RESEARCH ARTICLES Real Analysis Exchange Vol. 13 (1987-88)

Jan Jastrzebski, Instytut Matematyki, Uniwersytet Gdański, ul. Wita Stwosza 57, 80-952 Gdański, Poland.

MAXIMAL ADDITIVE FAMILIES FOR SOME CLASSES OF DARBOUX FUNCTIONS

Preliminaries. Let $C^+(f,x)$ and $C^-(f,x)$ denote the set of all right-side and left-side limit numbers of the function f at the point x. For any subset M of the plane \mathbb{R}^2 , cl(M) denotes the closure of M and card(M)denotes the cardinality of M. No distinction is made between a function and its graph.

In [2] Bruckner and Ceder described what it means for a real function to be Darboux at a point. We say that a function f is Darboux from the right-side [left-side] at a point x (we write $x \in D_+(f)$, $x \in D_-(f)$ respectively) if and only if

- 1° $f(x) \in C^+(f,x)$ [$f(x) \in C^-(f,x)$]; and
- 2° whenever $a, b \in C^+(f, x)$ $[a, b \in C^-(f, x)]$ and y is any point between a and b, then for every $\varepsilon > 0$ exists a point $\xi \in (x, x + \varepsilon)$ $[\xi \in (x - \varepsilon, x)]$ such that $f(\xi) = y$.

In [3] Cśaszár showed that a function is Darboux if and only if it is Darboux at each point.

By D^{C} we denote the class of Darboux functions whose upper and lower boundary functions are continuous. By D^{*} we denote the class of functions which take on every real value in every interval and by D^{**} we denote the class of functions which take on every real value c-times in every interval, where c denotes the cardinality of the continuum.

It is clear that $D^{**} \subset D^* \subset D^c$.

For a given family F of real functions let M(F) denote the class of all functions g such that $f \in F$ implies $f + g \in F$. This class is called the maximal additive family for F. It is known [1] that the family of continuous functions C is the maximal additive family for the class of Darboux Baire 1 functions DB_1 and the family of constant functions K is the maximal additive family for the class of Darboux functions D. **Definition 1.** We say that $g \in G$ if g is a continuous function and there exists a sequence of open intervals $\{I_k\}$ such that

a and
b and

```
Theorem 1. M(D^{C}) = 0.
```

Proof. Let $f \in D^{C}$, $g \in G$ and $x_{0} \in \mathbb{R}$. Without loss of generality we may assume that $g(x_{0}) = 0$. We shall prove that $x_{0} \in D_{+}(f+g)$. If $C^{+}(f,x_{0})$ is a one-point set, then x_{0} is a point of right-side continuity of f. Hence $x_{0} \in D_{+}(f+g)$. Now we consider the case in which $C^{+}(f,x_{0})$ is nondegenerate. Let $a, b \in C^{+}(f,x_{0}) = C^{+}(f+g,x_{0})$, $\varepsilon > 0$ and $z \in (a,b)$. There exist a_{1} , b_{1} , ε_{1} such that

 $\begin{aligned} 1^{\bullet} & a < a_{1} < z < b_{1} < b; \\ 2^{\bullet} & 0 < \varepsilon_{1} \neq \varepsilon; \quad \text{and} \\ 3^{\bullet} & \{(x,y) : x_{0} < x < x_{0} + \varepsilon_{1}, a_{1} < y < b_{1}\} \in cl(f). \end{aligned}$

Hence $(a_1,b_1) \in C^+(f,x)$ for every $x \in (x_0,x_0 + \varepsilon_1)$. There exists an open interval I_k and a point z_0 such that

1• $g(x) = z_0$ for every $x \in I_k$; 2• $(x_0, x_0 + \varepsilon_1) \cap I_k \neq \emptyset$; and 3• $|z_0| < \frac{1}{2} \min\{|z-a_1|, |z-b_1|\}.$

Let $(r,s) = (x_0, x_0 + \varepsilon_1) \cap I_k$. Since $z - z_0 \in (a_1, b_1) \subset C^+(f, r)$, $((r,s) \times \{z-z_0\}) \cap f \neq \emptyset$ and $((r,s) \times \{z\}) \cap (f+g) \neq \emptyset$. In a similar way we can prove that $x_0 \in D_-(f+g)$.

