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 A VECTOR SPACE OF MORSE FUNCTIONS

 1. Let F be a continuous even function (that is, F(x) = F(-x)) on the

 closed interval -1 * x * 1. We say that an extended real number r is a

 right (left) derived number of F at a point x e (-1,1) if there exists a

 sequence (xn) converging to x such that

 lim (F(xn) - F(x))(xn-x) 1 = r

 and xn > x (xn < x) for each n. In [2] Anthony Morse constructed such a

 function F with the property that F has both a finite and an infinite right

 derived number and both a finite and an infinite left derived number at each

 x e (-1,1). We say that a function F satisfying this condition is a Morse

 function. Thus a Morse function can have no finite or infinite unilateral

 derivative at any x € (-1,1). In this paper we construct another Morse

 function by using Cantor-like sets [1] of positive measure. Our work will

 require much less numerical computation than the example in [2], and will be

 shorter.

 The continuous functions on [-1,1] form a real vector space under the

 usual operations of pointwise addition and scalar multiplication, and form a

 Banach space under the sup norm. We will prove that there exists a real

 vector subspace of dimension c = 2K° of this space, all of whose nonzero
 vectors are Morse functions. We will also deduce that there exists such a

 vector space that is dense in the space of all continuous functions on [0,1]

 under the sup norm.

 There are c vectors in any basis of our vector space. One cannot

 obtain any one of these functions cheaply from the others.

 2. In this section, we provide the notation and definitions needed for the

 construction of our functions. Let [a,b] be an interval of length ^ 2. By

 the 1-set on [a,b] we mean the Cantor-like set constructed as follows. Let

 the open interval 1(1,1) be the middle 4-th part of [a,b], and delete 1(1,1)
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 from [a,b]. This is the first step. Delete the middle 8-th parts 1(1 ,2),

 1(2,2) (from left to right) of the remaining two intervals. Delete the middle

 16-th parts 1(1,3), 1(2,3), 1(3,3), 1(4,3) (from left to right) of the remaining 'l

 intervals.

 At the n-th step, there are 2n~ intervals remaining, all of the stime

 length, Ln. We delete from them their middle 2n+l-t.h parts, I(.l,n),
 1(2, n) , . . . , I(2n-l,n) (from left to right). And so forth. Finally, the set.

 <o 2n~l
 E = [a,b]' U U I(j,n) is the 1-set on [a,b]. Then E is a nowhere

 n=l j=l
 dense perfect set, and any open interval K that meets E, necessarily meets

 E in a set of positive measure; this follows from the fact that the measure
 00

 of E is IT (l-2~n~l) (b-a) > 0, and the part of E in any one interval
 n=l

 remaining at the n-th step is congruent to the part in any other such

 interval.

 For convenience of language, if 1 is a concentric sub interval of an

 interval J, we say that I bisects J. In the preceding construction,

 I(j,n) bisects an interval whose length is Ln, and the length of T(j,n)

 is 2~n~lLn.

 Now let i be a positive integer. Partition [a,b] into i closed

 nonoverlapping subintervals Ji,...>Ji, of equal length. Let Ej be the
 i

 1-set on Jj (j=l,...,i). We call S = U Ej the i-set on [a,bj. Then
 j = l

 S is also a nowhere dense perfect set.

 We define a function g on [a,b] as follows. Let E be the 1-set on

 [a,b]. On the closure of each interval 1(1, n) n [a,%(a+b)] let g - Ln if
 %

 n is even and g = if n is odd. If v is the left endpoint. of

 I(l,n) and u is the right endpoint of I(l,n+1), let

 g(x) = g(u) + (g(v)-g(u))X((u,x) n E)x((u,v) n E)-1

 for u < X < v where X denotes Lebesgue measure. Let g(a) = 0. Thus g

 is defined on [a,%(a+b)]. Make g symmetric about %(a+b). Then g is

 defined and continuous on [a,b] and vanishes only at a and b. For any

 X e (a,b), g is a Lipschitz function bounded away from 0 on some neighbor-
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 hood of X because: X((u,v) n E) * (v-u) II (I~2-n-l) in our definition of
 n- 1

 g. Moreover, g is constant on each interval I(j,n) - in such a situation

 we write g(I(j.n)) for the constant value - and g obtains its maximum

 value on 1(1,1).

