of Y such that a decreasing sequence {Fi} of nonempty closed
 subsets of Y has a nonempty intersection, provided that each Fi is a subset of a
 member of Ai.

 Since every quasi-regular, strongly countably complete space is a Baire space
 [PT 4] we obtain from 4.2.9 and 4.2.11 the following corollary.
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 4.2.12 ([PT 4]) Let X be first countable, Y strongly countably complete
 quasi-regular and Z a metric space. If / : X x Y' - ► Z is such that all its re-
 sections are quasi-continuous and all its y-sections are continuous then for all
 x G X the set of continuity points of / which lie on {x} x Y is a dense Gg subset
 in {x} x Y.

 For a result closely related to 4.2.12 involving cliquish functions we refer to
 Fudali ([FD]).

 5. Quasi-continuity and convergence

 5.1 Pointwise, uniform, and quasi-uniform convergence

 A standard proof shows that a uniform limit of a sequence of quasi-continuous
 functions is quasi-continuous.

 A simple example of a sequence {/n}£Li where /„ : [0, l] - ► R, n = 1,2, ,
 /n(x) = xn, shows that a sequence of quasi-continuous functions may not con-
 verge to a quasi-continuous function. However, the following is a well known
 result.

 5.1.1 ([BL]) Let {/n}n=i be a sequence of quasi-continuous functions defined
 on a topological space X with values in a metric space Y . Let lim»-,«, /n(x) =
 /(x) for any x € X. Then the set D(f) of discontinuity points of / is of first
 category.

 As an easy corollary one obtains the following

 5.1.2 ([EW 2]) Let fn : X -* Y,n = 1,2,... where X is a Baire space and Y
 a metric space. If for any x G X limn-»«, /n(x) = /(x), then / is cliquish.

 A condition under which a limit of quasi-continuous functions is quasi-
 continuous is given in [BR].

 Some question about pointwise convergent quasi-continuous multifunctions
 are answered in [EW 2], [BU], [BC].

 The quasi-uniform convergence of quasi-continuous functions was discussed
 in [DO 1]. Recall that a sequence {fn}%L i of functions defined on X with values
 in a metric space (Y', p) is said to be quasi-uniformly convergent to / : X -* Y
 provided that it is pointwise convergent to / and moreover for any x € X, any
 e > 0, and any positive integer n there exists p such that

 ^{p{fn{x),f{x))ip(fn+1(x)J(x)),...,p(fn+p(x)J(x))} < e.
 It was proved in [DO 1] that the quasi-uniform convergence does not preserve

 the quasi-continuity. For the convenience of the reader we introduce the example
 showing the last mentioned fact.
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 5.1.3 ([Do 1]) Let for n = 1,2, ... , /„(s) = X[o,i]((- l)Wx)> where xe denotes
 the characteristic function of the set E. Then {/n}£Li quasi-uniformly converges
 to X{o}> but X{o> is not quasi-continuous.

 5.2 Quasi-continuity and transfinite convergence

 There are interesting connections between quasi-continuity and transfinite
 convergence. A systematic study of transfinite convergence of quasi-continuous
 functions and also of the last mentioned connections is contained in [NA 2-6]. A
 few of these results are mentioned in [PT 5]. Here we give some general results of
 [NA 2-6] with the emphasis on characterization of locally separable metric spaces
 by means of transfinite convergence of quasi-continuous functions [NA 4,5].

 5.2.1 ([SI]), [NA 6]) Let wi be the first uncountable ordinal number. A
 transfinite sequence {a(}¿<Wl of elements of a topological space Y is said to be
 convergent to a € Y if to any neighborhood V of a there exists £0 such that for
 t > £o we have a¿ € V. A transfinite sequence {f(}(<Ul of functions defined On
 X and taking values in Y is said to be (pointwise) convergent to / : X - * Y if

 *s convergent to f(x) for any x € X.
 The following is a useful lemma (for real functions see [SI], for more general

 cases [KT], [SA 1], [NA 6]).

 5.2.2 Let be a transfinite sequence of functions defined on X and
 assuming values in a first countable Tx-space Y converging to / : X - > Y . Let
 S C X be a countable set. Then there exists £o < <¿i such that /¿(x) = f(x) for
 any £ > £0 and for any x € S.

 A general theorem concerning the preservation of quasi-continuity under
 transfinite convergence (see [NA 5] for a slightly different formulation) claims:

 5.2.3 Let X be locally separable, first countable topological space. Let Y
 be first countable Ti-space. Let i be a transfinite sequence of quasi-
 continuous functions fç : X -» Y converging to / : X - ► Y . Then / is quasi-
 continuous.

