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THE MEASURABILITY OF & IN HENSTOCK INTEGRATION

Bullen [1] posed the question as the title states. This question has
already been considered though implicitly in other papers. We shall use an
idea in [3] together with a technique in [4] to prove the result in the
affirmative.

A function f is said to be Henstock integrable on [a,b] if there exists
a number A such that for every ¢ > 0 there is a strictly positive function

6 such that whenever a division D given by
a=xo<X‘ ( L) <xn=b md el’ ez’ooo’en

satisfies ¢5 — 6(¢1) < Xj—y € € € x5 < &4 + 6(¢4) for i =1,2,...,n we

have

n
I T f(é1)(xi — xi—1) — A] < &,
i=1

or alternatively,
| T £f(&)(v-u) - Al <=

where [u,v] denotes a typical interval in D with ¢ € [u,v] © (¢ - 6(¢),

¢ + 6(¢)). For such divisions we write D = {[u,v]; ¢} and say that D is
é6-fine. If F is the primitive of f, we often write A = F(a,b) = F(b) -
F(a). Next, a sequence of functions fp is said to be control-convergent to

f on [a,b] if the following conditions are satisfied.

(i) fn(x) — f(x) almost everywhere in [a,b] as n — « where
each f, is Henstock integrable on [a,b];

(ii) the primitives Fp of f, are ACG* uniformly in n, that is
[a,b] is the union of a sequence of closed sets Xj such that

on each X;j the functions Fp are AC*(Xi) uniformly in n;
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(iii) the primitives Fp converge uniformly on [a,b].

Theorem. Let f be Henstock integrable on [a,b]. Then for every = >
0 there exists a strictly positive, measurable function &6 such that for any

é-fine division D = {[u,v]; €} we have
IZ £(¢)(v - u) - F(a,b)] < e.

Proof. Since f is Henstock integrable on [a,b], it follows from [2] that
there is a sequence of step functions fp control-convergent to f on [a,bl].
We assume that fp(x) — f(x) everywhere as n — o except in a set Z of
measure zero. Given ¢ > 0, since each f, is Riemann integrable on [a,b],
there is a constant 6 > 0 such that for any ép-fine division D =

{[u,v]; ¢} we have
IZ fn(€¢)(v = u) - Fp(a,b)| < ¢ 27071,
Here Fp is the primitive of f, and we assume ép4, € 6 for all n.

In view of [3; Lemma], the sequence F, is oscillation convergent, that
is, we can write [a,b] = ui:1 Xi; where each Xj is closed such that for
each i and for every & > 0 there is an integer N such that for every

partial division of [a,b] given by
aéal <b15a3<b3‘... ‘ap<bp6b

with  a,,b,,a;,bs,...,ap,bp belonging to Xj, we have

p
I w(Fp - Fp; [ak,bk]) < & whenever n, m2N
k=1
where « denotes the oscillation of Fp — Fp over [ak,bk]. Note that Fp

converges uniformly to F on [a,b]. It follows that there is a subsequence
Fn(i,j) of Fn such that for any partial division of [a,b] as given above

we have
P ..
k):l w(Fn(i, j) - F; [ak,bk]) < & 2717J,
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We may assume that for each i, Fn(j,j) 1is a subsequence of Fp(j-i,j).

Now consider fp(j) = fn(j,j) Tfor J = 1,2,... and define &6 on [a,b]
with respect to f as follows. Let Y; = Xj — (X, v X; v ... v Xj,), i=
1,2,... . For ¢ e [a,b] and ¢ € Yj — Z there is j(¢) such that

Ifn(j)(¢) — £(€)| < ¢/(b-a) whenever j a j(¢)

and concurrently, if j(¢&) # 1,
[fn(j)(¢) — £(¢)| » &/(b-a) when j = j(§) - 1.

Thus define 6(¢) = Sn(j(¢)) when j(g) a i and 6(¢) = 6n(i) when
j(¢) < i. Therefore we have defined &6(¢) for ¢ € [a,b] - Z.

Next, consider ¢ € Z. Let Zjj =2 n Yj nSj for i, j = 1,2,... where

Sj = {x e [a,bl; 3 - 161800 < j)

Note that, in view of the controlled convergence, F is AC*(Xi) for
each i. Therefore for every i and j there is 7ij < £j"127i-J such

that for every finite or infinite sequence of nonoverlapping intervals

{Ik(lJ)} with endpoints ay and bk of Ik(lJ) belonging to Xj and

L |bk - agl < mij we have I o[F; Ik(lJ)] <s 2 7Y,
k k

Now for fixed i and j take Ik(lJ), k=1,2,..., with endpoints ay
and by belonging to Xj such that

u Ik(ld) >2Zj5 and [ |bk - ak| < mij.
k k

For ¢ € Zjj; where ¢ is a limit point of Xj on both sides and ¢ is not

an endpoint of any Ik(ij), we define 6&6(¢) such that (& — 6(¢), € + 6(&))

c Ik(ij) for some k. The set of remaining ¢ in Zjj not yet defined is

countable, say, ¢,, €2,... . Note that if €p € Zigt‘) then §p is either
1J

not a limit point of Xj or an endpoint of some Iy . Here we have used

the fact that a closed set is the union of a perfect set and a countable set
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At such §p, p = 1,2,..., since F 1is continuous there, there is 6p > 0
such that whenever €p —6p < u € {p € v<¢p+ 6p we have

IF(v) = Fu)| < ¢ 27779P  and [£(¢p)(v - w)| < & 273,
Finally, define &(¢p) = 6p for p =1,2,... and we have defined a strictly
positive function 6 on [a,b].

For any é-fine division D = {[u,v]; ¢} we have

I f(&§)(v - u) - F(a,b)| & |I, £(&)(v - u) - I, fp(jce))(6)(v — u)|
+ ]21 Tn(je))(€)(v —u) = Iy Fp(j(¢))(u,v)
+ |Z1 Fp(j(e))(u,v) = I F(u,v)|

+ |22 T(6)(v - w)| + |I2 F(u,v)]|

where I, denotes the partial sum of I for which ¢ € [a,b] - Z and
I, =1 -1,, that is, the sum for which ¢ € Z. The first term on the right
side of the above inequality is less than &, and so is the second term. It
follows from the oscillation convergence as in [3] that the third term is also
less than &. The fourth and fifth terms are less than ¢ ©because of F
being AC*(Xi) and continuous and by the definition of ¢ relative to f
on the sets Zjj. Hence f is also Henstock integrable on [a,b] with the

given function .

We shall now show that the above & is measurable. Since Z is of
measure zero, it suffices to show that & is measurable on [a,b] - Z. Let
Mj denote the set of all integers n(j(¢)) for which ¢ e Y —Z and
J(€¢) » i. For each p € Mji, let Ep denote the set of all ¢t eYy - Z
such that

Ifn(j)(€) - £(¢)] < &/(b — a)  whenever n(j) > p

and concurrently, if p = n(j(¢)) and j(¢) = 1,

Ifn(j(e)-1) — £(&)| » &/(b - a).
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Obviously, Ep is a measurable set. Note that & takes constant value 6p
on Ep. On the other hand, & takes constant value én(i) on (Y - 2) -
u {Ep; p € Mj} and therefore &6 as a function restricted to Y; -2Z is
measurable. Since Y, -2, Y, - Z,... are pairwise disjoint, 6 is
measurable on their union which is [a,b] - Z.
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