 More generally, let i be any positive integer. Partition [a,b] into

 ¡ rionoverlapping subintervals Jļ,...,Jļ of equal length. Let Gj be the
 function defined on Jj ( j = 1, . . . ,i) the same way g was defined on [a,b].
 Let. gļ coincide with Gj on Jj. Then gj is defined and continuous on
 [a,b] .

 Definition 1. Let gj be the function defined in the preceding paragraph.

 By an i-f unction on ia,b] we mean the function tgļ for some constant
 t ^ 1.

 We turn now to our generator functions Fļ,F2,... on [-1,1]. Let Eļ be

 the 4-set on [-1,1] and let Fj be a 4-function on [-1,1]. Let F2 vanish

 on Ej. To complete the definition of F2» let I be a complementary

 interval of Ej. Then there is an interval J 3 I for which J n Ej is the

 l-set on J. Say I = I(j,n) in our notation. Let M = minimum of Fj(I(j,n))

 and Fļ(I(l,n)). Let i be the smallest integer for which the maximum of

 some i-f unction on I equals %M. (In other words, i is the smallest

 integer for which (X(I)/i)^ ¿ %M.) Let F2 coincide with that i-function on
 I, and let A(j,n) be the i-set on I. Then F2 is continuous on J. (Note

 that F](I(l,n)) -* 0 and hence max F2(I(j»n)) -»0 as n -» ®.) It follows

 that F] and F2 are defined and continuous on [-1,1], and F2 * KFj.

 Form E2 by adjoining to E] all the sets A(j,n) constructed in this way

 on the complementary intervals of Eļ. Then E2 is also a nowhere dense

 perfect set.

 We construct E3 and F3 from E2 and F2 the same way E2 and

 F2 were constructed from Eļ and Fj. In general, we construct En+ļ and

 Fn+i from En and Fn the same way E2 and F2 were constructed from

 Eļ and Fļ. For each n, En is a nowhere dense perfect set, Fn is

 continuous on [-1,1], Fn+j ¿ *Fn» an<^ equality holds on certain

 subintervals of [-1,1]. Moreover, Fn vanishes on Ej if n > j.
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 Let [a,b] be an interval such that Fn coincides with a 1-f unction on

 [a,b], and let Fn(I(j,m)) * Fn(I(l,m)) for some j and m. Then there is a

 subinterval K of I(j,m) with endpoints in En+ļ on which Fn+ļ is

 constant and Fn+ļ = y»Fn(I(l,m)). Let k be any positive integer. Repeated

 application of this principle (with m = 1) shows there is a subinterval of

 I(j,m) with endpoints in En+k on which Fn+k is constant and Fn+ķ =

 (*)^Fn(I(l,m)). If X is one of the endpoints, then x € En+ķ and Fn+k(x) =
 (y«)^Fn(I(l»m)). In particular, if m = 1, then Fn+jç(x) = (%)^Fn(I(l,l)).

 Observe that if (cn) is a bounded sequence of real numbers, then

 En cnFn sums to a continuous function on [-1,1]. In Section 3 we will

 prove:

 Theorem 1. Let (cn) be a bounded sequence of real numbers such that

 lim sup cn > 0 and lim sup cn + lim inf cn = 0. Then F = En cnFn is a

 Morse function on [-1,1].

 In particular, E(-l)nFn is a Morse function. (Compare with the function

 F in [2].) But there are other possibilities. For example, if cn = -1 when

 n is a prime integer, and cn = 1 otherwise, then (cn) satisfies the

 hypothesis of Theorem 1. In Section 4 we will construct a vector space all of

 whose nonzero vectors are some of the functions F described in Theorem 1.

 For convenience we let Af(x,u) denote (f(x)-f(u))(x-u)~l for any
 function f. Let E0 be the void set.

 3. We begin with a nuts and bolts lemma that is essentially all we need to

 prove Theorem 1.

 Lemma 1. Let [a,b] be an interval of length * 2, let E be a 1-set on

 [a,b], and let F be a 1-function on [a,b]. Let x be any point with

 a * x < b.

 (i) There exist z e E, w € E (z > x, w > x) such that for every real

 number y,

 I (F(w)-y) (w-x) 1| + I (F(z)-y) (z-x) 1| * X(z-x) * - 6.
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 (ii) If X e E is a right accumulation point of E, then there are points

 aļ, bļ and indices jļ, nj (i = 1,2,...) such that (ai,bļ) = I(jj,ni), F(I(ji,rii)) *

 F(I(l,nj)) * ^(bi-x)^, lim aj = lim bj = x, and aļ > x for all i.