 Proof. Suppose / not to be quasi-continuous at Xq. Then a neighborhood
 V of f(x o) and a neighborhood U of x0 exist such that for any nonempty open
 G C U there is x € G with f(x) £ V . The neighborhood U may be supposed to
 be separable. Let

 M = {x : x € U, f{x) V }.

 Let D be a countable dense set in U. If s € D , let {£*}, B'n<zU (n = 1, 2, . . .) be
 a countable basis of neighborhoods of s. There exists z* € £* such that x* € M .
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 The set

 T = {xļ : s € D, n= 1,2,...}
 is a countable dense set in U. Using 5.2.2 we obtain £o < wi such that

 ft(x) = /(x) for any iSTU {x0} and any £ > ho-

 using the quasi-continuity of fç0 at x<j we have a nonempty open set G C U such
 that /(0(x) € V for any x € G. But G H T ^ 0 so we have x G G n T C M such
 that f({x) = f(0{x) G V. This is a contradiction.

 The local countability in 5.2.3 may be omitted if X is supposed to be strongly
 locally separable, i.e. a space such that every point possesses a separable neigh-
 borhood ([NA 6]).

 In case of locally separable metric spaces we have the following characteriza-
 tion.

 5.2.4 ([NA 5]) A metric space {X,p) is locally separable if and only if for
 any subspace Y C X the following holds: If {/(}«Wl is a transfinite sequence
 of real quasi-continuous functions on Y that converges to / : Y - ► R, then / is
 quasi-continuous on Y .

 Proof. The sufficiency follows from 5.2.3. We give a sketch of proof of neces-
 sity (see [NA 5]). Let X be not locally separable. Then there exists ([NT]) an
 isolated set M C X such that M has a condensation point y, i.e. U n M is un-
 countable for any neighborhood U of y. Denote In = {x £ M è. p(x, y) < ¿}. Now
 we construct a transfinite sequence {£(}¿<tall in the following way. Choose x' € M
 arbitrarily. Suppose that {xn} is constructed for any »?<£,£< u>i, £ > 1. If £ is
 not a limit number then £ = £o + n where £o is a limit number and n an integer.
 Then we choose € Jn, x¿ Ý xn f°r V < £• If £ is a limit number we choose any
 point belonging to M such that xť ± xn for r¡ < £. Put Z = {x¿ : £ < u^} U {y}.
 Then Z is not a locally separable subspace of X. Define for £ <

 [0 if x = x„, r¡<£
 f(x) = < 1 if x = x„, vļ > £

 [ 1 if x = y.

 We omit the details included in [NA 5] showing that /¿ are quasi-continous for

 £ < and the limit function / where /(x) = is not quasi-continuous.
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 6. Quasi-continuity and Blumberg sets

 6.1 Full Blumberg sets

 The close relation between quasi-continuity and Blumberg sets was discovered
 by J.C. Neugebauer in his paper [NG].

 In the paper [BM] of H. Blumberg it was proved that for any real function
 / : R - ► R there exists a dense set D C R such that / | D is continuous. In
 general we adopt the following definition.

 6.1.1 Let / : X - ► Y> where X, Y are topological spaces, be a function. A
 dense set D C X is called a Blumberg set for / if / | D is continuous. We do
 not discuss problems concerning the existence of Blumberg sets. For the readers
 interested in this direction we mention [BG], [WH], [GO], [LV], [HC], [BW], [PS],
 [AL]. Here only the results giving mutual connections between quasi-continuity
 and Blumberg sets are dealt with.

 To formulate in a general way the mentioned result of J.C. Neugebauer we
 mention the notion of full Blumberg set.

 6.1.2 A set D C X is called full Blumberg set for the function / if D is a
 Blumberg set for / and for every open G C X the set f(GC'D) is dense in f(G).

 The result of J.C. Neugebauer states:

 6.1.3 A function / : [0, 1] - ► R possesses a full Blumberg set if and only if /
 is quasi-continuous.

 Note that in [NG] instead of full Blumberg set the so-called strong Blumberg
 set is considered. But the difference is not essential and the notion of full Blum-

 berg set seems to be more suitable for the considerations in general topological
 spaces.

 The result 6.1.3 was extended for more general spaces by Z. Piotrowski.

 6.1.4 ([PT 8]) A function f : X -* Y where y is a regular topological space
 possesses a full Blumberg set if and only if it is quasi-continuous.

 We will discuss the multi-valued version of 6.1.4.

 6.1.5 ([NE 4]) A dense set D C X is called an upper (lower) Blumberg set
 for a multi-valued mapping F : X -* Y if F ' D is upper (lower) continuous.

 6.1.6 ([NE 4]) A set D C X is called full upper (lower) Blumberg set for a
 multifunction F : X - * Y if D is upper (lower) Blumberg set for F and F(D(~)G)
 is upper (lower) dense in F(G) for any open set G C X.

