INROADS

Real Analysis Exchange Vol. 13 (1987-88)

James Foran, Department of Mathematics, University of Missouri-Kansas City, Kansas City, MO 64110-2499

Sandra Meinershagen, Department of Mathematics, Northwest Missouri State University, Maryville, MO 64468

Some Answers to a Question of P. Bullen

A question posed by Peter Bullen [1] is whether it is possible to restrict the guage function used in generalized Riemann type integrals. Here we investigate the guage function needed for the Perron integral (equivalent to the Riemann-Complete and narrow sense Denjoy integral), the Lebesgue-Stieljes integral and the Lebesgue integral for bounded measurable functions. The Henstock or Riemann-Complete (R-C) integral integrates a function f assumed to be finite valued. The R-C integral of f on [a,b] is L provided that for each $\varepsilon > 0$ there is a positive function δ such that $|\sum f(z_1) \Delta x_1 - L| < \varepsilon$ whenever $a = x_0 < x_1 < \ldots < x_n = b$ is a partition of [a,b], $z_i \in [x_{i-1}, x_i]$ and $\Delta x_i = x_i - x_{i-1} < \delta(z_i)$. The function δ is called the guage function.

Henstock [2, p.127] showed how to determine δ for the Perron integral. Utilizing the majorant and minorant, he found δ and showed that the Perron integral is contained in the R-C integral. However, the character of δ has not been determined. Here we utilize the equivalence of these integrals with the narrow sense Denjoy Integral, the fact that

$$F(x) = D^* \int_a^x f(t) dt$$
 is ACG^{*}

and that F'(x) = f(x) a.e. (cf.[5]) to determine the character of the δ needed for the Perron Integral. Given f, a D* integrable function on [a,b] and $F(x) = \int_a^x f(t)dt$, let Z_f be the set of x where F'(x) does not exist or $F'(x) \neq f(x)$. Let Z be a G_{δ} subset of measure 0 containing Z_f . We then have the following results concerning the guage function δ needed to integrate f.

<u>Theorem 1.</u> The guage function for an R-C integrable function f can be chosen to be measurable and δ restricted to the complement of Z can be chosen to be Baire 2.

Example 1. There is a Lebesgue integrable function f for which no Baire function δ will suffice to estimate the integral.

<u>Theorem 2.</u> If F ACG* and f(x) = F'(x) wherever F'(x)<u>exists and</u> f(x) = 0 <u>otherwise</u>, <u>a Baire 2</u> δ <u>will suffice to</u> <u>estimate the integral of</u> f. <u>Alternatively</u>, <u>if</u> |f| <u>is dominated</u> <u>by a Baire function</u>, <u>a Baire</u> δ <u>will suffice</u>. Theorem 3. If f is a bounded measurable function on [a,b] the guage needed to approximate $\int_{a}^{b} f(x) dx$ need only be chosen from Baire class 2.

We proceed with the proof of these theorems. We will then continue with an investigation of the Lebesgue-Stieltjes integral determined by the $D^{\#}$ integration basis and a guage function.

<u>Proof of Theorem</u> 1. Suppose f is D* integrable on [a,b] and $F(x) = \int_{a}^{x} f(t)dt$. Since F is ACG* there exists a sequence of closed sets E_{k} such that [a,b] = UE_{k} and F is AC* on each E_{k} . Let $\{I_{kj}\}$ be the set of intervals contiguous to E_{k} . Since F is AC* on E_{k} , given $\varepsilon > 0$ there is a natural number N_{k} such that

(*)
$$\sum_{j=N_k}^{\infty} \theta(F;I_{kj}) < \frac{\varepsilon}{2^k} .$$

(Here $\Theta(F;I)$ is the oscillation of F on I.) Letting Idenote the interior of I, we have that each

$$A_{k} = E_{k} \cup \bigcup_{j=N_{k}}^{\infty} I_{kj} = [a,b] \setminus \bigcup_{j=1}^{N_{k}-1} I_{kj}$$

is a finite union of closed intervals. Since F is AC* on E_k , there is $\delta_k>0$ such that if $\sum |I_m|<\delta_k$ where the I_m are

nonoverlapping intervals with endpoints in E_i , then

$$\left| F(I_m) \right| < \epsilon/2^k$$

Because of (*), whenever $\sum |I_m| < \delta_k$ where I_m are nonoverlapping and each has an endpoint in E_k and each $I_m \subset A_k$, $\sum |F(I_m)| < 3\varepsilon/2^k$. By the continuity of F and the fact that A_k is a finite union of intervals, it is possible to determine $G_k \supseteq A_k$, G_k open, such that whenever $\{I_m\}$ are a set of nonoverlapping intervals and each I_m contains a point of E_k and $I_m \subset G_k$ with $\sum |I_m| < \delta_k$, we have $\sum |F(I_m)| < 3\varepsilon/2^k$.

