RESEARCH ARTICLES

Jan Jastrzebski, Instytut Matematyki, Uniwersytet Gdański, ul. Wita Stwosza 57, 80-952 Gdański, Poland.

MAXIMAL ADDITIVE FAMILIES FOR SOME CLASSES OF DARBOUX FUNCTIONS

Preliminaries. Let $C^{+}(f, x)$ and $C^{-}(f, x)$ denote the set of all right-side and left-side limit numbers of the function f at the point x. For any subset M of the plane $\mathbb{R}^{2}, \operatorname{cl}(M)$ denotes the closure of M and card(M) denotes the cardinality of M. No distinction is made between a function and its graph.

In [2] Bruckner and Ceder described what it means for a real function to be Darboux at a point. We say that a function f is Darboux from the right-side [left-side] at a point x (we write $x \in D_{+}(f), \quad x \in D_{-}(f)$ respectively) if and only if

1. $f(x) \in C^{+}(f, x) \quad\left[f(x) \in C^{-}(f, x)\right] ; \quad$ and

2• whenever $a, b \in C^{+}(f, x) \quad\left[a, b \in C^{-}(f, x)\right]$ and y is any point between a and b, then for every $\varepsilon>0$ exists a point $\xi \in(x, x+\varepsilon) \quad[\xi \in(x-\varepsilon, x)]$ such that $f(\xi)=y$.

In [3] Cśaszár showed that a function is Darboux if and only if it is Darboux at each point.

By D^{c} we denote the class of Darboux functions whose upper and lower boundary functions are continuous. By D^{*} we denote the class of functions which take on every real value in every interval and by $D^{* *}$ we denote the class of functions which take on every real value c-times in every interval, where c denotes the cardinality of the continuum.

It is clear that $D^{* *} \subset D^{*} \subset D^{c}$.

For a given family F of real functions let $M(F)$ denote the class of all functions g such that $f \in F$ implies $f+g \in F$. This class is called the maximal additive family for F. It is known [1] that the family of continuous functions C is the maximal additive family for the class of Darboux Baire 1 functions $D B_{1}$ and the family of constant functions K is the maximal additive family for the class of Darboux functions D.

Definition 1. We say that $g \in \mathbb{a}$ if g is a continous function and there exists a sequence of open intervals $\left\{I_{k}\right\}$ such that

1. $\underset{k=1}{\infty} I_{k}$ is dense in $\mathbb{R} ; \quad$ and
$\left.2^{-} \quad g\right|_{I_{k}}$ is constant for every k.

Theorem 1. $M\left(D^{C}\right)=\alpha$.

Proof. Let $f \in D^{C}, g \in \mathbb{a}$ and $x_{0} \in \mathbb{R}$. Without loss of generality we may assume that $g\left(x_{0}\right)=0$. We shall prove that $x_{0} \in D_{+}(f+g)$. If $C^{+}\left(f, x_{0}\right)$ is a one-point set, then x_{0} is a point of right-side continuity of f. Hence $x_{0} \in D_{+}(f+g)$. Now we consider the case in which $C^{+}\left(f, x_{0}\right)$ is nondegenerate. Let $a, b \in C^{+}\left(f, x_{0}\right)=C^{+}\left(f+g, x_{0}\right), \varepsilon>0$ and $z \in(a, b)$. There exist $a_{1}, b_{1}, \varepsilon_{1}$ such that
$1^{\bullet} \quad a<a_{1}<z<b_{1}<b ;$
2• $0<\varepsilon_{1} \leqslant \varepsilon ; \quad$ and
3• $\left\{(x, y): x_{0}<x<x_{0}+\varepsilon_{1}, \quad a_{1}<y<b_{1}\right\} \subset c l(f)$.

Hence $\left(a_{1}, b_{1}\right) \subset C^{+}(f, x)$ for every $x \in\left(x_{0}, x_{0}+\varepsilon_{1}\right)$. There exists an open interval I_{k} and a point z_{o} such that

1. $g(x)=z_{0}$ for every $x \in I_{k}$;

2• $\quad\left(x_{0}, x_{0}+\varepsilon_{1}\right) \cap I_{k} \neq \varnothing ; \quad$ and
3. $\quad\left|z_{0}\right|<\frac{1}{2} \min \left\{\left|z-a_{1}\right|,\left|z-b_{1}\right|\right\}$.

Let $\quad(r, s)=\left(x_{0}, x_{0}+\varepsilon_{1}\right) \cap I_{k}$. Since $z-z_{0} \in\left(a_{1}, b_{1}\right) \subset C^{+}(f, r)$, $\left((r, s) \times\left\{z-z_{0}\right\}\right) \cap f \neq \varnothing$ and $((r, s) \times\{z\}) \cap(f+g) \neq \varnothing$. In a similar way we can prove that $x_{0} \in D_{-}(f+g)$.