 From 1.3.10 we obtain

 6.1.7 If F : X - ► Y is upper (lower) quasi-continuous and D C X is an upper
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 (lower) Blumberg set for F then D is full upper (lower) Blumberg set for F.
 The converse to 6.1.7 is true neither for upper nor for lower case as the

 following examples show.

 6.1.8 ([NE 4]) Let X = Y = (-00,00) with the usual topology. Define
 F : X -> Y as follows:

 jp, ' _ Í {0} if X £ Q, Q = {rn : n = 1, 2, . . .} is the set of all rationals
 _ ~ ļ {0,1,2,..., n} if x = rn,n = 1,2,...

 Then F is not upper quasi-continuous at any x € Q. But X - Q is full upper
 Blumberg set for F .

 If X,Y,Q have the same meaning as above and

 r,(s _ f {n} if x € Q, x = rn
 {1,2,...} if xtQ,

 then G is not lower quasi-continuous at any x € X but X - Q if full lower
 Blumberg set for G.

 6.1.9 ([NE 4]) Let F : X - ► Y be a multifunction where Y' is a regular space.
 If there exists a full lower Blumberg set D for F such that F(D fl (7) is upper
 dense in F(G) for any open G C X, then F is lower quasi-continuous.

 6.1.10 Let F : X - ► Y be a closed-valued multifunction, where y is a normal
 space. If there exists a full upper Blumberg set D for F such that F(G D D) is
 lower dense in F(G) for every G open, then F is upper quasi-continuous.

 The proofs of 6.1.9 and 6.1.10 are similar. Since the results imply 6.1.3 and
 6.1.4 and since they have other interesting corollaries we give the idea of the
 proof of 6.1.9.

 Proof of 6.1.9. Let x0 € X, U open containing x0,y € F(x0) arbitrary.
 For any open neighborhood F of y let V' be such open neighborhood of y that
 V' C V. Since D isa. full lower Blumberg set for F there exists x' € D D U such
 that F(xi) D Vi 0. The lower continuity of F ' D at Xi implies that there exists
 a nonempty set G C U such that F(x) fi Vi / 0 for any x G G fi D. Now it is not
 difiicult to prove that F(x) D V ^0 for any x G G and the lower quasi-continuity
 of F at Xo is proved.

 Among various corollaries of 6.1.9 and 6.1.10 we have the following two. For
 the others we refer to [NE 4].

 6.1.11 Let F : X - ► Y be a multifunction and Y a regular space. Let F have
 full lower Blumberg set which is simultaneously full upper Blumberg set for F.
 Then F is lower quasi-continuous.
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 6.1.12 Let F : X -*Y be a multifunction and Y a regular space. Let F have
 full lower Blumberg set and let F be upper quasi-continuous. Then F is lower
 quasi-continuous.

 6.2 Simultaneous quasi-continuity and Blumberg sets

 The mentioned paper [NG] starts also the study of simultaneous Blumberg
 sets.

 6.2.1 If / : [0, 1] - * [0, 1] is a bijection then a dense set D C [0, 1] is called a
 simultaneous Blumberg set for / if f(D) is dense in [0, 1] and if it is a Blumberg
 set for the inverse function f~x.

 The following is a fundamental result relating quasi-continuity to simultane-
 ous Blumberg sets.

 6.2.2 ([NG]) Let / : [0, 1] - * [0, 1] be a quasi-continuous bijection. Then /
 admits a simultaneous Blumberg set if and only if /-1 is quasi-continuous.

 An example of quasi-continuous bijection / : [0,1] - ► [0,1] such that /-1
 is not quasi-continuous constructed in [NG] shows that for a quasi-continuous
 bijection / : [0, 1] - > R the simultaneous Blumberg set need not exist. Another
 example of this type was given by G. Goffman [GO].

 A generalization of the notion of simultaneous Blumberg set for a bijection is
 the notion of simultaneous Blumberg set for a collection of bijections.

 6.2.3 ([PT 9]) Let X, Y be topological spaces and let J = {ft '• ft : X - ►
 Y (t € T)}, where T is an index set, be a collection of bijections. A set D C. X
 is called a simultaneous Blumberg set for, / if it is a simultaneous Blumberg set
 for ft for each t € T.

 The following generalization of 6.2.2 is proved in [PT 9].

 6.2.4 Let X, Y be second countable Baire spaces. Let X be regular and
 let J be a countable family of quasi-continuous bijections from X onto Y. Let
 a Blumberg set exist for f~l for any / € 7. Then 7 admits a simultaneous
 Blumberg set if and only if for any / € 7 the inverse function /-1 is quasi -
 continuous.