Recall that Z_f is the set of x where F'(x) does not exist or F'(x) \neq f(x). Let Z be a G_{δ} set of measure 0 containing Z_f ,

$$Z_{0} = \{ \mathbf{x} \in \mathbb{Z} : \mathbf{f}(\mathbf{x}) = 0 \}$$
$$Z_{n} = \{ \mathbf{x} \in \mathbb{Z} : n - 1 \le |\mathbf{f}(\mathbf{x})| \le n \}$$

For positive integers n and natural numbers k, let G_{nk} be open sets with $Z_n \cap E_k \subset G_{nk} \subset G_k$ and with $|G_{nk}| < \epsilon/(n \ 2^{n+k})$ and $|G_{nk}| < \delta_k$. We now define the guage function δ .

If
$$x \in Z_n \cap E_k \setminus \bigcup_{l=1}^{k-1} E_l$$
, let $\delta(x) = dist(x, G_{nk}^C)$;
if $x \notin Z$, let $\delta(x) = sup\{\delta: |\frac{F(I)}{|I|} - f(x)| \leq \varepsilon$ when $|I| < \delta\}$.

Note that since Z_n cannot be chosen to be a Borel set, δ is not in general a Baire function.

Consider any acceptable partition for δ ; that is, let $a = x_0 < x_1 < \ldots < x_n = b$ and $z_i \in [x_{i-1}, x_i]$ where $\delta > x_i - x_{i-1}$. Then

$$F(b) - F(a) - \sum f(z_i) \Delta x_i = \sum F(x_i) - F(x_{i-1}) - f(z_i) \Delta x_i.$$

Let \sum_{nk} be summation over all i where $z_i \in Z_n \cap E_k$. Then

$$\sum_{nk} |f(z_i) \Delta x_i| \leq \sum_{n \Delta x_i} < \epsilon/2^{n+k}$$

where \sum is over the $[x_{i-1}, x_i] \subset G_{nk}$. Letting \sum_n be the summation over all i where $z_i \in Z_n$, we have

$$\sum_{n} |f(z_i) \Delta x_i| < 2\varepsilon/2^n$$
.

If $\sum_{i=1}^{1}$ is the summation over all i where $z_i \in UZ_n$, we have $\sum_{i=1}^{1} |f(z_i) \Delta x_i| < 4\epsilon$. Also $\sum_{i=1}^{1} |F(x_i) - F(x_{i-1})| < \sum_k 3\epsilon/2^k = 6\epsilon$. Letting $\sum_{i=1}^{2}$ be the summation over all i where $z_i \notin Z$,

$$\left|\sum^{2} F(x_{i}) - F(x_{i-1}) - f(z_{i})\Delta x_{i}\right| \leq \sum^{2} \varepsilon x_{i} = \varepsilon(b - a)$$

Thus

$$\begin{split} |\sum F(\mathbf{x}_{i}) - F(\mathbf{x}_{i-1}) - f(\mathbf{z}_{i})\Delta \mathbf{x}_{i}| &\leq \sum^{1} |F(\mathbf{x}_{i}) - F(\mathbf{x}_{i-1})| + \sum^{1} |f(\mathbf{z}_{i})\Delta \mathbf{x}_{i}| \\ &+ |\sum^{2} F(\mathbf{x}_{i}) - F(\mathbf{x}_{i-1}) - f(\mathbf{z}_{i})\Delta \mathbf{x}_{i}| \\ &\leq 10\varepsilon + \varepsilon(\varepsilon - \varepsilon). \end{split}$$

It follows that δ is an appropriate guage for estimating the integral of f. To complete the proof of Theorem 1, the nature of δ must be examined. Actually we will consider a guage

smaller than δ . Given $\varepsilon > 0$, for $x \in Z^{C}$ let

$$N(x) = \min\{N: \left|\frac{F(I)}{|I|} - f(x)\right| \le \varepsilon \text{ when } x \in I = \left[\frac{p}{q}, \frac{r}{s}\right] \text{ and } |I| < \frac{1}{N}\}$$
for $x \in Z$ let $N(x) = 0$.

