Liu Genqian, Qingyang Teachers Training School, Gansu, China.

THE MEASURABILITY OF δ IN HENSTOCK INTEGRATION

Bullen [1] posed the question as the title states. This question has already been considered though implicitly in other papers. We shall use an idea in [3] together with a technique in [4] to prove the result in the affirmative.

A function f is said to be Henstock integrable on [a,b] if there exists a number A such that for every $\varepsilon>0$ there is a strictly positive function δ such that whenever a division D given by

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b \quad \text { and } \quad \xi_{1}, \xi_{2}, \ldots, \xi_{n}
$$

satisfies $\xi_{i}-\delta\left(\xi_{i}\right)<x_{i-1} \leqslant \xi_{i} \leqslant x_{i}<\xi_{i}+\delta\left(\xi_{i}\right) \quad$ for $\quad i=1,2, \ldots, n$ we have

$$
\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right)-A\right|<\varepsilon
$$

or alternatively,

$$
|\Sigma f(\xi)(v-u)-A|<\varepsilon
$$

where [u,v] denotes a typical interval in D with $\xi \in[u, v] c(\xi-\delta(\xi)$, $\xi+\delta(\xi))$. For such divisions we write $D=\{[u, v] ; \xi\}$ and say that D is δ-fine. If F is the primitive of f, we often write $A=F(a, b)=F(b)-$ $F(a)$. Next, a sequence of functions f_{n} is said to be control-convergent to f on $[a, b]$ if the following conditions are satisfied.
(i) $\quad f_{n}(x) \rightarrow f(x)$ almost everywhere in $[a, b]$ as $n \rightarrow \infty$ where each f_{n} is Henstock integrable on [a,b];
(ii) the primitives F_{n} of f_{n} are $A C G_{*}$ uniformly in n, that is [a, b] is the union of a sequence of closed sets X_{i} such that on each X_{i} the functions F_{n} are $\mathrm{AC}_{\boldsymbol{*}}\left(\mathrm{X}_{\mathrm{i}}\right)$ uniformly in n ;
(iii) the primitives F_{n} converge uniformly on [a,b].

Theorem. Let f be Henstock integrable on [a,b]. Then for every $\varepsilon>$ 0 there exists a strictly positive, measurable function δ such that for any δ-fine division $D=\{[u, v] ; \xi\}$ we have

$$
\left|\sum f(\xi)(v-u)-F(a, b)\right|<\varepsilon .
$$

Proof. Since f is Henstock integrable on [a,b], it follows from [2] that there is a sequence of step functions f_{n} control-convergent to f on [a,b]. We assume that $f_{n}(x) \rightarrow f(x)$ everywhere as $n \rightarrow \infty$ except in a set Z of measure zero. Given $\varepsilon>0$, since each f_{n} is Riemann integrable on [a,b], there is a constant $\delta_{n}>0$ such that for any δ_{n}-fine division $D=$ $\{[u, v] ; \xi\}$ we have

$$
\left|\sum f_{n}(\xi)(v-u)-F_{n}(a, b)\right|<\varepsilon 2^{-n-1}
$$

Here F_{n} is the primitive of f_{n} and we assume $\delta_{n+1} \leqslant \delta_{n}$ for all n.

In view of [3; Lemma], the sequence F_{n} is oscillation convergent, that is, we can write $[a, b]=u_{i=1}^{\infty} X_{i}$ where each X_{i} is closed such that for each i and for every $\varepsilon>0$ there is an integer N such that for every partial division of [a,b] given by

$$
a \leqslant a_{1}<b_{1} \leqslant a_{2}<b_{2} \leqslant \ldots \leqslant a_{p}<b_{p} \leqslant b
$$

with $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{p}, b_{p}$ belonging to X_{i}, we have

$$
\sum_{k=1}^{p} \omega\left(F_{n}-F_{m} ;\left[a_{k}, b_{k}\right]\right)<\varepsilon \quad \text { whenever } \quad n, m \geq N
$$

where ω denotes the oscillation of $F_{n}-F_{m}$ over [$\left.a_{k}, b_{k}\right]$. Note that F_{n} converges uniformly to F on [a,b]. It follows that there is a subsequence $F_{n}(i, j)$ of F_{n} such that for any partial division of $[a, b]$ as given above we have

$$
\sum_{k=1}^{p} \omega\left(F_{n}(i, j)-F ;\left[a_{k}, b_{k}\right]\right)<\varepsilon 2^{-i-j}
$$