 6.3 Generalized Blumberg sets

 Replacing in definition 6.1.1 the condition that / | D is continuous by the
 requirement that / | D is quasi-continuous we obtain the definition of quasi-
 Blumberg set. A quasi-Blumberg set D for / is said to be a full quasi-Blumberg
 set if f(G n D) is dense in f(G) for any G open.
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 By an analogous change in definition 6.1.5 we obtain the notions of upper
 (lower) quasi-Blumberg sets for a multifunction F : X -> Y.

 The notion of a quasi-Blumberg set is natural because the following results
 are evident.

 6.3.1 ([NE 10]) A multifunction F :X -*Y is upper (lower) quasi-continuous
 if and only if any upper (lower) quasi-Blumberg set for F is its full upper (lower)
 quasi-Blumberg set.

 6.3.2 ([NE 10]) A mapping / : X - *■ Y is quasi-continuous if and only if any
 quasi-Blumberg set for / is its full quasi-Blumberg set.

 The results of preceding sections may be generalized also for quasi-Blumberg
 sets ([NE 10]). We formulate only one of them for the single-valued case.

 6.3.3 ([NE 10], see also [NL]). Let y be a regular space. Let D be a quasi-
 Blumberg set for a single- valued mapping f : X ->Y. Then / is quasi-continuous
 if and only if Z? is a full quasi-Blumberg set for /.

 Another generalization of Blumberg sets may be obtained when somewhat
 continuity instead of quasi-continuity is considered. (See [NL] and [NE 10].)

 7. Quasi-continuity of real functions

 7.1 Order continuity

 A well-known notion for real functions / : X - ► R is the upper (lower) semi-
 continuity. To avoid misunderstanding with notions introduced earlier in this
 paper we call this notion order upper (order lower) continuity. It is defined as
 follows.

 7.1.1 A function / : X - > R is said to be order upper (order lower) continuous
 at p € X if for any e > 0 there exists a neighborhood U of p such that f(x) <
 f(p) -f e (f(x) > f(p) - e) for any x € U. It is said to be order upper (order
 lower) continuous if it is order upper (order lower) continuous at any x G X.

 The definition of order upper (order lower) quasi-continuity is natural (cf.
 also [EL 2] where it is called upper (lower) quasi-continuity).

 7.1.2 A function / : X - ► R is said to be order upper (order lower) quasi-
 continuous at p E X if for any e > 0 and any neighborhood U of p there exists a
 nonempty open set G C U such that /(x) < f(p) + e (/(x) > f(p) - e) for any
 xeG.lt is called order upon (order lower) quasi-continuous if it is order upper
 (order lower) quasi-continuous at any x € X.

 The notion of order upper (lower) quasi-continuity raises various natural ques-
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 tions, e.g. the question of the set of continuity points. Also properties of limit
 functions of convergent sequences of order upper (lower) quasi-continuous func-
 tions and product quasi-continuity questions have been studied. We introduce
 some of these results and also some references to others. We mention also how

 various of these results may be obtained using suitable known results for multi-
 functions.

 Standard considerations show that the uniform convergence preserves both
 order upper and order lower quasi-continuity. Similarly, as in the case of quasi-
 continuity, one can easily find examples showing that the order upper (order
 lower) quasi-continuity is not preserved under the pointwise convergence. But
 the following is true.

 7.1.3 ([EL 2]) If {/n}£Li is an increasing (decreasing) sequence of order lower
 (order upper) quasi-continuous functions then the pointwise limit / is order lower
 (order upper) quasi-continuous.

 As to the set of continuity points of the limit function we have

 7.1.4 ([EP]) If / is a pointwise limit of a sequence of order upper (order
 lower) quasi-continuous functions, then the set of points where / is not lower
 (upper) continuous is of first category.

 As to the quasi-uniform convergence one can use the example 5.1.3 to show
 that the limit of a sequence of order upper quasi-continuous functions need not
 be order lower quasi-continuous . Of course, a similar example can be given for a
 sequence of order lower quasi-continuous functions.

 Both order upper and order lower quasi-continuity is preserved by transfi-
 nite convergence under some rather general assumptions. Namely, the following
 theorem holds.

 7.1.4 Let X be first countable locally separable topological space. Let
 {/(}(«»i be a transfinite sequence of order upper (order lower) quasi-continuous
 real functions defined on X converging to /. Then / is order upper (order lower)
 quasi-continuous.

 The proof of 7.1.4 is quite analogous to that one of theorem 5.2.3. Similarly
 as in theorem 5.2.3 the first countability may be omitted if the strong local
 separability is supposed.

 Before giving further results we mention a relation to multifunctions.