Let

$$\delta_{0}(x) = \begin{cases} \delta(x) & \text{if } x \in \mathbb{Z} \\ \frac{1}{N(x)} & \text{if } x \in \mathbb{Z}^{C} \end{cases}$$

Note that $\delta_0 \leq \delta$. Then $Z = N^{-1}(\{0\})$ is a G_{δ} . Furthermore $N^{-1}([1,m]) =$

$$\{\mathbf{x} \colon \forall \mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \quad \mathbf{x} \in \left(\frac{\mathbf{p}}{\mathbf{q}}, \frac{\mathbf{r}}{\mathbf{s}}\right) = \mathbf{I} \text{ and } |\mathbf{I}| < \frac{1}{\mathbf{m}} \Rightarrow |\frac{\mathbf{F}(\mathbf{I})}{|\mathbf{I}|} - \mathbf{f}(\mathbf{x})| < \varepsilon\} \setminus \mathbf{Z}$$
$$= \cap \{\mathbf{x} \colon \mathbf{x} \in \left(\frac{\mathbf{p}}{\mathbf{q}}, \frac{\mathbf{r}}{\mathbf{s}}\right) = \mathbf{I} \Rightarrow \mathbf{x} \in \mathbf{f}^{-1}\left(\left[\frac{\mathbf{F}(\mathbf{I})}{|\mathbf{I}|} - \varepsilon, \frac{\mathbf{F}(\mathbf{I})}{|\mathbf{I}|} + \varepsilon\right]\right)\} \setminus \mathbf{Z}$$
$$= \cap \{\mathbf{x} \colon \mathbf{x} \in \left(\frac{\mathbf{p}}{\mathbf{q}}, \frac{\mathbf{r}}{\mathbf{s}}\right) = \mathbf{I} \text{ or } \mathbf{x} \in \mathbf{f}^{-1}\left(\left[\frac{\mathbf{F}(\mathbf{I})}{|\mathbf{I}|} - \varepsilon, \frac{\mathbf{F}(\mathbf{I})}{|\mathbf{I}|} + \varepsilon\right]\right)\} \setminus \mathbf{Z}$$

where the last intersections are over all p, q, r, s, with

$$\left|\frac{p}{q}-\frac{r}{s}\right| < \frac{1}{m}$$
.

Since f is Baire 1 on Z^{c} , the intersection is a G_{δ} subset of Z^{c} . Thus $N^{-1}(\{m\})$ is a $G_{\delta\sigma}$ subset of Z^{c} and thus is a $G_{\delta\sigma}$ set. Thus N is in Baire class 2 because $N^{-1}(G)$ is a $G_{\delta\sigma}$ for each open set G. Let $d_{1}(x) = 1/N(x)$, $x \in Z^{c}$; $d_{1}(x) = 0$, otherwise. Let $d_{2}(x) = \delta(x)$, $x \in Z$; $d_{2}(x) = 0$, otherwise. Then d_{2} is measurable since it is defined on a set of measure 0 and d_1 is Baire 2. Thus

$$\delta = \mathbf{d}_1 + \mathbf{d}_2$$

can be chosen measurable.

The proof of Theorem 2 follows easily from the above. We only need note that if |f| is dominated by a Baire function b, the sets Z_n in the proof can be replaced by

 $Z'_{n} = \{x \in Z: n-1 < |b(x)| \leq n\}$

and the resulting δ is a Baire function (of Baire class 2 or the same class as b if b is Baire α with $\alpha > 2$). The proof of Theorem 2 where f(x) = 0 when F'(x) does not exist and the proof of Theorem 3 are obtained by letting $\delta = \varepsilon$ on Z. This produces a Baire 2 guage δ_0 . However, the set of measure 0 is crucial in determining that a Baire guage can be used. The following <u>construction for Example</u> 1 shows that there is a function defined on a set of measure 0 whose integral (which is 0) cannot be estimated by a Baire guage. Let C be the Cantor ternary set and let $\{B_{\alpha}\}_{\alpha < \omega_{\rm C}}$ be a well ordering of the uncountable Borel subsets of C. Let $x_1^0, x_2^0, \ldots, x_n^0, \ldots$ be a countable subset of B_0 . In general if $x_1^{\beta}, x_2^{\beta}, \ldots, x_n^{\beta}, \ldots$ is a countable subset of B_{β} and all x_1^{β} are distinct for i, β with $\beta < \alpha$, then it is possible to choose distinct

