F.S. Cater, Portland State University, Portland, OR 97207.

ON MONOTONIC FUNCTIONS AND REAL NUMBER ORDER

In this note we use the ordering of the real numbers in R to solve several apparently disparate problems in real analysis. In what follows, I will denote the compact interval [0,1], and C(I) will denote the family of continuous real valued functions on I. Moreover, m will denote Lebesgue measure.

These problems are:

Problem 1. Let X be an uncountable closed subset of I. Prove that there exists a continuous nondecreasing function f mapping I onto I such that f(X) = I.

Problem 2. Let U be an open subset of I such that $I\setminus U$ is uncountable. Let v be a number such that 0 < v < 1/m(U). Prove that there exists a homeomorphism f of I onto I such that f'(x) = v for all $x \in U$.

Problem 3. Let P be a nonvoid perfect subset of I. Let v be a real number such that $0 < v < I/m(I \setminus P)$. Prove that there exists a homeomorphism f of I onto I such that f'(x) = v for all $x \in I \setminus P$, and such that each open interval (c,d) meets f(P) in either the void set or a set with positive Lebesgue measure.

Problem 4. Let F be a nonvoid subset of C(I). Prove that there exists a nondecreasing function $g_0 \in C(I)$ such that g_0 is constant on every interval on which some member of F is constant, and if $g \in C(I)$ enjoys the same property, then g is constant on any interval on which g_0 is constant.

Problem 5. Let X be an uncountable closed subset of I. Prove that there exists an increasing homeomorphism f of the space J of irrational numbers into X such that $X \setminus f(J)$ is a countable set. • Problem 6. Let X be an uncountable closed subset of I. Prove that there is an increasing left continuous function f mapping I into X such that $X\setminus f(I)$ is a countable set. If g is another such function from I to X prove there is a homeomorphism h of I onto I with $(f \circ h)(x) = g(x)$ for $0 \le x \le 1$.

The key to the solution to all these problems is:

Lemma 1. Let (I_n) be a (finite or infinite) sequence of mutually disjoint, closed proper subintervals of I. Then there is a nondecreasing continuous function f of I onto I, constant on each I_n , such that f is not constant on any interval that is not a subinterval of some I_n .

Proof. We say that $x, y \in I$ are equivalent if either x = y or x and y lie in the same interval I_n . Let [x] denote the equivalence class containing x. The set of equivalence classes is totally ordered in the obvious way. Moreover:

1. [0] is the first class and [1] is the last class.

2. There exists a countable set C of classes, such that for any classes a and b (a < b) there is a $c \in C$ such that a < c < b. For example, let C be the set of all classes that contain a rational number.

3. Any nonvoid set of classes $\{[x_a]\}$ has a least upper bound. Note that [y] is the least upper bound where y is the least upper bound of the set of numbers $\{x_a\}$ in I.

It follows from properties 1, 2 and 3 that there is an order preserving function g mapping the set of classes onto I such that g is one-to-one and g([0]) = 0 and g([1]) = 1. For $x \in I$ put f(x) = g([x]). Then f is a nondecreasing function mapping I onto I. Because f maps onto I, f must be continuous on I. Clearly f is the desired function.

۵

Solution to Problem 1. Because X is uncountable, there is a nonvoid perfect set $P \in X$ so that X\P is countable. Let f be the function in Lemma 1 where the I_n are the closures of the components of I\P. Each I_n meets P at an endpoint, so $f(I_n) \in f(P)$. Finally, f(P) = f(I) and f(X) = f(I). This incidentally provides another (albeit inefficient) proof that a closed uncountable subset of R has the same cardinality as R avoiding the usual argument on Cauchy sequences.

Solution to Problem 2. Because $I \setminus U$ is uncountable, there is a nonvoid perfect set $P \in I \setminus U$ such that $(I \setminus U) \setminus P$ is countable. Let f_1 denote the function in Lemma 1 where the I_n are the closures of the components of $I \setminus P$. For $x \in I$, put $f_2(x) = m((0,x) \cap (I \setminus P))$. Let w be any positive number. For $x \in I$, put $f(x) = (f_1(x) + wf_2(x))/(1 + wm(I \setminus P))$. Then f is an increasing homeomorphism of I onto I and f' = w/(1 + wm(I \setminus P)) on $I \setminus P$ and on U. Moreover, $m(U) = m(I \setminus P)$ because U and $I \setminus P$ differ by at most a countable set. Finally, f' = w/(1 + wm(U)) on U, and we need only select w so that w/(1 + wm(U)) = v. Indeed w = v/(1 - vm(U)).

In problem 2 we did not allow v = 1/m(U). Note that if f' = 1/m(U) on U, then m(f(U)) = 1, f(U) is dense in I. But U might not be dense in I. On the other hand, if U is dense in I, there is a homeomorphism f of I onto I such that f' = 1/m(U) on U. We will not prove this here, because it does not involve our Lemma 1.

Solution to Problem 3. For the perfect set P, let f, f_1, f_2 be as in the solution to Problem 2. Let (c,d) be an open interval that meets f(P). Say f(a) = c, f(b) = d. Then (a,b) meets P and $f_1(a) < f_1(b)$. Moreover,

It follows that $m((c,d) \cap f(P)) = mf((a,b) \cap P) > 0$.