 7.1.5 ([NE 1]). Let / : X - * R be a function. Let F : X - ► R be the mul-
 tifunction defined as F(x) = {y : y < f(x)}. Then F is upper quasi-continuous
 (lower quasi-continuous) at p 6 X if and only if / is order upper (order lower)
 quasi-continuous.

 Using the characterization 7.1.5 and results of section 4.1 we obtain the fol-

 289



 lowing results:

 7.1.6 ([NE 1], see also [EL 2]). Let X be a Baire space, Y locally second
 countable. Let / : X x Y - ► ič be a multifunction such that for every x € X
 the section fx is order lower quasi-continuous and for every y € Y the section
 fv is both order upper and order lower quasi-continuous. Then / is order lower
 quasi-continuous.

 7.1.7 ([NE 1], [EL 2]) Let X be a Baire space, Y locally second countable.
 Let / : X x Y - ► R be such that fx are order upper quasi-continuous and
 fv both order upper and order lower quasi-continuous. Then / is order upper
 quasi-continuous.

 Note that an analogous result for the order lower continuity may be obtained.
 A more general formulation for ¿-Baire spaces is also possible (cf. 4.1.5 and
 4.1.6).

 We leave to the reader the definitions of order upper and order lower some-
 what continuity as well as the formulation of theorems on product upper and
 product lower somewhat continuity.

 The details are given in [NE l].
 The same methods may be applied also for obtaining various other results on

 order upper and order lower quasi-continuity.

 7.2 Quasi-continuity and Lebesgue measurability

 The problem whether a quasi-continuous function / : [0, 1] - ► R is Lebesgue
 measurable was solved in a negative way by S. Marcus [MC 1] who proved

 7.2.1 ([MC 1]) There exists a quasi-continuous function / : [0, 1] - ► R which
 is not Lebesgue measurable.

 In the same paper S. Marcus proved

 7.2.2 To any ordinal number a < there exists a quasi-continuous function
 / : [0, 1] - ► R such that / belongs to the Baire class a and does not belong to
 any class ß < a.

 Evidently, the result 7.2.1 implies the following (cf. 1.2.3 and 1.2.4):

 7.2.3 There exists a quasi-open set which is not Lebesgue measurable.
 In this connection a question arises how it is with the strong quasi-continuity

 (a-continuity). Evidently, every strongly quasi-continuous function / : [0, 1] - *• Ä
 is Lebesgue measurable since it is continuous (cf. 2.2.8). So there is no analogy
 to 7.2.1 for the strong quasi-continuity. But there is an analogy to 7.2.3 for
 strongly quasi-open (i.e. a-open) sets. In fact, the following strengthening of
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 7.2.3 holds.

 7.2.4 ([NE 14]) There exists an a-open set which is not Lebesgue measurable.

 Proof. Let B be a nowhere dense closed set in [0,1] of positive Łebesgue
 measure. Let Z C B be a non-measurable set. Put A = ([0,1] - B) U Z.
 Then, evidently, A is not Lebesgue measurable. The set A is a-open because
 A0 D [0, 1] - B, A® = [0, 1]. Hence (Ã5)0 = [0> i] D a.

 Considering multifunctions F : [0, 1] - > R we can adopt the following defini-
 tion of measurability.

 7.2.5 A multifunction F : [0, 1] - ► R is Borei (Lebesgue) measurable if F~(V)
 is Borei (Lebesgue) measurable for every open set V C R.

 One sees immediately (cf. 2.2.14) that also an a-continuous multifunction
 F : [0,1] - ► R is Lebesgue measurable. But the situation is different if we
 consider a-upper (a-lower) continuous multifunctions.

 7.2.6 ([NE 14]) Let A be an a-open set which is not Lebesgue measurable
 (7.2.4). Define

 'M -{{?!} I XJa • GM = ( jî}1} " 11a ■
 Then both F and G are not Lebesgue measurable, while F is a-upper continuous
 and G a-lower continuous.

 To conclude this section we remark that the sets of points of quasi-continuity
 of Lebesgue measurable functions were studied in [KT 2] where it is proved
 that the set of all quasi-continuity points of a Lebesgue measurable function is
 Lebesgue measurable. Some extensions of this results are given in [NE 14].

 8. Applications of quasi-continuity

 8.1 Quasi-continuity and topological properties

 Various properties which are known to be preserved under continuous map-
 pings are preserved also by quasi-continuous mappings. There are several papers
 which are devoted to the study of such properties. In this section we give some
 informations and also references to more general attitudes concerning these prob-
 lems. Remark that in some of the referred papers quasi-continuity is called almost
 continuity while somewhat continuity is called feeble continuity (see e.g. [HC]).

