Bullen [1] posed the question as the title states. This question has already been considered though implicitly in other papers. We shall use an idea in [3] together with a technique in [4] to prove the result in the affirmative.

THE MEASURABILITY OF & IN HENSTOCK INTEGRATION

A function f is said to be Henstock integrable on [a,b] if there exists a number A such that for every $\varepsilon > 0$ there is a strictly positive function δ such that whenever a division D given by

 $a = x_0 < x_1 < \ldots < x_n = b$ and $\xi_1, \xi_2, \ldots, \xi_n$

satisfies $\xi_i - \delta(\xi_i) < x_{i-1} \leq \xi_i \leq x_i < \xi_i + \delta(\xi_i)$ for i = 1, 2, ..., n we have

$$|\sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) - A| < \varepsilon,$$

or alternatively,

$$|\sum f(\xi)(v-u) - A| < \varepsilon$$

where [u,v] denotes a typical interval in D with $\xi \in [u,v] \subset (\xi - \delta(\xi))$, $\xi + \delta(\xi)$. For such divisions we write D = {[u,v]; ξ } and say that D is δ -fine. If F is the primitive of f, we often write A = F(a,b) = F(b) -F(a). Next, a sequence of functions f_n is said to be control-convergent to f on [a,b] if the following conditions are satisfied.

- (i) $f_n(x) \rightarrow f(x)$ almost everywhere in [a,b] as $n \rightarrow \infty$ where each f_n is Henstock integrable on [a,b];
- (ii) the primitives F_n of f_n are ACG_* uniformly in n, that is [a,b] is the union of a sequence of closed sets X_i such that on each X_i the functions F_n are $AC_*(X_i)$ uniformly in n;

(iii) the primitives F_n converge uniformly on [a,b].

Theorem. Let f be Henstock integrable on [a,b]. Then for every $\varepsilon > 0$ there exists a strictly positive, measurable function δ such that for any δ -fine division D = {[u,v]; ξ } we have

$$|\sum f(\xi)(v - u) - F(a,b)| < \varepsilon.$$

Proof. Since f is Henstock integrable on [a,b], it follows from [2] that there is a sequence of step functions f_n control-convergent to f on [a,b]. We assume that $f_n(x) \rightarrow f(x)$ everywhere as $n \rightarrow \infty$ except in a set Z of measure zero. Given $\varepsilon > 0$, since each f_n is Riemann integrable on [a,b], there is a constant $\delta_n > 0$ such that for any δ_n -fine division D = {[u,v]; ξ } we have

$$|\sum f_n(\xi)(v - u) - F_n(a,b)| < \varepsilon 2^{-n-1}.$$

Here F_n is the primitive of f_n and we assume $\delta_{n+1} \leq \delta_n$ for all n.

In view of [3; Lemma], the sequence F_n is oscillation convergent, that is, we can write $[a,b] = \bigcup_{i=1}^{\infty} X_i$ where each X_i is closed such that for each i and for every $\varepsilon > 0$ there is an integer N such that for every partial division of [a,b] given by

$$a \neq a_1 < b_1 \neq a_2 < b_2 \neq \dots \neq a_p < b_p \neq b$$

with $a_1, b_1, a_2, b_2, \ldots, a_D, b_D$ belonging to X_i , we have

$$\sum_{k=1}^{p} \omega(F_n - F_m; [a_k, b_k]) < \varepsilon \text{ whenever } n, m \ge N$$

where ω denotes the oscillation of $F_n - F_m$ over $[a_k, b_k]$. Note that F_n converges uniformly to F on [a,b]. It follows that there is a subsequence $F_n(i,j)$ of F_n such that for any partial division of [a,b] as given above we have

$$\sum_{k=1}^{p} \omega(F_{n(i,j)} - F; [a_k,b_k]) < \varepsilon 2^{-i-j}.$$

We may assume that for each i, $F_{n(i,j)}$ is a subsequence of $F_{n(i-1,j)}$.

Now consider $f_{n(j)} = f_{n(j,j)}$ for j = 1, 2, ... and define δ on [a,b] with respect to f as follows. Let $Y_i = X_i - (X_1 \cup X_2 \cup ... \cup X_{i-1})$, i = 1, 2, ... For $\xi \in [a,b]$ and $\xi \in Y_i - Z$ there is $j(\xi)$ such that

$$|f_{n(j)}(\xi) - f(\xi)| < \varepsilon/(b-a)$$
 whenever $j \ge j(\xi)$

and concurrently, if $j(\xi) \neq 1$,

$$|\mathbf{f}_{\mathbf{n}}(\mathbf{j})(\mathbf{\xi}) - \mathbf{f}(\mathbf{\xi})| \ge \varepsilon/(\mathbf{b}-\mathbf{a})$$
 when $\mathbf{j} = \mathbf{j}(\mathbf{\xi}) - \mathbf{1}$.

Thus define $\delta(\xi) = \delta_n(j(\xi))$ when $j(\xi) \ge i$ and $\delta(\xi) = \delta_n(i)$ when $j(\xi) \le i$. Therefore we have defined $\delta(\xi)$ for $\xi \in [a,b] - Z$.

