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 A COMPARISON OF TWO GENERALIZATIONS OF THE RIEMANN INTEGRAL

 When considering one of the many extensions of the Riemann

 integral on an interval [a,b] , it is often desirable for the

 extended integral to be broad enough to admit every derivative

 into its class of integrable functions. The Henstock integral is

 one such generalized Riemann integral. Another such integral was

 described in a recent article by Michael W. Botsko ( [2] ).

 It is the purpose of this paper to compare these two

 integrals and to show that the class of functions integrable by

 Botsko' s definition is a proper subset of the class of Henstock-

 integrable functions.

 Botsko called his integral the G-integral, described it as

 "an easy generalization of the Riemann integral," and suggested

 that it would be an appropriate integral to be presented to an

 undergraduate class in advanced calculus.

 We now outline the construction of the G-integral. For the

 definitions to follow, f is assumed to be a real-valued function

 on the closed interval [a,b] .

 DEFINITION 1. A real-valued function U on [a,b] is said to

 be an upper function of f on [a,b] if

 (1) U(a) = 0 and U is continuous on [a,b], and

 (2) U* (x) > f(x) for all but a finite number of points of

 [a,b] .
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 DEFINITION 2. A real-valued function L on [a,b] is said to

 be a lower function of f on [a,b] if

 (1) L(a) » 0 and Ł is continuous on [a,b], and

 (2) L' (X) < f(x) for all but a finite number of points of

 [a,b].

 If f has at least one upper function and one lower function

 on [a,b], then it is easily shown that the set

 S = { U(b) I U is an upper function of f }

 is bounded below, and the set

 T = { L(b) I L is a lower function of f }

 is bounded above. Then the upper G- integral of f is defined to

 be the infimum of S and is denoted G aJ^f , and the lower G-
 integral of f is defined to be the supremum of T and is denoted

 by G a|bf.

 DEFINITION 3. If G aJbf = G aJb, then this number is the G-
 integral of f on [a,b] and is denoted by G •

 Botsko ( [2] ) shows that if f is Riemann integrable on

 [a,b], then f is G-integrable on [a,b] and these integrals have

 the same value. He also states without proof a modification of

 some results by Katznelson and Stromberg ( [4] ) and shows that

 this modified theorem implies that the well-known Dirichlet

 function, which is of course not Lebesgue integrable, is G-

 integrable .

 The Henstock integral is well known to the readers of this

 journal. ( The definition can be found in, for example, [5]. )

 We will just mention that it is given by Riemann's definition
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 with the positive constant S replaced by a positive function v

 on [a,b], called a gauge.

 It is obvious that the G-integral is a simple modification

 of the Perron integral, in that replacing the word •• finite" in

 Definitions 1 and 2 by "countable" will yield the definition of

 the Perron integral. Since it is well-known that the Henstock

 integral is equivalent to the Perron integral, it is clear that

 any function which is G-integrable is also Henstock integrable.

 Our goal here is to show that the G-integral is not as

 general as the Henstock integral (and hence the Perron integral) .

 THEOREM: If f is unbounded above on every subinterval of

 [a,b], then f is not G-integrable on [a,b].

 Proof: Suppose such a function f is G-integrable on [a,b] .

 Let U be an upper function of f. For some subinterval [c,d] of

 [a,b], U' (x) > f(x) for every x in [c,d] and thus U' is unbounded

 above on every subinterval of [c,d]. But since U' is a Baire 1

 function it is continuous on a dense subset of [c,d]

 ( t3]/ P» 46 and [1], p. 117 ). This implies that there must be a

 subinterval of [c,d] on which U* is bounded and thus we have a

 contradiction. Hence f is not G-integrable on [a,b] .

 We now construct a function which is Henstock integrable but

 not G-integrable on [0,1].

 EXAMPLE: Let f be defined on [0,1] as follows.

 f(x) = 0 if x is irrational;

 f(x) = n if x = m/n, where m and n are relatively prime
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 natural numbers;

 f (O) - f(l) = 0.

 Clearly, £ is unbounded on every sublnterval of [0,1] and

 thus by the theorem is not G- integrable on [0,1]. But since f is

 constant on all but a countable subset of [0,1], f is Henstock

 integrable on [0,1]. ( See [5] for the proof. ) On any interval

 examples similar to the one above can easily be constructed. From

 these examples and from the above theorem it follows that over

 any interval [a,b] the class of G-integrable functions is a

 proper subset of the class of Henstock integrable functions.
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