 Preserving separability is one of the important properties of quasi-continuity.
 In fact, somewhat continuity is sufficient.
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 8.1.1 ([FL 2]) Let X be a separable topological space and / : X - ► Y a
 somewhat continuous mapping onto Y . Then Y is separable.

 So we have a corollary

 8.1.2 If / : X -* Y is a quasi-continuous mapping of a separable space X
 onto a space Y, then Y is a separable space.

 The assertion 8.1.1 (and hence 8.1.2) follows from 2.1.10.
 If / is a quasi-continuous bijection of a space X onto a separable space Y

 then X need not be separable.
 The following may serve as an example.

 8.1.3 Let X = R with the discrete topology and Y = R with the natural
 topology on R. Then the identity function / : X - » Y is a continuous, hence
 quasi-continuous bijection of X onto a separable space Y , but X is not separable.

 Nevertheless we have

 8.1.4 Let / : X - ► Y be a quasi-continuous bijection with the property that
 for any nonempty open set G C X we have (f(G))° ^ 0. Then X is separable if
 and only if Y is separable.

 Proof. It follows immediately from the assumptions that the inverse mapping
 /-1 is somewhat continuous. So the result follows from 8.1.1.

 Of course, as one can see, the condition of quasi-continuity in 8.1.4 may be
 replaced by somewhat continuity.

 Certain types of quasi-continuous functions preserve Baire spaces ([FL 2], [NE
 8], [DO 2]). We formulate such a result for A;-Baire spaces omitting the proof,
 since it is essentially the same as for Baire spaces.

 8.1.5 Let / : X - ► Y be a quasi-continuous mapping of a fc-Baire space X
 onto a space Y . If for any G open, G ± 0, G C X we have (f(G))° ^ 0, then Y
 is a ¿-Baire space.

 In connection with bijections / : X -*■ Y which are somewhat continuous
 and satisfy the condition (/(G))0 ý 0 f°r any nonempty open G (such bijections
 are called somewhat homeomorphisms since /-1 is also somewhat continuous) it
 is worth mentioning that they need not be quasi-continuous as it is sometimes
 noted by mistake ([SR], [HC]).

 8.1.6 Let X = Y = R with the natural topology. Put /(x) = x if x 0, x ^
 1, /(0) = 1, /(1) = 0. Then / is a somewhat homeomorphism but it is not
 quasi-continuous.

 In spite of the fact that somewhat homeomorphisms need not be quasi-
 continuous we have the following result generalizing 8.1.5.
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 8.1.7 If / : X - ► Y is a somewhat homeomorphism then X is a fc-Baire space
 if and only if y is a fc-Baire space.

 Proof. Let X be a fc-Baire space. Let {G< : t €. T} be a collection of
 cardinality less than k of open dense sets in Y. We prove that the sets Z% =
 (/_1(Gt))° are dense in X. Let t € T, p Ç. X, and U an arbitrary neighborhood
 of p. Then there exists a nonempty open set V C f{U). The set V n Gt is
 nonempty and since / is somewhat continuous we have a nonempty open set W
 such that

 w c r'v n Gt) c r'f{u)) = u.
 Thus in any neighborhood U of p there is a point belonging to W and hence to
 Zt. So the density of Zt is proved. Since X is a fc-Baire space, flter dense
 in X. The somewhat continuity of / implies that /(flier %t) »s dense in Y. But

 n a, d n m) d /(n z,)-
 ter ter ter

 Thus Hier dense in y. So y is a &-Baire space. The "only iP part follows
 from the fact that f~l is also somewhat continuous and somewhat open.
 As a corollary we have

 8.1.8 ([NE 8], [FL 2], [SR], [HC]) Let / : X -*■ Y be a somewhat homeomor-
 phism. Then X is a Baire space if and only if y is a Baire space.
 Various other applications of quasi-continuity to topological questions can be

 found in the papers mentioned above ([FL 2], [HC], [NE 8], [SR]).
 There are also many topological applications of mappings closely related to

 quasi-continuity. In this connection we refer the reader to [NO 1], [NO 2], [RV],
 where the strong quasi-continuity in connection with preservation of connected
 spaces is studied. The notion of quasi-homeomorphism (it is also called semi-
 homeomorphism) was introduced and studied by S.G. Crossley and S.K. Hilde-
 brand ([CH 1], [CH 2]). They investigated preservation of various topological
 properties under mappings closely related to quasi-continuous mappings. Simi-
 lar questions are studied also in [BI], [NE 9], [PT 7], [NO 3]. Certain relations
 between quasi-continuity of multi-functions on Baire spaces are investigated in
 [EW 3].