271

$$\begin{array}{c} x_{i}^{\alpha} \in B_{\alpha} \setminus \bigcup_{\beta < \alpha} \bigcup_{i=1}^{\omega} \{x_{i}^{\beta}\}\\ \text{because } B_{\alpha} \text{ has cardinality } \text{c and } \bigcup_{\beta < \alpha} \bigcup_{i=1}^{\omega} \{x_{i}^{\beta}\} \text{ has }\\ \text{ cardinality less than } \text{c. Define } \end{array}$$

$$f(x) = \begin{cases} n & \text{if there is an } \alpha & \text{so } x = x_n^{\alpha} \\ 0 & \text{otherwise} \end{cases}$$

Suppose δ is a positive Baire function. Consider the Baire function $g = 1/\delta$. If g is a Baire function, $g^{-1}((0,N))$ is a Borel set. Since $g^{-1}((0,\infty))$ contains an uncountable subset of the Cantor set, we can choose N so that $g^{-1}((0,N))$ contains an uncountable Borel subset of the Cantor set. By the construction of f there is $x_0 \in g^{-1}((0,N))$ so $f(x_0) = N > g(x_0)$. Let I_0 be an interval containing x_0 of length $\delta(x_0)$ and consider a partition containing I_0 . For such a partition,

$$[f(z_i) \Delta x_i \ge f(x_0) \delta(x_0) > 1.]$$

Since $\int_0^1 f(x) dx = 0$ and since there are partitions compatible with δ containing I_0 , it follows that the integral of f cannot be approximated with a Baire guage δ even if f is Lebesgue integrable.

We now consider the guage needed for the $D^{\#}$ derivation basis. This basis gives rise to the Lebesgue-Stieltjes integral (cf.[4]). For a positive function δ , $\beta_{\delta}^{\#} = \{(I,x): I \text{ is an interval and } I \subset (x - \delta(x), x + \delta(x))\}.$ The D[#] basis is the set of all $\beta_{\delta}^{\#}$ for various $\delta > 0$. Let $D_{B}^{\#}[D_{M}^{\#}]$ be the D[#] basis with the δ restricted to be Baire [measurable with respect to the Lebesgue-Stieltjes measure m_{g}] functions. Let g be a monotone non-decreasing function. We prove the following theorems:

Theorem 4. If f is a bounded Baire [measurable with respect to mg] function, then

$$D^{\#} \int f dg = D_B^{\#} \int f dg$$
.

Theorem 5. If f is a Baire [measurable with respect to m_g] function and f is Lebesgue-Stieltjes integrable with respect to g, then

$$D^{\#} \int f \, dg = D^{\#}_{B} \int f \, dg \qquad [= D^{\#}_{M} \int f \, dg]$$
.

To prove Theorem 4 we will utilize a dominated and monotone convergence theorem as given by McShane [3]. When we need them, McShane's theorems will be restated for the integrals under consideration because they were originally stated in an abstract setting.

<u>Proof of Theorem</u> 4. First suppose f is continuous. Then f is Riemann-Stieltjes integrable and a constant function can be used for δ . Suppose the theorem for bounded Baire functions is true for Baire class β when $\beta < \alpha$ and that f is bounded and in Baire class α . Then f = lim f_n, f_n $\in \bigcup_{\beta < \alpha} B_{\beta}$ and given $\varepsilon > 0$ there are Baire functions δ_n for approximating $\int_a^b f_n^b dg$ within ε . Let M be a bound on f and let

$$\mathbf{E}_{n} = \{\mathbf{x}: |\mathbf{f}_{m} - \mathbf{f}| < \varepsilon \cdot \mathbf{M} \text{ whenever } m > n\}.$$

The E_n are an increasing sequence of sets and $\bigcup E_n = [a,b]$. Let $A_{n,k} = \{x: \delta_k(x) \ge 1/n\} \cap E_k$ and $A_n = \bigcup A_{n,k}$, $A_o = \emptyset$. Let $B_n = A_n \setminus A_{n-1}$ and let $\delta(x) = 1/n$ for $x \in B_n$. The proof that f is $D_B^{\#}$ integrable requires the dominated convergence theorem which we now state:

<u>Dominated</u> <u>Convergence</u> <u>Theorem</u>. Assume $\{f_n\}$ are $D_B^{\#}$ integrable with respect to a monotone nondecreasing function g. Assume

