F.S. Cater, Portland State University, Portland, OR 97207.

ON MONOTONIC FUNCTIONS AND REAL NUMBER ORDER

In this note we use the ordering of the real numbers in R to solve several apparently disparate problems in real analysis. In what follows, I will denote the compact interval [0,1], and $C(I)$ will denote the family of continuous real valued functions on I. Moreover, m will denote Lebesgue measure.

These problems are:
Problem 1. Let X be an uncountable closed subset of I. Prove that there exists a continuous nondecreasing function f mapping I onto I such that $\mathrm{f}(\mathrm{X})=\mathrm{I}$.

Problem 2. Let U be an open subset of I such that I\U is uncountable. Let v be a number such that $0<v<1 / m(U)$. Prove that there exists a homeomorphism f of I onto I such that $f^{\prime}(x)=v$ for all $x \in U$.

Problem 3. Let P be a nonvoid perfect subset of I. Let v be a real number such that $0<v<I / m(I \backslash P)$. Prove that there exists a homeomorphism f of I onto I such that $f^{\prime}(x)=v$ for all $x \in I \backslash P$, and such that each open interval (c, d) meets $f(P)$ in either the void set or a set with positive Lebesgue measure.

Problem 4. Let F be a nonvoid subset of $C(I)$. Prove that there exists a nondecreasing function $g_{0} \in C(I)$ such that g_{0} is constant on every interval on which some member of F is constant, and if $g \in C(I)$ enjoys the same property, then g is constant on any interval on which go is constant.

Problem 5. Let X be an uncountable closed subset of I. Prove that there exists an increasing homeomorphism f of the space J of irrational numbers into X such that $X \backslash f(J)$ is a countable set.

Problem 6. Let X be an uncountable closed subset of I. Prove that there is an increasing left continuous function f mapping I into X such that $X \backslash f(I)$ is a countable set. If g is another such function from I to X prove there is a homeomorphism h of I onto I with $(f \circ h)(x)=g(x)$ for $0<x \leqslant 1$.

The key to the solution to all these problems is:
Lemma 1. Let (I_{n}) be a (finite or infinite) sequence of mutually disjoint, closed proper subintervals of I. Then there is a nondecreasing continuous function f of I onto I, constant on each I_{n}, such that f is not constant on any interval that is not a subinterval of some I_{n}.

Proof. We say that $x, y \in I$ are equivalent if either $x=y$ or x and y lie in the same interval I_{n}. Let [x] denote the equivalence class containing x. The set of equivalence classes is totally ordered in the obvious way. Moreover:

1. [0] is the first class and [1] is the last class.
2. There exists a countable set C of classes, such that for any classes a and $b(a<b)$ there is a $c \in C$ such that $a<c<b$. For example, let C be the set of all classes that contain a rational number.
3. Any nonvoid set of classes $\left\{\left[x_{\mathrm{a}}\right]\right\}$ has a least upper bound. Note that [y] is the least upper bound where y is the least upper bound of the set of numbers $\left\{\mathrm{x}_{\mathrm{a}}\right\}$ in I .

It follows from properties 1, 2 and 3 that there is an order preserving function g mapping the set of classes onto I such that g is one-to-one and $g([0])=0$ and $g([1])=1$. For $x \in I$ put $f(x)=g([x])$. Then f is a nondecreasing function mapping I onto I. Because f maps onto I, f must be continuous on I. Clearly f is the desired function.

Solution to Problem 1. Because X is uncountable, there is a nonvoid perfect set $P \subset X$ so that $X \backslash P$ is countable. Let f be the function in Lemma 1 where the I_{n} are the closures of the components of $I \backslash P$. Each I_{n} meets P at an endpoint, so $f\left(I_{n}\right) \in f(P)$. Finally, $f(P)=f(I)$ and $\mathrm{f}(\mathrm{X})=\mathrm{f}(\mathrm{I})$.