 8.2 Quasi-continuity and differentiability

 In this section let E denote an open n-dimensional cube in Rn- Let / :
 E - ► R (/(x) = f(z i, . . . ,xn)). A well known theorem of mathematical analysis
 states that the continuity of (finite) partial derivatives of / is sufficient for the
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 differentiability of /. On the other hand there are well known examples showing
 that the existence of finite partial derivatives does not imply the differentiability.
 In this connection an interesting result has been achieved by S. Marcus. The
 simple proof of the mentioned result, which we give for the convenience of the
 reader, is a simple application of two theorems on quasi-continuity.

 8.2.1 ([MC 1]) If / : E - ► R possesses finite partial derivatives (t' =
 1,2, ... ,n) on E, then the set of those points where / is not differentiate is of
 first category.

 Proof. For » = 1, 2, . . . , n we have ^ = íimm-,«, gmj , where

 gm,i{x ) = m(/(*i> ..., x„) - f{x i, . . . , x„)).
 171

 The functions gmi are separately continuous, hence by 4.1.9 they are quasi-
 continuous. So jß: is the limit of a sequence of quasi-continuous functions. By
 5.1.1 the set of discontinuity points of each partial derivative is of first cate-
 gory. Thus with the exception of a set of first category all the partial derivatives
 are continuous, hence / is differentiate with the exception of a set of first cate-
 gory.

 It should be noted that a theorem more general than 8.2.1 was obtained in
 [WL] by a different method. Namely the existence of partial derivatives on a
 dense Gg subset of E implies the differentiability on a dense Gg subset of E.

 Further results of S. Marcus using quasi-continuity concern the problem of
 interchange of partial derivatives.

 On the basis of quasi-continuity we present a theorem covering and unifying
 two theorems of S. Marcus concerning the interchange of partial derivatives. The
 result is due to A. Neubrunnová (unpublished).

 8.2.2 ([SA 2]) Let I C (- oo, oo) be an interval. A function / : I - ► R is said
 to be ¿-continuous at p 6 I if for any e > 0, 6 > 0 the set {x : x 6 {p- £,p+5)fl/;
 I f(x) - f(p) |< er} is of positive Lebesgue measure. If / is ¿-continuous at any
 x € / it is called ¿-continuous (on J).

 The following simple lemma will be useful.

 8.2.3 ([NA 2]) Let / : I -* R be almost everywhere (in the sense of the
 Lebesgue measure) continuous and ¿-continuous. Then it is quasi-continuous.

 The next is the mentioned result about the interchange of the order of differ-
 entiation.

 8.2.4 Let / : E - ► R and p > 1 be an integer. Suppose that the partial
 derivatives of order p are almost everywhere separately continuous and separately
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 ¿-continuous. Moreover, let the difference of any two partial derivatives of the
 order p differing only in the order of differentiation be ¿-continuous. Then the
 derivatives of the order less than or equal to p do not depend on the order of
 differentiation.

 Proof. For the partial derivatives of order less than p our assertion follows
 from the classical result. So, let g, h be any two of partial derivatives of order p
 differing only in the order of differentiation. From the almost everywhere continu-
 ity and ¿-continuity of g , h in each variable separately it follows (8.2.3) that g , h
 are separately quasi-continuous; hence, by 4.1.9, they are quasi-continuous and
 therefore (3.2.1) continuous on a dense set Z C E. Thus by the classical theorem
 on interchange of the order of differentiation g = h on Z. But, by assumption,
 the function I = g - h is almost everywhere continuous and ¿-continuous in each
 variable separately. So, by 8.2.3, it is quasi-continuous in each variable and, by
 4.1.9, it is quasi-continuous as a function of n variables. So £ is a quasi-continuous
 function which is equal to zero on a dense subset of E. Then, evidently, l(x) = 0
 for any x € E and the theorem is proved.

 Now, if we have a function / : I - ► R which is a derivative or which is
 approximately continuous then ([NA 2]) it is ¿-continuous. So we obtain as
 corollaries of 8.2.4 two results of S. Marcus.

 8.2.5 ([MC 2]) Let / : E -*■ R and let p > 1 be an integer. Let the mixed
 partial derivatives of order p be - as functions of any of the variables - almost
 everywhere continuous derivatives. Then the mixed partial derivatives of order
 less than or equal to p on E do not depend on the order of differentiation.

 8.2.6 ([MC 2]) Let / : E - ► R and let p > 1 be an integer. If the mixed
 partial derivatives of order p are in each variable separately almost everywhere
 continuous and approximately continuous then the mixed partial derivatives of
 order less than or equal to p on E do not depend on the order of differentiation.

 8.3 Quasi-continuity in measure and probability theory

 Here we show some applications of quasi-continuity to measure theory and to
 probability theory.