We may assume that for each $i, F_{n(i, j)}$ is a subsequence of $\left.F_{n(i-1}, j\right)$.

Now consider $f_{n(j)}=f_{n(j, j)}$ for $j=1,2, \ldots$ and define δ on [a,b] with respect to f as follows. Let $Y_{i}=X_{i}-\left(X_{1} \cup X_{2} \cup \ldots \cup X_{i-1}\right)$, $\quad i=$ $1,2, \ldots$. For $\xi \in[a, b]$ and $\xi \in Y_{i}-Z$ there is $j(\xi)$ such that

$$
\left|f_{n(j)}(\xi)-f(\xi)\right|<\varepsilon /(b-a) \quad \text { whenever } j \geqq j(\xi)
$$

and concurrently, if $j(\xi) \neq 1$,

$$
\left|f_{n}(j)(\xi)-f(\xi)\right| \geqslant \varepsilon /(b-a) \quad \text { when } \quad j=j(\xi)-1
$$

Thus define $\delta(\xi)=\delta_{n}(j(\xi))$ when $j(\xi) \geq i$ and $\delta(\xi)=\delta_{n}(i)$ when $j(\xi)<$ i. Therefore we have defined $\delta(\xi)$ for $\xi \in[\mathrm{a}, \mathrm{b}]-\mathrm{Z}$.

Next, consider $\xi \in Z$. Let $Z_{i j}=Z \cap Y_{i} \cap S_{j}$ for $i, j=1,2, \ldots$ where

$$
S_{j}=\{x \in[a, b] ; j-1 \leqslant|f(x)|<j\}
$$

Note that, in view of the controlled convergence, F is $A C_{*}\left(X_{i}\right)$ for each i. Therefore for every i and j there is $\eta_{i j}<\varepsilon j^{-1} 2^{-i-j}$ such that for every finite or infinite sequence of nonoverlapping intervals $\left\{I_{k}^{(i j)}\right\}$ with endpoints a_{k} and b_{k} of $I_{k}^{(i j)}$ belonging to X_{i} and

$$
\sum_{k}\left|b_{k}-a_{k}\right|<\eta_{i j} \quad \text { we have } \quad \sum_{k} \omega\left(F ; I_{k}(i j)\right)<\varepsilon 2^{-i-j}
$$

Now for fixed i and j take $I_{k}(i j), k=1,2, \ldots$, with endpoints a_{k} and b_{k} belonging to X_{i} such that

$$
\underset{k}{U} I_{k}^{(i j)} \supset Z_{i j} \quad \text { and } \quad \sum_{k}\left|b_{k}-a_{k}\right|<\eta_{i j}
$$

For $\xi \in \mathrm{Z}_{\mathrm{i} j}$ where ξ is a limit point of X_{i} on both sides and ξ is not an endpoint of any $I_{k}^{(i j)}$, we define $\delta(\xi)$ such that $(\xi-\delta(\xi), \xi+\delta(\xi))$ $c I_{k}(i j)$ for some k. The set of remaining ξ in $Z_{i j}$ not yet defined is countable, say, ξ_{1}, ξ_{2}, \ldots. Note that if $\xi_{p} \in Z_{i j}$, then ξ_{p} is either not a limit point of X_{i} or an endpoint of some $I_{k}(i j)$. Here we have used the fact that a closed set is the union of a perfect set and a countable set

At such $\xi_{p}, p=1,2, \ldots$, since F is continuous there, there is $\delta_{p}>0$ such that whenever $\xi_{p}-\delta_{p}<u \leqslant \xi_{p} \leqslant v<\xi_{p}+\delta_{p} \quad$ we have

$$
|F(v)-F(u)|<\varepsilon 2^{-i-j-p} \text { and }\left|f\left(\xi_{p}\right)(v-u)\right|<\varepsilon 2^{-i-j-p}
$$

Finally, define $\delta\left(\xi_{p}\right)=\delta_{p}$ for $p=1,2, \ldots$ and we have defined a strictly positive function δ on $[a, b]$.