It is clear that the upper and lower boundary functions of f+g are continuous. We have shown that $C \subset M(D^C)$.

We will show that $M(DC) \subseteq G$. Let $g \notin G$. It is easy to show that if g is not continuous, then there exists $f \in D^{C}$ such that $f+g \notin D^{C}$. Indeed, if $g \notin D^{C}$, then we put f(x) = 0; if $g \in D^{C}$, then there exists a point x_{0} such that the set $C(g,x_{0})$ is nondegenerate. Now we put f(x) = -g(x) for $x \neq x_{0}$ and $f(x_{0}) = -y$, where $y \in C(g,x_{0}) \setminus \{g(x_{0})\}$. We need only consider the case: g is continuous and there exists an interval I such that g is nonconstant on every subinterval of the interval I. Let $M = \sup\{g(x):x \in I\}$ and $m = \inf\{g(x):x \in I\}$. The set $g^{-1}(y) \cap I$ is nowhere dense for every $y \in [m,M]$. Let $\{A_{y}\}_{y \in [m,M]}$ denote a family of sets which are pairwise disjoint, dense in \mathbb{R} and such that $I \cap A_{y} \cap g^{-1}(y) = \emptyset$. We define the function f as follows:

$$f(x) = \begin{cases} y & \text{if } x \in A_y \\ \\ \\ m & \text{otherwise.} \end{cases}$$

It is easy to see that $f \in D^{C}$ but f+g is not a Darboux function.

Definition 2. We say that a function $g \in B$ iff there exists a sequence of open intervals $\{I_k\}$ such that

- l• U I_k is dense in ℝ k=1
- 2. $g|_{I_k}$ is constant for every k.

Theorem 2. $M(D^*) = B$.

Proof. Let I be an open interval and let $f \in D^*$, $g \in B$ and $z \in \mathbb{R}$. There exists an interval $I_0 \subset I$ such that $g|_{I_0}$ is constant. Let $g(x) = z_0$ for every $x \in I_0$. There exists $x_0 \in I_0$ such that $f(x_0) = z - z_0$. Hence $(f+g)(x_0) = z$. We have shown that $f+g \in D^*$.

If g is nonconstant on some interval I, then by Theorem 1 [2], there exists a function $d \in D^*$ such that $g+d \notin D^*$. This completes the proof.

Definition 3. We say that $g \in C$ if there exists a sequence of open intervals $\{I_k\}$ and a sequence of sets $\{A_k\}$ such that

Theorem 3. $M(D^{**}) = C$.

Proof. Let I be an open interval and let $f \in D^{**}$, $g \in C$ and $z \in \mathbb{R}$. There exists an interval $I_0 \subseteq I$ and a set $A \subseteq I_0$ such that

1• $g|_{I_0\setminus A}$ is constant; and 2• card(A) < c.

Let $g(x) = z_0$ for every $x \in I_0 \setminus A$. There exists a set $B \subset I_0$ such that

1° $f(x) = z - z_0$ for every $x \in B$; and

 2^{\bullet} card(B) = c.

Hence (f+g)(x) = z for every $x \in B \setminus A$. We have shown that $f+g \in D^{**}$.

If $g \notin C$, then there exists an open interval I_0 such that for every subinterval $I \in I_0$ and every real λ we have $card(\{x \in I:g(x) \neq -\lambda\}) = c$. By Theorem 3, [2], there exists a function $f \in D^{**}$ such that $(f+g)(x) \neq 0$ for every $x \in I_0$ This completes the proof.

References

- [1] A.M. Bruckner, Differentiation of real functions, Lect. Notes in Math. 659, Springer-Verlag, 1978.
- [2] A.M. Bruckner, J.G. Ceder, On the sum of Darboux functions, Proc. Amer. Math. Soc. 51 (1975), 97-102.
- [3] A. Cśaszár, Sur la propriete de Darboux, C.R. Priemier Congres des Mathematiciens Hongrois, Akademici Kiado Budapest (1952), 551-560.

Received October 7, 1986