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 Some Answers to a Question of P. Bullen

 A question posed by Peter Bullen [1] is whether it is

 possible to restrict the guage function used in generalized

 Riemann type integrals. Here we investigate the guage function

 needed for the Perron integral (equivalent to the Riemann-Complete

 and narrow sense Denjoy integral), the Lebesgue-Stiel jes integral

 and the Lebesgue integral for bounded measurable functions. The

 Henstock or Riemann-Complete (R-C) integral integrates a

 function f assumed to be finite valued. The R-C integral of

 f on [a,b] is L provided that for each e > 0 there is a

 positive function 6 such that |£f(z^)Ax^ - l| < e whenever

 a = xQ < Xļ < . . . < xn = b is a partition of [a,b],

 z±( [x£_ļ,xjj and Ax^ = x^ - < ô(z^). The function 6

 is called the guage function.

 Henstock [2, p. 127] showed how to determine 6 for the

 Perron integral. Utilizing the majorant and minorant, he found

 6 and showed that the Perron integral is contained in the R-C

 integral. However, the character of 6 has not been determined.
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 Here we utilize the equivalence of these integrals with the

 narrow sense Denjoy Integral, the fact that

 F(x) = D*J X f ( t)dt is ACG* a

 and that F'(x) = f(x) a.e. (cf. [5]) to determine the character

 of the Ô needed for the Perron Integral. Given f, a D*

 ( X
 integrable function on [a,b] and F(x) = J ( f(t)dt, let

 a

 be the set of x where Ff(x) does not exist or F'(x) t f(x).

 Let Z be a Gg subset of measure 0 containing Z^. We then

 have the following results concerning the guage function 6

 needed to integrate f.

 Theorem 1 . The guage function for an R-C integrable function f

 can be chosen to be measurable and 6 restricted to the

 complement of Z can be chosen to be Baire 2.

 Example 1« There is a Lebesgue integrable function f for which

 no Baire function 6 will suffice to estimate the integral.

 Theorem 2. _If_ F ACG* and f(x) = Ff(x) wherever F' (x)

 exists and f(x) = 0 otherwise, a Baire 2 6 will suffice to

 estimate the integral of f • Alternat ively , if | f | ±s_ dominated

 by ja Baire function, a_ Baire 6 will suffice*
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 Theorem 3» If f is a bounded measurable function on [a,b] the

 guage needed to approximate j ^ f(x)dx need only be chosen from
 a ™ - - - - -

 Baire class 2.

 We proceed with the proof of these theorems. We will then

 continue with an investigation of the Lebesgue-Stielt jes integral

 determined by the integration basis and a guage function.

 Proof of Theorem 1. Suppose f is D* integrable on [a,b]

 and F(x) = J^X f(t)dt. Since F is ACG* there exists a

 sequence of closed sets % such that [a,b] = UE^ and F is

 AC* on each E^. Let be the set of intervals contiguous

 to E^. Since F is AC* on E^, given e > 0 there is a

 natural number such that

 00

 (*) I Wik1) < -4 •
 j=Nk 2

 O

 (Here ^(Fjl) is the oscillation of F on I.) Letting I

 denote the interior of I, we have that each

 Nk-1

 *k " 'u U 3 " [a'bl' U 3 j-1

 is a finite union of closed intervals. Since F is AC* on E^,

 there is 6^ > 0 such that if £|lm| < 6^ where the I are
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 nonover lapping intervals with endpoints in E^, then

 I|F(Im)| < e/2k.

 Because of (*), whenever I|lm| ^ ere are nonover"
 lapping and each has an endpoint in and each c:

 X I F( Im) I < 36/2^. By the continuity of F and the fact that

 is a finite union of intervals, it is possible to determine

 Gfc ^ A^, open, such that whenever {lm) are a set of

 nonoverlapping intervals and each Im contains a point of E^

 and Im c Gk with £|lm| < 6k, we have ^ |F(Im) ļ < 3e/2k.