For any δ-fine division $D=\{[u, v] ; \xi\}$ we have

$$
\begin{aligned}
\mid \Sigma f(\xi)(v-u) & -F(a, b)|\in| \Sigma_{1} f(\xi)(v-u)-\sum_{1} f_{n(j(\xi))}(\xi)(v-u) \mid \\
& +\left|\Sigma_{1} f_{n}(j(\xi))(\xi)(v-u)-\sum_{1} F_{n}(j(\xi))(u, v)\right| \\
& +\left|\Sigma_{1} F_{n}(j(\xi))(u, v)-\sum_{1} F(u, v)\right| \\
& +\left|\Sigma_{2} f(\xi)(v-u)\right|+\left|\Sigma_{2} F(u, v)\right|
\end{aligned}
$$

where Σ_{1} denotes the partial sum of Σ for which $\xi \in[a, b]-Z$ and $\Sigma_{2}=\Sigma-\Sigma_{1}$, that is, the sum for which $\xi \in Z$. The first term on the right side of the above inequality is less than ε, and so is the second term. It follows from the oscillation convergence as in [3] that the third term is also less than ε. The fourth and fifth terms are less than ε because of F being $A C_{*}\left(X_{i}\right)$ and continuous and by the definition of δ relative to f on the sets $z_{i j}$. Hence f is also Henstock integrable on $[a, b]$ with the given function δ.

We shall now show that the above δ is measurable. Since Z is of measure zero, it suffices to show that δ is measurable on [a,b]-z. Let M_{i} denote the set of all integers $n(j(\xi))$ for which $\xi \in Y_{i}-Z \quad$ and $j(\xi) \geq i$. For each $p \in M_{i}$, let E_{p} denote the set of all $\xi \in Y_{i}-Z$ such that

$$
\left|f_{n(j)}(\xi)-f(\xi)\right|<\varepsilon /(b-a) \quad \text { whenever } \quad n(j) \geq p
$$

and concurrently, if $p=n(j(\xi))$ and $j(\xi) \neq 1$,

$$
\left|f_{n}(j(\xi)-1)-f(\xi)\right| \geq \varepsilon /(b-a)
$$

Obviously, E_{p} is a measurable set. Note that δ takes constant value δ_{p} on E_{p}. On the other hand, δ takes constant value $\delta_{\mathrm{n}(\mathrm{i})}$ on $\left(\mathrm{Y}_{\mathrm{i}}-\mathrm{Z}\right)$ $U\left\{E_{p} ; p \in M_{i}\right\}$ and therefore δ as a function restricted to $Y_{i}-Z$ is measurable. Since $Y_{1}-Z, Y_{2}-Z, \ldots$ are pairwise disjoint, δ is measurable on their union which is [a,b] - Z.

References

1. S. Bullen, Queries, Real Analysis Exchange 12(1986-87), 393.
2. P.Y. Lee and T.S. Chew, A Riesz-type definition of the Denjoy integral, Real Analysis Exchange 11(1985-86), 221-227.
3. P.Y. Lee and T.S. Chew, A short proof of the controlled convergence theorem for Henstock integrals, Bull. London Math. Soc. 19(1987), 60-62.
4. P.Y. Lee and W. Naak-In, A direct proof that Henstock and Denjoy integrals are equivalent, Bull. Malaysian Math. Soc. (2), 5(1982), 43-47.