This incidentally provides another (albeit inefficient) proof that a closed uncountable subset of R has the same cardinality as R avoiding the usual argument on Cauchy sequences.

Solution to Problem 2. Because $I \backslash U$ is uncountable, there is a nonvoid perfect set $P \subset I \backslash U$ such that $(I \backslash U) \backslash P$ is countable. Let f_{1} denote the function in Lemma 1 where the I_{n} are the closures of the components of $I \backslash P$. For $x \in I$, put $f_{2}(x)=m((0, x) \cap(I \backslash P))$. Let w be any positive number. For $x \in I$, put $f(x)=\left(f_{1}(x)+w f_{2}(x)\right) /(1+w m(I \backslash P))$. Then f is an increasing homeomorphism of I onto I and $f^{\prime}=w /(1+w m(I \backslash P))$ on $I \backslash P$ and on U. Moreover, $m(U)=m(I \backslash P)$ because U and $I \backslash P$ differ by at most a countable set. Finally, $f^{\prime}=w /(1+w m(U))$ on U, and we need only select w so that $w /(1+w m(U))=v$. Indeed $w=v /(1-v m(U))$.

In problem 2 we did not allow $v=1 / m(U)$. Note that if $f^{\prime}=1 / m(U)$ on U, then $m(f(U))=1, f(U)$ is dense in I. But U might not be dense in I. On the other hand, if U is dense in I, there is a homeomorphism f of I onto I such that $f^{\prime}=1 / m(U)$ on U. We will not prove this here, because it does not involve our Lemma 1.

Solution to Problem 3. For the perfect set P, let f, f_{1}, f_{2} be as in the solution to Problem 2. Let (c, d) be an open interval that meets $f(P)$. Say $f(a)=c, f(b)=d$. Then ($a, b)$ meets P and $f_{1}(a)<f_{1}(b)$. Moreover,

$$
\begin{aligned}
m f((a, b) \cap(I \backslash P)) & =m f_{2}((a, b) \cap(I \backslash P)) \cdot w /(l+w m(I \backslash P)) \\
& \leqslant\left(f_{2}(b)-f_{2}(a)\right) w /(l+w m(I \backslash P))<f(b)-f(a)=d-c .
\end{aligned}
$$

It follows that $m((c, d) \cap f(P))=m f((a, b) \cap P)>0$.

Now let I_{n} be as in Lemma 1 and let P be the closure of the set $I \backslash U_{n} I_{n}$. Then P is a perfect set. Let f be the function in Problem 3. Then the function $g(x)=m((0, f(x)) \cap f(P)) / m f(P)$ also satisfies the conclusion of Lemma 1.

Solution to Problem 4. Let $g \gg f$ mean that g is constant on any interval on which f is constant. Let $g \gg F$ mean $g \gg f$ for all $f \in F$. For $g \in C(I)$, let
$E_{g}=\{x \in I: g$ is constant on no neighborhood of $x\}$.
Then E_{g} is evidently a perfect set. Let $E=n_{f \in F} E_{f}$. Then E is a closed set. If E is countable, let $g_{0}(x)=0$ for $x \in I$, and let P be the void set. If E is uncountable, let $P \subset E$ be the perfect set for which $E \backslash P$ is countable, and let g_{0} be the function in Lemma 1 where the I_{n} are the closures of the components of $I \backslash P$. Then $E_{g_{0}}=P \subset E$ and hence go $\gg F$.

Let $g \in C(I)$ such that $g \gg g o$ does not hold. There is an open interval U on which g_{0} is constant but g is not. Then E_{g} meets U, E_{g} does not meet U, and (because E_{g} is a perfect set) $E_{g} \cap U$ is uncountable. But $E \backslash E_{g_{0}}=E \backslash P$ is countable. Thus U contains only countably many points in E, so there is some $x \in\left(E_{g} \backslash E\right) n U$. There is an $f \in F$ such that $x \in E_{f}$. So f is constant on some neighborhood of x but g is not. Hence $g \gg f$ does not hold, and $g \gg F$ does not hold. \quad.