Next, consider $\xi \in Z$. Let $Z_{ij} = Z \cap Y_i \cap S_j$ for i, j = 1, 2, ... where

$$S_j = \left\{ x \in [a,b]; j - 1 \leq |f(x)| < j \right\}$$

Note that, in view of the controlled convergence, F is $AC_{*}(X_{i})$ for each i. Therefore for every i and j there is $\eta_{ij} < \varepsilon j^{-1}2^{-i-j}$ such that for every finite or infinite sequence of nonoverlapping intervals $\{I_{k}^{(ij)}\}$ with endpoints a_{k} and b_{k} of $I_{k}^{(ij)}$ belonging to X_{i} and

$$\sum_{k} |b_{k} - a_{k}| < \eta_{ij} \quad \text{we have} \quad \sum_{k} \omega \Big(F; \ {I_{k}}^{(ij)} \Big) < \varepsilon \ 2^{-i-j}.$$

Now for fixed i and j take $I_k^{(ij)}$, k = 1, 2, ..., with endpoints a_k and b_k belonging to X_i such that

$$\begin{array}{ccc} U & I_k & (ij) \\ k & Z_{ij} & \text{and} & \sum_k |b_k - a_k| < \eta_{ij} \\ k & k \end{array}$$

For $\xi \in Z_{ij}$ where ξ is a limit point of X_i on both sides and ξ is not an endpoint of any $I_k^{(ij)}$, we define $\delta(\xi)$ such that $(\xi - \delta(\xi), \xi + \delta(\xi)) \in I_k^{(ij)}$ for some k. The set of remaining ξ in Z_{ij} not yet defined is countable, say, ξ_1, ξ_2, \ldots . Note that if $\xi_p \in Z_{ij}$, then ξ_p is either not a limit point of X_i or an endpoint of some $I_k^{(ij)}$. Here we have used the fact that a closed set is the union of a perfect set and a countable set At such f_p , p = 1, 2, ..., since F is continuous there, there is $\delta_p > 0$ such that whenever $f_p - \delta_p < u \leq f_p \leq v < f_p + \delta_p$ we have

$$|\mathbf{F}(\mathbf{v}) - \mathbf{F}(\mathbf{u})| < \varepsilon \ 2^{-\mathbf{i}-\mathbf{j}-\mathbf{p}}$$
 and $|\mathbf{f}(\xi_{\mathbf{p}})(\mathbf{v}-\mathbf{u})| < \varepsilon \ 2^{-\mathbf{i}-\mathbf{j}-\mathbf{p}}$.

Finally, define $\delta(\xi_p) = \delta_p$ for p = 1, 2, ... and we have defined a strictly positive function δ on [a,b].

For any δ -fine division $D = \{[u,v]; \}$ we have

$$|\sum f(\xi)(v - u) - F(a,b)| \leq |\sum_{1} f(\xi)(v - u) - \sum_{1} f_{n}(j(\xi))(\xi)(v - u)|$$

$$+ |\sum_{1} f_{n}(j(\xi))(\xi)(v - u) - \sum_{1} F_{n}(j(\xi))(u,v)|$$

$$+ |\sum_{1} F_{n}(j(\xi))(u,v) - \sum_{1} F(u,v)|$$

$$+ |\sum_{2} f(\xi)(v - u)| + |\sum_{2} F(u,v)|$$

where \sum_{1} denotes the partial sum of \sum for which $\xi \in [a,b] - Z$ and $\sum_{2} = \sum -\sum_{1}$, that is, the sum for which $\xi \in Z$. The first term on the right side of the above inequality is less than ε , and so is the second term. It follows from the oscillation convergence as in [3] that the third term is also less than ε . The fourth and fifth terms are less than ε because of F being $AC_{*}(X_{i})$ and continuous and by the definition of δ relative to f on the sets Z_{ij} . Hence f is also Henstock integrable on [a,b] with the given function δ .

We shall now show that the above δ is measurable. Since Z is of measure zero, it suffices to show that δ is measurable on [a,b] - Z. Let M_i denote the set of all integers $n(j(\xi))$ for which $\xi \in Y_i - Z$ and $j(\xi) \ge i$. For each $p \in M_i$, let E_p denote the set of all $\xi \in Y_i - Z$ such that

$$|f_{n(j)}(\xi) - f(\xi)| < \varepsilon/(b - a)$$
 whenever $n(j) \ge p$

and concurrently, if $p = n(j(\xi))$ and $j(\xi) \neq 1$,

$$|\mathbf{f}_n(\mathbf{j}(\mathbf{\xi})-1) - \mathbf{f}(\mathbf{\xi})| \ge \varepsilon/(\mathbf{b}-\mathbf{a}).$$

Obviously, E_p is a measurable set. Note that δ takes constant value δ_p on E_p . On the other hand, δ takes constant value $\delta_{n(i)}$ on $(Y_i - Z) - U \{E_p; p \in M_i\}$ and therefore δ as a function restricted to $Y_i - Z$ is measurable. Since $Y_1 - Z$, $Y_2 - Z$,... are pairwise disjoint, δ is measurable on their union which is [a,b] - Z.

References

- 1. S. Bullen, Queries, Real Analysis Exchange 12(1986-87), 393.
- 2. P.Y. Lee and T.S. Chew, A Riesz-type definition of the Denjoy integral, Real Analysis Exchange 11(1985-86), 221-227.
- 3. P.Y. Lee and T.S. Chew, A short proof of the controlled convergence theorem for Henstock integrals, Bull. London Math. Soc. 19(1987), 60-62.
- 4. P.Y. Lee and W. Naak-In, A direct proof that Henstock and Denjoy integrals are equivalent, Bull. Malaysian Math. Soc. (2), 5(1982), 43-47.

Received September 22, 1987