 A well known and important theorem in measure theory is the so-called Je-
 goroff's theorem ([HA]) asserting that the pointwise convergence of a sequence
 of measurable functions on a set of finite measure is almost uniform.

 Quasi-continuity may be used to prove a generalized version of Jegoroff's
 theorem.

 8.3.1 Let T be a topological space, to € T. Let {/' : t € T} be a family
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 of measurable real functions defined on X, where (X, S,n) is a measure space.
 Then {/' : t € T} is said to be almost uniformly convergent, as t tends to t0, to
 a function <p defined on X if to any e > 0 there exists a set E € S with fi(E) < e
 such that {/* : t £ T} converges uniformly to <p on X - E.

 While in the case of a discrete parameter t the pointwise convergence implies
 the almost uniform convergence ([HA]), the situation in case of a parameter
 running over a general space T is different. It was proved in [TO] (see also [WE]
 and [WA]), that in the general case the pointwise convergence need not imply the
 almost uniform convergence. Sufficient conditions are known for the validity of
 Jegoroff's theorem. Usually the continuity or Borei measurability of the function
 f*(x) as a function of variable t for each fixed x G X is supposed. (These
 conditions concern the case of a real parameter t - see e.g. [TO], [WE], [WA]).
 We give a condition where the quasi-continuity in the variable t is assumed.

 8.3.2 ([NE 12]) Let (X,S,fi) be a totally finite measure space, T a separable
 topological space satisfying the first countability axiom and to € T. Let {/' : t £
 T} be a family of real measurable functions defined on X such that lim«-»(0 f*(x) =
 <p(x) for any x G X. Let for any x € X f*{x) be quasi-continuous on T. Then
 {/* : t € T} converges to <p almost uniformly.

 We refer the reader to [NE 12,13] for the proof of 8.3.2 as well as for some
 related questions.

 Perhaps it is worth mentioning that the collection {/' : t € T} considered
 above in case when ( X , S , n) is a probability space (usually T = R is supposed)
 may be viewed as a stochastic process (see e.g. [YE]). Among the stochastic
 processes the separable ones are important. Recall that {/' : t € T} is called a
 continuous stochastic process if for any x 6 X the function /*(x) is continuous
 on T. It is called separable ([YE], p. 26) if there exists a countable set C C T
 such that for each closed interval I C (- oo, oo) and every open set G C T we
 have

 {x : f*(x) 6 / for every t 6 G} = {x : f*(x) € I for every tECr 1 G}.

 As is well known ([YE]) any continuous stochastic process is separable. Replacing
 the condition of continuity by that of quasi-continuity we obtain in a natural way
 the definition of a quasi-continuous process. For these types of processes we have

 8.3.3 ([NE 13]) Any quasi-continuous stochastic process is separable.
 We refer to [NE 13] for the proof of 8.3.3 as well as for some further relations

 of quasi-continuity to stochastic processes.
 Note that quasi-continuity was used also in connection with measurability of

 certain multifunctions ([TM]).
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 Also quasi-continuous selections of multifunctions were studied [MD 2]. For
 an attempt of using quasi-continuity in some optimization problems related to
 mathematical programming see [NR 1,2].

 Concluding remarks

 There is a number of results on quasi-continuity which do not belong directly
 to any of the previous sections. Some of them will be mentioned here.

 A connection between derivatives and quasi-continuous real functions of a
 real variable was discussed in [MR]. A quasi-continuous function need not be a
 derivative and a derivative need not be quasi-continuous. A derivative which is
 Riemann integrable on every segment is quasi-continuous ([MR]). Similar results
 may be found in [NA 2], [SA 2], [PP].

 In the case of real functions of a real variable also the linear space spanned
 by cliquish functions was studied. In this connection it was proved ([GR]) that
 any cliquish function is the sum of four quasi-continuous functions.

 The stationary and determining sets ([BR]) for quasi-continuous functions
 were studied in [DO 1,2].

 The topological structure of the set Q(X) of all bounded real quasi-continuous
 functions defined on a topological space X in the normed space M{X) of bounded
 real functions with the sup-norm was studied in [SA 2]. The set Q[X) was proved
 to be perfect in M(X) and in non-trivial cases it is nowhere dense in M(X). Some
 closely related results can be found in [SA 2], [SA 4].

 The lattice generated by Q(X) was studied in [GN].
 Quasi-continuous selections of multifunctions were studied in [MD 2].
 In [PO 1] a decomposition of quasi-continuity into two types of generalized

 continuities was investigated. This is an analogue to a decomposition of conti-
 nuity studied in [LE 1].

 Some of the results on quasi-continuity mentioned in this paper may be for-
 mulated in a more general setting. We have in mind abstract approaches similar
 to those given e.g. in [PW], [TB], [TH], [WN], [MD 4].
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