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 ON MONOTONIC FUNCTIONS AND REAL NUMBER ORDER

 In this note we use the ordering of the real numbers in R to solve

 several apparently disparate problems in real analysis. In what follows, I will

 denote the compact interval [0,1], and C(I) will denote the family of

 continuous real valued functions on I. Moreover, m will denote Lebesgue

 measure.

 These problems are:

 Problem 1. Let X be an uncountable closed subset of I. Prove that

 there exists a continuous nondecreasing function f mapping I onto I

 such that f(X) = I.

 Problem 2. Let U be an open subset of I such that I'U is

 uncountable. Let v be a number such that 0 < v < l/m(U). Prove that

 there exists a homeomorphism f of I onto I such that f'(x) = v for all

 X e U.

 Problem 3. Let P be a nonvoid perfect subset of I. Let v be a real

 number such that 0 < v < I/m(I'P). Prove that there exists a homeomorphism

 f of I onto I such that f'(x) = v for all x e I'P, and such that each

 open interval (c,d) meets f(P) in either the void set or a set with positive

 Lebesgue measure.

 Problem 4. Let F be a nonvoid subset of C(I). Prove that there exists

 a nondecreasing function g0 e C(I) such that g0 is constant on every

 interval on which some member of F is constant, and if g e C(I) enjoys

 the same property, then g is constant on any interval on which g0 is
 constant.

 Problem 5. Let X be an uncountable closed subset of I. Prove that

 there exists an increasing homeomorphism f of the space J of irrational

 numbers into X such that X'f(J) is a countable set.
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 - Problem 6. Let X be an uncountable closed subset of I. Prove that

 there is an increasing left continuous function f mapping I into X such

 that X'f(I) is a countable set. If g is another such function from I to

 X prove there is a homeomorphism h of I onto I with (f o h)(x) = g(x)
 for 0 < X ' 1.

 The key to the solution to all these problems is:

 Lemma 1. Let (In) be a (finite or infinite) sequence of mutually disjoint,
 closed proper subintervals of I. Then there is a nondecreasing continuous

 function f of I onto I, constant on each In, such that f is not

 constant on any interval that is not a subinterval of some In.

 Proof. We say that x,y e I are equivalent if either x = y or x and

 y lie in the same interval In. Let [x] denote the equivalence class

 containing x. The set of equivalence classes is totally ordered in the obvious

 way. Moreover:

 1. [0] is the first class and [1] is the last class.

 2. There exists a countable set C of classes, such that for any classes

 a and b (a < b) there is a c c C such that a < c < b. For example, let

 C be the set of all classes that contain a rational number.

 3. Any nonvoid set of classes {[xa]} has a least upper bound. Note

 that [y] is the least upper bound where y is the least upper bound of the

 set of numbers {xa} in I.

 It follows from properties 1, 2 and 3 that there is an order preserving

 function g mapping the set of classes onto I such that g is one-to-one

 and g([0]) = 0 and g([l]) = 1. For xci put f(x) = g([x]). Then f is

 a nondecreasing function mapping I onto I. Because f maps onto I, f

 must be continuous on I. Clearly f is the desired function.

 □

 Solution to Problem 1. Because X is uncountable, there is a nonvoid

 perfect set P c X so that X'P is countable. Let f be the function in

 Lemma 1 where the In are the closures of the components of I'P. Bach In

 meets P at an endpoint, so f(In) € f(P)« Finally, f(P) = f(I) and

 f(X) = f(I). □
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 This incidentally provides another (albeit inefficient) proof that a closed

 uncountable subset of R has the same cardinality as R avoiding the usual

 argument on Cauchy sequences.

 Solution to Problem 2. Because I'U is uncountable, there is a nonvoid

 perfect set P c I'U such that (I'U)'P is countable. Let fj denote the

 function in Lemma 1 where the In are the closures of the components of

 I'P. For X € I, put f2(x) = m((0,x) n (I'P)). Let w be any positive

 number. For x e I, put f(x) = (fi(x) + wf2(x))/(l + wm(I'P)). Then f is

 an increasing homeomorphism of I onto I and f = w/(l + wm(I'P)) on

 I'P and on U. Moreover, m(U) = m(I'P) because U and I'P differ by

 at most a countable set. Finally, f = w/(l + wm(U)) on U, and we need

 only select w so that w/(l + wm(U)) = v. Indeed w = v/(l - vm(U)).

 □

 In problem 2 we did not allow v = l/m(U). Note that if f = l/m(U) on

 U, then m(f(U)) = 1, f(U) is dense in I. But U might not be dense in

 I. On the other hand, if U is dense in I, there is a homeomorphism f of

 I onto I such that f = l/m(U) on U. We will not prove this here,

 because it does not involve our Lemma 1.

