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ON MONOTONIC FUNCTIONS AND REAL NUMBER ORDER

In this note we use the ordering of the real numbers in R to solve
several apparently disparate problems in real analysis. In what follows, I will
denote the compact interval [0,1], and C(I) will denote the family of
continuous real valued functions on I. Moreover, m will denote Lebesgue

measure.

These problems are:

Problem 1. Let X be an uncountable closed subset of I. Prove that
there exists a continuous nondecreasing function f mapping I onto I
such that f(X) = I.

Problem 2. Let U be an open subset-of I such that I\U is
uncountable. Let v be a number such that 0 < v < 1/m(U). Prove that
there exists a homeomorphism f of I onto I such that f'(x) = v for all

x € U.

Problem 3. Let P be a nonvoid perfect subset of 1. Let v be a real
number such that 0 < v < I/m(I\P). Prove that there exists a homeomorphism
f of 1 onto I such that f'(x) = v for all x € I\P, and such that each
open interval (c,d) meets f(P) in either the void set or a set with positive

Lebesgue measure.

Problem 4. Let F be a nonvoid subset of C(I). Prove that there exists
a nondecreasing function g, € C(I) such that g, 1is constant on every
interval on which some member of F is constant, and if g € C(I) enjoys
the same property, then g is constant on any interval on which g, is

constant.
Problem 5. Let X be an uncountable closed subset of I. Prove that

there exists an increasing homeomorphism f of the space J of irrational
numbers into X such that X\f(J) is a countable set.
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Problem 6. Let X be an uncountable closed subset of I. Prove that
there is an increasing left continuous function f mapping I into X such
that X\f(I) is a countable set. If g 1is another such function from I to
X prove there is a homeomorphism h of I onto I with (f o h)(x) = g(x)
for 0 < x 6 1.

The key to the solution to all these problems is: .

Lemma 1. Let (Ih) be a (finite or infinite) sequence of mutually disjoint,
closed proper subintervals of I. Then there is a nondecreasing continuous
function f of I onto I, constant on each Inh, such that f is not

constant on any interval that is not a subinterval of some Ip.

Proof. We say that x,y ¢ I are equivalent if either x =y or x and
y lie in the same interval 1Ih. Let [x] denote the equivalence class
containing x. The set of equivalence classes is totally ordered in the obvious
way. Moreover:

1. [0] is the first class and [1] is the last class.

2. There exists a countable set C of classes, such that for any classes
a and b (a < b) thereisa c € C such that a < ¢ < b. For example, let
C be the set of all classes that contain a rational number. v

3. Any nonvoid set of classes {[xgq]} has a least upper bound. Note
that [y] is the least upper bound where y is the least upper bound of the

set of numbers ({xg} in I.

It follows from properties 1, 2 and 3 that there is an order preserving
function g mapping the set of classes onto I such that g is one-to-one
and g([0]) = 0 and g([1]) = 1. For x e 1 put f(x) = g([x]) Then f is
a nondecreasing function mapping I onto I. Because f maps onto I, f

must be continuous on I. Clearly f is the desired function.

Solution to Problem 1. Because X is uncountable, there is a nonvoid
perfect set P € X so that X\P is countable. Let { be the function in
Lemma 1 where the I, are the closures of the components of I\P. Each Ip
meets P at an endpoint, 8o f(I) € f(P). Finally, f(P) = f(I) and
£(X) = £(I). a

455



This incidentally provides another (albeit inefficient) proof that a closed
uncountable subset of R has the same cardinality as R avoiding the usual

argument on Cauchy sequences.

Solution to Problem 2. Because I\U is uncountable, there is a nonvoid
perfect set P < I\U such that (I\U)\P is countable. Let £, denote the
function in Lemma 1 where the I, are the closures of the components of
IN\P. For x e¢ I, put f,;(x) = m((0,x) n (I\P)). Let w be any positive
number. For x € I, put f(x) = (f,(x) + wfa(x))/(1 + wm(I\P)). Then f is

an increasing homeomorphism of I onto I and f' = w/(1 + wm(I\P)) on
I\P and on U. Moreover, m(U) = m(I\P) because U and I\P differ by
at most a countable set. Finally, f' = w/(1 + wm(U)) on U, and we need
only select w so that w/(1 + wm(U)) = v. Indeed w = v/(1 - vm(U)).

8]

In problem 2 we did not allow v = 1/m(U). Note that if f' = 1/m(U) on
U, then m(f(U)) =1, f(U) is dense in I. But U might not be dénse in
I. On the other hand, if U is dense in I, there is a homeomorphism f of
I onto 1 such that f' = 1/m(U) on U. We will not prove this here,

because it does not involve our Lemma 1.