It is clear that the upper and lower boundary functions of $f+g$ are continuous. We have shown that $\alpha \subset M\left(D^{C}\right)$.

We will show that $M(D C) c \alpha$. Let $g \notin \alpha$. It is easy to show that if g is not continuous, then there exists $f \in D^{C}$ such that $f+g \notin D^{C}$. Indeed, if $g \notin D^{C}$, then we put $f(x)=0$; if $g \in D^{C}$, then there exists a point x_{0} such that the set $C\left(g, x_{0}\right)$ is nondegenerate. Now we put $f(x)=-g(x)$ for $x \neq x_{0}$ and $f\left(x_{0}\right)=-y$, where $y \in C\left(g, x_{0}\right) \backslash\left\{g\left(x_{0}\right)\right\}$. We need only consider the case: g is continuous and there exists an interval I such that g is nonconstant on every subinterval of the interval I. Let $M=\sup \{g(x): x \in I\}$ and $m=\inf \{g(x): x \in I\}$. The set $g^{-1}(y) \cap I$ is nowhere dense for every $y \in[m, M]$. Let $\left\{A_{y}\right\}_{y \in[m, M]}$ denote a family of sets which are pairwise disjoint, dense in \mathbb{R} and such that $I \cap A_{y} \cap g^{-1}(y)=\varnothing$. We define the function f as follows:

$$
f(x)= \begin{cases}y & \text { if } x \in A_{y} \\ m & \text { otherwise }\end{cases}
$$

It is easy to see that $f \in D^{C}$ but $f+g$ is not a Darboux function.

Definition 2. We say that a function $g \in B$ iff there exists a sequence of open intervals $\left\{I_{k}\right\}$ such that

1. ${\underset{k=1}{\infty} I_{k} \quad \text { is dense in } \mathbb{R}, ~}_{\text {in }}$
$\left.2^{-} \quad g\right|_{I_{k}} \quad$ is constant for every k.

Theorem 2. $M\left(D^{*}\right)=B$.

Proof. Let I be an open interval and let $f \in D^{*}, g \in B$ and $z \in \mathbb{R}$. There exists an interval $I_{0} \subset I$ such that $\left.g\right|_{I_{0}}$ is constant. Let $g(x)=$ z_{0} for every $x \in I_{0}$. There exists $x_{0} \in I_{0}$ such that $f\left(x_{0}\right)=z-z_{0}$. Hence $(f+g)\left(x_{0}\right)=z$. We have shown that $f+g \in D^{*}$.

If g is nonconstant on some interval I, then by Theorem 1 [2], there exists a function $d \in D^{*}$ such that $g+d \notin D^{*}$. This completes the proof.

Definition 3. We say that $g \in C$ if there exists a sequence of open intervals $\left\{I_{k}\right\}$ and a sequence of sets $\left\{A_{k}\right\}$ such that

1. $\quad{ }^{\infty} I_{k}$ is dense in \mathbb{R}; $\mathrm{k}=1$
2. $\quad A_{k} \subset I_{k}$ and $\operatorname{card}\left(A_{k}\right)<c$; and
3. $\left.\quad{ }^{g}\right|_{I_{k}-A_{k}}$ is constant for every k.

Theorem 3. $\mathrm{M}\left(\mathrm{D}^{* *}\right)=C$.

Proof. Let I be an open interval and let $f \in D^{* *}, g \in C$ and $z \in \mathbb{R}$. There exists an interval $I_{0} \subset I$ and a set $A \subset I_{0}$ such that

1. $\left.\quad g\right|_{I_{0} \backslash A}$ is constant; and

2• $\operatorname{card}(\mathrm{A})<c$.
Let $g(x)=z_{0}$ for every $x \in I_{0} \backslash A$. There exists a set $B \subset I_{0}$ such that

1. $f(x)=z-z_{0}$ for every $x \in B ;$ and

2• $\operatorname{card}(B)=c$.
Hence $(f+g)(x)=z$ for every $x \in B \backslash A$. We have shown that $f+g \in D^{* *}$.
If $g \notin C$, then there exists an open interval I_{0} such that for every subinterval $I \subset I_{0}$ and every real λ we have $\operatorname{card}(\{x \in I: g(x) \neq-\lambda\})=c$. By Theorem 3, [2], there exists a function $f \in D^{* *}$ such that $(f+g)(x) \neq 0$ for every $\mathbf{x} \in \mathrm{I}_{\mathrm{o}}$ This completes the proof.

References

[1] A.M. Bruckner, Differentiation of real functions, Lect. Notes in Math. 659, Springer-Verlag, 1978.
[2] A.M. Bruckner, J.G. Ceder, On the sum of Darboux functions, Proc. Amer. Math. Soc. 51 (1975), 97-102.
[3] A. Cśaszár, Sur la propriete de Darboux, C.R. Priemier Congres des Mathematiciens Hongrois, Akademici Kiado Budapest (1952), 551-560.

Received October 7, 1986