 Solution to Problem 3. For the perfect set P, let f, ft, f2 be as in the

 solution to Problem 2. Let (c,d) be an open interval that meets f(P). Say

 f(a) = c, f(b) = d. Then (a,b) meets P and fi(a) < fi(b). Moreover,

 mf((a,b) n (I'P)) = rnf2((a,b) n (l'p))-w/(l + wm(I'P))

 á (f2(b) - f2(a))w/(l + wm(I'P)) < f(b) - f(a) = d-c.

 It follows that m((c,d) n f(P)) = mf((a,b) n P) > 0. □

 Now let In be as in Lemma 1 and let P be the closure of the set

 Un In* Then P is a perfect set. Let f be the function in Problem 3.

 Then the function g(x) = m((0,f(x)) n f(P))/mf(P) also satisfies the

 conclusion of Lemma 1.
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 Solution to Problem 4. Let g » f mean that g is constant on any

 interval on which f is constant. Let g » F mean g » f for all f e F.

 For g e C(I), let

 Eg = {x € I: g is constant on no neighborhood of x}.

 Then Eg is evidently a perfect set. Let E = Of€p Ef. Then E is a closed
 set. If E is countable, let g0(x) = 0 for xci, and let P be the void

 set. If E is uncountable, let P c E be the perfect set for which E'P is

 countable, and let g0 be the function in Lemma 1 where the In are the
 closures of the components of I'P. Then Eg0 = P c E and hence g0 » F.

 Let g e C(I) such that g » g0 does not hold. There is an open

 interval U on which g0 is constant but g is not. Then Eg meets U,
 Eg0 does not meet U, and (because Eg is a perfect set) Eg n U is
 uncountable. But E'Eg0 = E'P is countable. Thus U contains only
 countably many points in E, so there is some x € (Eg'E) n U. There is an
 f € F such that x i Ef. So f is constant on some neighborhood of x but
 g is not. Hence g » f does not hold, and g » F does not hold. a

 In particular, if f e C(I) there is a nondecreasing function g € C(I)

 such that f and g are constant on the same intervals.

 Solution to Problem 5. Let P c X be the perfect set such that X'P is

 countable. Let f , be the function in Lemma 1 where the In are the

 closures of the components of I'P. Then ft is a nondecreasing continuous,

 closed function mapping I onto I. Put

 Y = {y c (0,1): y is irrational and *(y) is a singleton set}.

 Then (0,1)'Y is a countable dense subset of (0,1), fi 1 (Y) c P c X and
 the sets P'ft 1 (Y) and X'f t 1 (Y) are countable. There is an increasing
 homeomorphism f a of R onto (0,1) that maps the set of rational numbers

 onto (0,1)'Y. Finally, ft is closed and continuous, so fj 1 is an
 increasing homeomorphism of Y onto f i 1(Y) and fi 1 o f2 is an
 increasing homeomorphism of J onto f x 1 (Y) . □
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 It follows that if Xt and X2 are uncountable compact subsets of R,

 there exist countable sets Et and E2 such that XAE! is homeomorphic to

 X2'E2. This will not work in general in R2. Let

 Y i = {(x,y): xa + y3 * 1} and Y2 = {(x,y): (x-2)2 + (y-2)2 * 1}.

 Let Xi = Yi and X2 = Yt u Y2. Then for any countable sets Ei and E2

 in R2 the set Xt'Ei must be connected but the set X2'E2 must not be

 connected. So Xt'Ei and X2'E2 cannot be homeomorphic.

 Solution to Problem 6. Let P be the perfect set for which P c X and

 X'P is countable. Let ft denote the function in Lemma 1 where the In

 are the closures of the components of I'P. For each x € I, let f(x) be

 the smallest y € I for which fi(y) = x. It follows routinely that f is a

 strictly increasing function mapping I into P and f is left continuous.

 Moreover, P'f(I) and X'f(I) are countable.

 Now suppose g is another strictly increasing left continuous function

 mapping I into X such that X'g(I) is countable. Then every point in

 g(0,l) is a (left) condensation point of g(0,l), so g(0,l) c P. Likewise

 f(0,l) c P, and indeed P'(f(0,l) n g(0,l)) is countable. Thus f(0,l) n g(0,l)

 is a dense subset of P. Let S be a countable dense subset of

 f(0,l) n g(0,l). Then f~l(S) and g~*(S) are countable dense subsets of

 (0,1). The mapping x ** f~l(g(x)) is an order preserving mapping of g~l (S)

 onto f~'(S). There is an increasing homeomorphism h of I onto I such

 that h(x) = f-1(g(x)) for x e g-1 (S). Finally, f o h = g on a dense

 subset of I, and (because f and g are left continuous) (f o h)(x) = g(x)

 for 0 < x < 1. a

 It is worth noting that f and g completely determine h. Moreover,

 f(0,l) = g(0,l) necessarily. However, we leave the proof.

 Received October 8 > 1937
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