In particular, if $f \in C(I)$ there is a nondecreasing function $g \in C(I)$ such that f and g are constant on the same intervals.

Solution to Problem 5. Let $P \subset X$ be the perfect set such that $X \backslash P$ is countable. Let f_{1} be the function in Lemma 1 where the I_{n} are the closures of the components of $I \backslash P$. Then f_{1} is a nondecreasing continuous, closed function mapping I onto I. Put

$$
Y=\left\{y \in(0,1): y \text { is irrational and } f_{1}^{-1}(y) \text { is a singleton set }\right\}
$$

Then $(0,1) \backslash Y$ is a countable dense subset of $(0,1), \quad f_{1}^{-1}(Y) \subset P \subset X \quad$ and the sets $P \backslash f_{1}^{-1}(Y)$ and $X \backslash f_{1}^{-1}(Y)$ are countable. There is an increasing homeomorphism f_{2} of R onto (0,1) that maps the set of rational numbers onto (0,1) \Y. Finally, f_{1} is closed and continuous, so f_{1}^{-1} is an increasing homeomorphism of Y onto $f_{1}^{-1}(Y)$ and $f_{1}^{-1} 0 f_{2}$ is an increasing homeomorphism of J onto $f_{1}^{-1}(Y)$.

It follows that if X_{1} and X_{2} are uncountable compact subsets of R, there exist countable sets E_{1} and E_{2} such that $X_{1} \backslash E_{1}$ is homeomorphic to $X_{2} \backslash E_{2}$. This will not work in general in R^{2}. Let

$$
Y_{1}=\left\{(x, y): x^{2}+y^{2} \leqslant 1\right\} \quad \text { and } \quad Y_{2}=\left\{(x, y):(x-2)^{2}+(y-2)^{2} \leqslant 1\right\}
$$

Let $X_{1}=Y_{1}$ and $X_{2}=Y_{1} \cup Y_{2}$. Then for any countable sets E_{1} and E_{2} in R^{2} the set $X_{1} \backslash E_{1}$ must be connected but the set $X_{2} \backslash E_{2}$ must not be connected. So $X_{1} \backslash E_{1}$ and $X_{2} \backslash E_{2}$ cannot be homeomorphic.

Solution to Problem 6. Let P be the perfect set for which $P \subset X$ and $X \backslash P$ is countable. Let f_{1} denote the function in Lemma 1 where the I_{n} are the closures of the components of $I \backslash P$. For each $x \in I$, let $f(x)$ be the smallest $y \in I$ for which $f_{1}(y)=x$. It follows routinely that f is a strictly increasing function mapping I into P and f is left continuous. Moreover, $P \backslash f(I)$ and $X \backslash f(I)$ are countable.

Now suppose g is another strictly increasing left continuous function mapping I into X such that $X \backslash g(I)$ is countable. Then every point in $g(0,1)$ is a (left) condensation point of $g(0,1)$, so $g(0,1)$ c P. Likewise $f(0,1) \subset P$, and indeed $P \backslash(f(0,1) \cap g(0,1))$ is countable. Thus $f(0,1) \cap g(0,1)$ is a dense subset of P. Let S be a countable dense subset of $f(0,1) \cap g(0,1)$. Then $f^{-1}(S)$ and $g^{-1}(S)$ are countable dense subsets of $(0,1)$. The mapping $x \rightarrow f^{-1}(g(x))$ is an order preserving mapping of $g^{-1}(S)$ onto $f^{-1}(S)$. There is an increasing homeomorphism h of I onto I such that $h(x)=f^{-1}(g(x))$ for $x \in g^{-1}(S)$. Finally, $f \circ h=g$ on a dense subset of I, and (because f and g are left continuous) $(f \circ h)(x)=g(x)$ for $0<x<1$.

It is worth noting that f and g completely determine h. Moreover, $f(0,1)=g(0,1)$ necessarily. However, we leave the proof.

Received October 8, 1987