 (iii) If x e E is a right accumulation point of E, there are points

 w¡ e E (i = 1,2,...) such that lim wļ = x, wj > x for all i, and the

 sequence (AF(x,wj))i is bounded.

 Proof. In the notation of Section 2, F = tg for some constant t * 1.

 Without loss of generality, we let t = 1.

 (i) Let n be the smallest index for which some interval I(*,n) has an

 endpoint to the right of x.. Indeed there is at most one such interval I(j,n)

 for this index n; if there were two, a proscribed interval would lie between

 them. Say (w',w) = I(j,n) and (w',w) bisects the interval [s,b]. Let

 I(k,n+1) be the (unique) interval bisecting the interval [w,b]. Say (z',z) =

 I(k,n+1). Observe that s < w' < w < z' <z<b and s * x < w. Moreover

 b-w = w'-s > w-w ' because (w',w) bisects [s,b], and b-w < 2(z-w)

 because (z' ,z) bisects [w,b]. Thus z-x < b-s = (b-w) + (w-w') + (w'-s) <

 4(b-w) and

 (1) (z-x)% < 2(b-w)*.

 Likewise b-s = (b-w) + (w-w') + (w'-s) < 3(b-w) < 6(z-w) and

 (2) b-s < 6(z-x).

 % 54

 If n is even, then F(w) = !<!! = b-s and F(z) = ^n+ļ = (b-w) > if n is
 % %

 odd, then F(w) = Lr = (b-s) and F(z) = Ln+^ = b-w. Because b-s > b-w
 we have in either case

 (3) |F(w) - F(z) I * (b-w)54 - (b-s).

 From (1), (2) and (3) we obtain

 (4) |F(w) - F(z) I * %(z-x)% - 6(z-x) .
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 Finally, z-x > w-x, so

 I (F(w)-y)(w-x) 1| + I (F(z)-y)(z-x) 1| » (|F(w)-y| + | F(z)-y | ) (z-x)"1 , and
 (5)

 I (F(w)-y)(w-x) 1| + I (F(z)-y)(z-x) 1| * |F(w) - F(z)|(z-x) 1 .

 The conclusion for (i) follows from (4) and (5).

 (ii) We assume without loss of generality that a < x < b; for if x = a,

 then (aļ,bi) = I(l,2i+1) suffices. So F(x) > 0 = F(a). Let s > 0 be such

 that inf F(x,x+c) > sup F(a,a+2c). Let m' be the smallest index for which

 some interval I(*,m') meets (x,x + e). Indeed there is at most one such

 interval I(j,m') for this index m'; if there were two, a proscribed interval

 would lie between them. Say (U3,U3) = I(j,m'). Let m be the smallest index

 > m' for which some interval I(*,m) meets (x,uś). Again there is only one
 such I(k,m) for this index m. Say (uļ,uļ) = I(k,m) and (uļ,uļ) bisects

 the interval [q»u3]. Let (u¿ju2) = Iť^m+l) be the (unique) interval
 bisecting [uj,U3]. Observe that q < x < uj < uj < u¿ < U2 < U3, and
 u3~ul = ui~q * max (uļ-x,ui-ui) because (ui,uj) bisects [q,u3]. Hence
 Lm = "3-q * ui-x and u¿ - x = (U3-U1) + (uļ-uļ) + (uļ-x) * 3(uś-ui) =
 3Lm+j. It follows that U2 - x < U3-X * 3Lm+i and

 (6) L^+1 i %(u2-x)* ,

 (7) L* * (ui-x)*.
 m

 The distance between (u1,uj) and (uś,u3) is < e, so the distance from a
 to 1(1, m) is < e. Moreover uj - uļ < c, so 1(1, m) c (a, a + 2c). Hence
 1(1, m+1) c (a, a + 2c) also. It follows that F(uļ,uļ) * F(I(l,m)), and
 F(u2»U2) * F(I(l,m+l)). If m is odd, then by (7), we have F(I(l,m) ^

 Mui-x)*; if m is even, then by (6), we have F(I(l,m+l)) * X(u2-x)^.
 Because e is arbitrarily small, the conclusion of (ii) is clear.
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 (iii) The conclusion is obvious when a < x < b; for in the case,

 F(x) > 0 and F is a Lipschitz function on some neighborhood of x. But if

 x = a, we need only make wj the right endpoint of I(l,2i). □

 We now turn immediately to Theorem 1.