Solution to Problem 3. For the perfect set P, let f, f,, f;, be as in the
solution to Problem 2. Let (c,d) be an open interval that meets f(P). Say
f(a) = ¢, f(b) = d. Then (a,b) meets P and f,(a) < f£,(b). Moreover,

mf((a,b) o (I\P)) = mf,((a,b) n (I\P))-w/(1 + wm(I\P))
€ (fa(b) - fa(a))w/(1 + wm(I\P)) < f(b) - f(a) = d-c.

It follows that m((c,d) n £f(P)) = mf((a,b) n P) > O. o
Now let I, be as in Lemma 1 and let P be the closure of the set
I\ Up In. Then P is a perfect set. Let f be the function in Problem 3.

Then the function g£(x) = m((0,f(x)) n £(P))/mf(P) also satisfies the
conclusion of Lemma 1.
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Solution to Problem 4. Let g >> f mean that g is constant on any
interval on which f is constant. Let g >> F mean g > f for all f e F.
For g e C(I), let

Eg = {x ¢ I: g is constant on no neighborhood of x}.

Then Eg is evidently a perfect set. Let E = Ngep Ef. Then E is a closed
gset. If E is countable, let go(x) =0 for x € I, and let P be the void
set. If E is uncountable, let P ¢ E be the perfect set for which E\P is
countable, and let g, be the function in Lemma 1 where the I, are the
closures of the components of I\P. Then Eg 0 = P < E and hence g, > F.

Let g € C(I) s8uch that g >> go does not hold. There is an open
interval U on which g, is constant but g is not. Then Eg meets u,
Eg, does not meet U, and (because Eg is a perfect set) Eg n U is_
uncountable. But E\Eg 0o = E\P is countable. Thus U contains only
countably many points in E, 8o there is some x € (Eg\E) n U. There is an
f €e F such that x ¢ Ep. So f is constant on some neighborhood of x but

g€ 1is not. Hence g >> f does not hold, and g >> F does not hold. (n}

In particular, if f € C(I) there is a nondecreasing function g e C(I)

such that f and g are constant on the same intervals.

Solution to Problem 5. Let P € X be the perfect set such that X\P is
countable. Let f, be the function in Lemma 1 where the I, are the
closures of the components of I\P. Then f, is a nondecreasing continuous,

closed function mapping I onto I. Put
Y={ye (0,b1): ¥y is irrational and f,—‘(y) is a singleton set}.
Then (0,1)\Y is a countable dense subset of (0,1), f, '(Y) €P cX and

the sets P\f,—‘
homeomorphism f; of R onto (0,1) that maps the set of rational numbers

(Y) and X\f,-l(Y) are countable. There is an increasing

onto (0,1)\Y. Finally, f, is closed and continuous, so f,-l is an
“NY) amd £,
(V). o

increasing homeomorphism of Y onto f,
1

o T, is an

increasing homeomorphism of J onto f,-
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It follows that if X; and X, are uncountable compact subsets of R,
there exist countable sets E; and E; such that X,\E; is homeomorphic to
X,\E;. This will not work in general in R2., Let

Y, = {(x,y): x2 + y2 6 1} and Y, = {(x,¥): (x-2)2 + (y-2)? € 1}.

Let X, =Y; and X, = Y, v Y,. Then for any countable sets E, and E,
in R? the set X,\E, must be connected but the set- X,\E; must not be

connected. So X,\E, and X,;\E: cannot be homeomorphic.

Solution to Problem 6. Let P be the perfect set for which P ¢ X and
X\P is countable. Let f, denote the function in Lemma 1 where the Ip
are the closures of the components of I\P. For each x ¢ I, let f(x) be
the smallest y ¢ I for which f,(y) = x. It follows routinely that f is a
strictly increasing function mapping I into P and f is left continuous.
Moreover, P\f(I) and X\f(I) are countable.

Now suppose g is another strictly increasing left continuous function
mapping I into X such that X\g(I) is countable. Then every point in
£(0,1) 1is a (left) condensation point of g(0,1), so g(0,1) ¢ P. Likewise
£(0,1) < P, and indeed P\(f(0,1) n g(0,1)) is countable. Thus £(0,1) n g(0,1)
is a dense subset of P. Let S be a countable dense subset of
£(0,1) n g(0,1). Then f}(S) and g~!(S) are countable dense subsets of
(0,1). The mapping x = f~!(g(x)) is an order preserving mapping of g !(S)
onto f~!(S). There is an increasing homeomorphism h of I onto I such
that h(x) = f~'(g(x)) for x € g~'(S). Finally, f o h = g on a dense
subset of I, and (because f and g are left continuous) (f o h)(x) = g(x)
for 0 < x €1, a

It is worth noting that f and g completely determine h. Moreover,

£(0,1) = g(0,1) necessarily. However, we leave the proof.
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