 $|f_i - f_j|$

is $D_B^{\#}$ integrable for each i, j = 1, 2, \cdots . Assume there exists an h which is $D_B^{\#}$ integrable with respect to g and $|f_n(x)| \leq h(x)$ for all x and n. Suppose $f_n(x) \Rightarrow f(x)$ for all x. Then, if for each positive integer j, if for each $\varepsilon > 0$, and if for each sequence $\{\delta_n\}$ in $D_B^{\#}$, there exists a δ in $D_B^{\#}$ such that for each $(x,I) \in \beta_{\delta}^{\#}$ there corresponds a positive integer $j(x,I) \geq j$ such that $(x,I) \in \beta_{\delta}^{\#}$ and $|f_i(x) - f(x)| < \varepsilon \cdot h(x)$ for all $i \geq j(x,I)$; then, f is $D_B^{\#}$ integrable and

$$\lim_{n \to \infty} D_B^{\#} \int f_n \, dg = D_B^{\#} \int f \, dg \, .$$

We return to the proof of Theorem 4.

If $(x,I) \in \beta_{\delta}^{\#}$, there exists an n such that $x \in B_n$ and $\delta(x) = 1/n$. Therefore $x \in A_n$ which implies there exists a k such that $x \in A_{n,k}$. Therefore, $\delta_k(x) \ge 1/n$ and $x \in E_k$, so $(x,I) \in \beta_{\delta_k}^{\#}$ and

$$|f_m(x) - f(x)| < \varepsilon \cdot M$$

for all $m \ge k$. The theorem is thus true for all Baire classes α .

We note that if f is bounded and measurable with respect to m_g , there is a Baire 2 function \tilde{f} which is bounded and equal to f on the complement of a G_{δ} set of m_g measure 0. The proof for $D_M^{\#}$ follows by letting $\delta(\mathbf{x}) = \delta$ on an open set G containing this G_{δ} set and having small m_g measure.

<u>Proof of Theorem</u> 5. Without loss of generality suppose f is a nonnegative Baire function [measurable m_g] and Lebesgue-Stieltjes integrable, and let f = lim f_n where $f_n = \min(n, f(x))$. We use the sets $E_n = \{x: f(x) < n\}$, and A_{nk} , A_n , and B_n as in the proof of Theorem 4. Here the corresponding monotone convergence theorem of McShane is required.

275

<u>Monotone Convergence Theorem</u>. Let g be a monotone nondecreasing function and $0 \leq f_1(x) \leq f_2(x) \leq \cdots$ such that

$$\lim f_n(x) = f(x) < +\infty$$

for each x. Assume $\{f_n\}$ are $D_B^{\#}[D_M^{\#}]$ integrable with respect to g. Then, if for each $0 < \varepsilon < 1$ and if for any sequence $\{\delta_n\}$ in $D_B^{\#}[D_M^{\#}]$ there exists a δ in $D_B^{\#}[D_M^{\#}]$ such that if $(x,I) \epsilon \beta_{\delta}^{\#}$ there exists an n(x,I) for which

$$(x,I) \in \beta^{\#}_{\delta_{n(x,I)}}$$

and $f_{n(x,I)}(x) \ge \varepsilon \cdot f(x)$, then f is $D_B^{\#}[D_M^{\#}]$ integrable and $\lim_{n \to \infty} D_B^{\#} \int f_n \, dg = D_B^{\#} \int f \, dg \qquad [\lim_{n \to \infty} D_M^{\#} \int f_n \, dg = D_M^{\#} \int f \, dg]$.

We return to the proof of Theorem 5. If $(x,I) \in \beta_{\delta}^{\#}$, then there exists an n such that $\delta(x) = 1/n$ and $x \in B_n$. Therefore $x \in A_n$ which implies there exists a k such that $x \in A_{n,k}$. Therefore $\delta_k(x) \ge 1/n$ and f(x) < k. Hence $f_k(x) = f(x) > \varepsilon \cdot f(x)$.

REFERENCES

- P. Bullen, Queries 178, Real Analysis Exchange, 12 (1986-87), p.393.
- 2. R. Henstock, Theory of Integration, Buttersworths, 1963.
- E. J. McShane, A Riemann-Type Integral that includes Lebesgue-Stieljes, Bochner, and Stochastic Integrals, Memoirs A.M.S., 88 (1969), p.1-53.
- S. Meinershagen, D[#] differentiation basis and the Lebesgue-Stieljes integral, Real Analysis Exchange, 12 (1986-87), p.265-281.
- 5. S. Saks, Theory of the Integral, Dover, 1964.

Received April 10, 1987