 Proof of Theorem 1. Each Fn is an even function by construction, and

 hence F must be even. It remains only to prove that F has finite and

 infinite right (left) derived numbers at each x € (-1,1). We will show this

 only for right derived numbers; the result for left derived numbers follows

 from the fact that F is an even function. Select any x € (-1,1). We divide

 our proof into three cases.

 00

 Case 1. x e (-1,1) ' U En.
 n=l

 For each n * 1, x lies in a complementary interval Jn of En_i

 where Fn coincides with some i-function on Jn. It follows from Lemma l(i)

 that for each n > 1 there are points xn and xń « Bn n Jn such that
 xn > x, xń > x and

 (1) I (yn-*n(xn) ) (x-xn)_1 I + | (yn-Fn(xri) ) (x-xn) ~1| * *(xn-x) * - 6

 for every real number yn. Moreover Fi, . . . , Fn-i eure each constant on an

 interval containing x, xn, x¿, and Fj(x) = Fj(xn) = Fj(xn) for 1 < j <
 n-1. Also Fj(xn) = Fj(x¿) = 0 for j > n. For those n satisfying cn * 0,

 00

 put yn = I cjFj(x)/cn. It follows that for these n
 j=n

 |AF(x,xn)| = I cn(yn- Fn(xn) ) (x- xn) |,

 |AF(x,xń)| = |cn(yn-^n(xń)) (x-xń) V

 From (1) we obtain
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 (2) I cn I 1(|AF(x,xn)| + |aF(x,xÓ)|) * î4(xn-x) % - 6.

 But the length of the interval Jn containing x, xn and xń tends to 0
 as n -» <». It follows from this and the fact that lim sup cn > 0, that F

 has an infinite right derived number at x.

 Now let wn be the right endpoint of the interval Jn. Then Fj(x) =
 Fj(wn) f°r 1 á j ť n-1, Fj(wn) = 0 for j * n and Fn(x) > 0. Moreover,
 Fj & (*)j-nFn for j > n by construction. It follows that

 CO

 (3) AF(x,wn) = -cnFn(x)(xn-x) 1 - I -cjFj(x)(wn-x) 1.
 j=n+l

 For cn > % lim supj | c j | it follows from (3) that
 <X>

 (4) AF(x,wn) < -% cnFn(x) (wn- x) 1 + I lej I Fj(x) (wn-x) 1 < 0.
 j=n+l

 Thus F has nonpositive right derived number at x. Similarly, F has a

 nonnegative right derived number at x (use an analogous argument with

 cn < -% lim supj I c j I ) . Because F is continuous, it follows that 0 is a
 right derived number of F at x. This completes case 1.

 Case 2. x e En 'En_i for some n * 1 and x is a right accumulation

 point of En.

 Let k be the positive integer such that n < j < n+k implies cj = 0
 and cn+k * 0. Let (a',b') be the complementary interval of En_j

 containing x. Then En n [a',b*] is an i-set and Fn coincides with an

 i-function on [a', b']. There is a subinterval [a,b] of [a',b'] such that

 En n [a,b] is a 1-set, x e [a,b) and Fn coincides with a 1-function on
 [a,b]. We use the notation of section 2 for this 1-set.

 By Lemma 1 (ii) there are numbers a¡, bj and indices jj, nj (i = 1,2,...)

 such that (ai.bi) = I(jj,nj), Fn(IÜi»ni)) * Fn(I(l,ni)) * 54(bj-x )*, lim aļ =
 lim bj = x and a^ > x for each i. In section 2 we saw that there is a zj

 c En+k n (aj,bi) such that Fn+^izj) = (%)^Fn(I(l,nj)) and hence

 (5) f"n+k(zi) ^ (bļ-x)
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 We observe that Fj(x) = Fj(ai) = Fj(bj) = Fj(zj) for 1 * j * n-1, Fn(aj) =
 Fn(bi) = Fn(zj), Fj(x) = Fj(aļ) = Fj(bi) =0 for j > n, and Fj(zi) = 0 for
 j > n+k. It follows that

 (6) aF(x,z¿) = cnAFn(x,Zi) + Cjļ+ķFjļ+ķizi.) (zi~ x) ,

 (7) AF(x,aļ) = cnAFn(x,ai) .