Now let I_n be as in Lemma 1 and let P be the closure of the set $I \setminus U_n I_n$. Then P is a perfect set. Let f be the function in Problem 3. Then the function $g(x) = m((0,f(x)) \cap f(P))/mf(P)$ also satisfies the conclusion of Lemma 1.

0

Solution to Problem 4. Let $g \gg f$ mean that g is constant on any interval on which f is constant. Let $g \gg F$ mean $g \gg f$ for all $f \in F$. For $g \in C(I)$, let

 $E_g = \{x \in I: g \text{ is constant on no neighborhood of } x\}.$

Then E_g is evidently a perfect set. Let $E = \bigcap_{f \in F} E_f$. Then E is a closed set. If E is countable, let $g_0(x) = 0$ for $x \in I$, and let P be the void set. If E is uncountable, let $P \subseteq E$ be the perfect set for which $E \setminus P$ is countable, and let g_0 be the function in Lemma 1 where the I_n are the closures of the components of $I \setminus P$. Then $E_{g_0} = P \subseteq E$ and hence $g_0 >> F$.

Let $g \in C(I)$ such that $g \gg g_0$ does not hold. There is an open interval U on which g_0 is constant but g is not. Then E_g meets U, Eg_0 does not meet U, and (because E_g is a perfect set) $E_g \cap U$ is uncountable. But $E \setminus E_{g_0} = E \setminus P$ is countable. Thus U contains only countably many points in E, so there is some $x \in (E_g \setminus E) \cap U$. There is an $f \in F$ such that $x \notin E_f$. So f is constant on some neighborhood of x but g is not. Hence $g \gg f$ does not hold, and $g \gg F$ does not hold. \Box

In particular, if $f \in C(I)$ there is a nondecreasing function $g \in C(I)$ such that f and g are constant on the same intervals.

Solution to Problem 5. Let $P \in X$ be the perfect set such that $X \setminus P$ is countable. Let f_1 be the function in Lemma 1 where the I_n are the closures of the components of $I \setminus P$. Then f_1 is a nondecreasing continuous, closed function mapping I onto I. Put

 $Y = \{y \in (0,1): y \text{ is irrational and } f_1^{-1}(y) \text{ is a singleton set}\}.$

Then $(0,1)\setminus Y$ is a countable dense subset of (0,1), $f_1^{-1}(Y) \in P \in X$ and the sets $P\setminus f_1^{-1}(Y)$ and $X\setminus f_1^{-1}(Y)$ are countable. There is an increasing homeomorphism f_2 of R onto (0,1) that maps the set of rational numbers onto $(0,1)\setminus Y$. Finally, f_1 is closed and continuous, so f_1^{-1} is an increasing homeomorphism of Y onto $f_1^{-1}(Y)$ and $f_1^{-1} \circ f_2$ is an increasing homeomorphism of J onto $f_1^{-1}(Y)$. It follows that if X_1 and X_2 are uncountable compact subsets of R, there exist countable sets E_1 and E_2 such that $X_1 \setminus E_1$ is homeomorphic to $X_2 \setminus E_2$. This will not work in general in \mathbb{R}^2 . Let

$$Y_1 = \{(x,y): x^2 + y^2 \le 1\}$$
 and $Y_2 = \{(x,y): (x-2)^2 + (y-2)^2 \le 1\}.$

Let $X_1 = Y_1$ and $X_2 = Y_1 \cup Y_2$. Then for any countable sets E_1 and E_2 in \mathbb{R}^2 the set $X_1 \setminus E_1$ must be connected but the set $X_2 \setminus E_2$ must not be connected. So $X_1 \setminus E_1$ and $X_2 \setminus E_2$ cannot be homeomorphic.

Solution to Problem 6. Let P be the perfect set for which $P \in X$ and $X \setminus P$ is countable. Let f_1 denote the function in Lemma 1 where the I_n are the closures of the components of $I \setminus P$. For each $x \in I$, let f(x) be the smallest $y \in I$ for which $f_1(y) = x$. It follows routinely that f is a strictly increasing function mapping I into P and f is left continuous. Moreover, $P \setminus f(I)$ and $X \setminus f(I)$ are countable.

Now suppose g is another strictly increasing left continuous function mapping I into X such that $X \setminus g(I)$ is countable. Then every point in g(0,1) is a (left) condensation point of g(0,1), so $g(0,1) \in P$. Likewise $f(0,1) \subseteq P$, and indeed $P \setminus (f(0,1) \cap g(0,1))$ is countable. Thus $f(0,1) \cap g(0,1)$ Р. be a countable dense subset of is a dense subset of Let S $f(0,1) \cap g(0,1)$. Then $f^{-1}(S)$ and $g^{-1}(S)$ are countable dense subsets of (0,1). The mapping $x \mapsto f^{-1}(g(x))$ is an order preserving mapping of $g^{-1}(S)$ onto $f^{-1}(S)$. There is an increasing homeomorphism h of I onto I such that $h(x) = f^{-1}(g(x))$ for $x \in g^{-1}(S)$. Finally, $f \circ h = g$ on a dense subset of I, and (because f and g are left continuous) $(f \circ h)(x) = g(x)$ for $0 < x \leq 1$.

It is worth noting that f and g completely determine h. Moreover, f(0,1) = g(0,1) necessarily. However, we leave the proof.

Received October 8, 1987