 From (5) we obtain

 (8) Fn+kizi) (zj-x) 1 » %(%)k(bļ-x) % .

 Also I aFjj(x, z j ) I = KFn(zi)-Fn(x))(zļ-x) *| * | (Fn(aļ)-Fn(x) ) (aj-x) *| =
 I AFn(x,aj) I and by (7),

 (9) |cnAFn(x,zi) I * |AF(x,ai)|.

 Finally, if the sequence (cnAFn(x,zj))i is bounded, then it follows from (6)

 and (8) that F has an infinite right derived number at x; if (cnAFn(x,zj))i
 is unbounded, it follows from (9) that F has an infinite right derived

 number at x. In either case, F has an infinite right derived number at x.

 By Lemma l(iii), there is a sequence (w¡) c En such that w¡ V x and
 AFn(x,wļ) is bounded as i •* «®. Clearly

 (10) AF(x,wi) = AFn(x,wi)cn ,

 so F has finite right derived number at x. This concludes case 2.

 Case 3. x is the left endpoint of a complementary interval J of En
 for an n > 0.

 By construction Fn+j coincides with an i-function on J. The proof is

 complete as in case 2 using Fn+ļ in place of Fn and En+i in place of

 En. So we leave it. a

 It can be shown that F has finite and infinite right derived numbers at

 x = -1 and F has finite and infinite left derived numbers at x = 1. The

 proof is similar to case 2, but we will not do it here.

 302



 4. Let V denote the vector space of bounded sequences of rational numbers

 over the rational field Q and let W denote the vector space of bounded

 sequences of real numbers over the real field R. Let vļ,...,vn be vectors

 in V that are linearly dependent in W. Let M denote the matrix with

 infinitely many columns whose rows are the vectors (sequences) vļ,...,vn.

 The determinant of any n by n matrix whose columns are n columns of

 M is zero. It follows that vj,...,vn are also linearly dependent in V. Thus

 any basis of V can be extended to a basis of W. But the power of V is

 c and Q is countable. Thus the dimensions of V and W are both c.

 Theorem 2. There is a real vector space of dimension c of continuous

 functions on [-1,1], under the usual operations of addition and scalar

 multiplication, such that every nonzero vector in the space is a Morse

 function.

 Proof. Let s(l), s(2), s(3), ... be the sequence of numbers

 1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,... . Let W be the vector space of bounded

 sequences of real numbers over the real field R. Then W has dimension c.

 We construct an isomorphism of W into the vector space of continuous

 functions on [-1,1] as follows. For any sequence d = dļ,d2,d3,... in W,
 00

 let q(d) be the function I (-1) Jds( j)Fj. That q is a vector space
 j=l

 homomorphism is clear. Moreover, if d is not the zero sequence, the

 coefficients (-l)Jds(j) satisfy the hypothesis of Theorem 1, and q(d) is a
 Morse function. Note that if dļ * 0, then (- 1 ) jds ( j ) = dj for infinitely
 many j, and (-l)Jds(j) = -dļ for infinitely many j. So q is an
 isomorphism and q(W) is the desired vector space.

 Let S denote the vector space q(W) constructed in the proof of

 Theorem 2. Since W is a Banach space under the sup norm, q induces a

 norm on S that makes S a Banach space. The topology of this norm on

 5, however, is finer than the topology of the sup norm on S.

 Theorem 3. There exists a real vector space Sol of functions satisfying
 the condition of Theorem 2 such that the restrictions of the functions in Sol

 to [0,1] form a dense subset of the family of all continuous functions on

 [0,1] under the sup norm.
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 Proof. Let Pi,P2v>Pn>'" be a countable set of polynomials in with

 rational coefficients that is dense in the family of all continuous functions on

 [0,1]. Let T be a basis of any space S satisfying the conditions of

 Theorem 2. Let {fļ,f2...,fn»«»»} be a countably infinite subset of T. Put gn

 = pn + (n sup|fn| )~lfn. Let G denote the family of all the functions gn
 together with all the functions in T ' [fļff2,... Let S0 be the vector
 space generated by the functions in G. Then the restrictions of the

 functions in S0 to [0,1] are dense in the family of continuous functions on

 [0,1] under the sup norm because the pn are dense. Note that if Ej ajhi

 is a linear combination of functions in G, not all aj = 0, then Eļ ajhļ =

 f + p where f is a Morse function and p is a polynomial in x^. Then
 f + p is a Morse function on [-1,1].
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