 Recall that Zj is the set of x where F'(x) does not

 exist or F'(x) * f(x). Let Z be a Gg set of measure 0

 containing Zf,

 Z0 = {x€ Z: f(x) = 0}

 Zn= {x( Z: n - 1 < |f(x)| i n}.

 For positive integers n and natural numbers k, let Gnk be

 open sets with Zn n Ek c Gnk c Gk and with |Gnk| < e/(n 2n+k)

 and |Gnk| < ^k. We now define the guage function 6.

 k-1

 If x € Zn A Ek ' U E^, let 6(x) = dist(x, G^k)»

 if x^ Z, let 6(x) = sup{ô: l^jjj ~ f(x)| £ e when ļlļ < 6} .

 Note that since Zfl cannot be chosen to be a Borei set, 6 is

 not in general a Baire function.
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 Consider any acceptable partition for 6; that is, let

 a = xQ < Xļ < ••• < xn = b and * [xi-i> xil where

 6 > - xi-i • Then

 F(b) - F(a) - ^f(zļ)Axi = ^(x^ - Fix^) - f(z1)Axi.

 Let be summation over all i where Zn H E^. Then

 ^nklf(zi)Axil * I nAxi < e/2tl+k

 where £ is over the [xļ_i» xļ] C G^. Letting £n be the

 summation over all i where z^€ Zn> we have

 Xn|f(z1)Ax1| < 2e/2n.

 If ^ is the summation over all i where z^ € UZn, we have

 ^IfCzj^AXjJ < 4e. Also ^|F(x^) - F(x^_ļ) ļ < S 3e/2^ = 6e.
 k

 Letting be the summation over all i where z^4 Z>

 |£2 FCx^ - F(xi_ļ) - f(zi)Axļ| i lZ ex¿ = e(b - a)
 Thus

 I Xf(xa) - FCxj.-l) - f(zļ)Axi| i I^F^) - FCx^)! + ^(zj^AxJ

 + II2 FCxj^) - FCx^jl) - f(zi)Axi|

 £ 10e + e(b - a) .

 It follows that 6 is an appropriate guage for estimating the

 integral of f. To complete the proof of Theorem 1, the nature

 of 6 must be examined. Actually we will consider a guage
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 smaller than 6. Given e > 0, for x € Zc let

 N(x) = min{N: " f(x) I Ś, e when KI = [£, j] and ļ 1 1 <

 for x€Z let N(x) = 0.

 ^8t ( 6 (x) if x€ Z
 6 (x) = '
 ° I ñtV N(x) if xf ZC • I v N(x)

 Note that ÔQ £ 6. Then Z = N~^({0}) is a G¿. Furthermore

 N-1( [l>m] ) =

 {x: Vp,q,r,s, x 6 (£, J) = I and |l| < ì ^ - f(x) | < e} ' Z

 ■ n {x: X € (^, I") = I =» X € f"1 ( [£ļyļ- - e, Ijyj- + e J ) } ' Z

 = n{x: x€ (^, J) = I or x € f"1 ( [^1 - e,F|||- +£.])} ' Z

 where the last intersections are over all p, q, r, s, with

 |£ 1 - I| s' < i . 1 q s' m

 Since f is Baire 1 on Zc, the intersection is a Gg subset

 of Zc • Thus N~^({m}) is a Gga subset of Zc and thus is a

 Gga set. Thus N is in Baire class 2 because N~*(G) is a

 Gga for each open set G. Let d^(x) = 1/N(x), x € Zc;

 d^(x) = 0, otherwise. Let d2(x) = 6(x) , x€Z; d2(x) = 0,

 otherwise. Then d2 is measurable since it is defined on a set
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 of measure 0 and is Baire 2. Thus

 6 = dļ + ¿2

 can be chosen measurable.

 The proof of Theorem 2 follows easily from the above. We

 only need note that if |f| is dominated by a Baire function b,

 the sets Zn in the proof can be replaced by

 = {x€Z: n-1 < |b(x)| £ n}

 and the resulting 6 is a Baire function (of Baire class 2 or

 the same class as b if b is Baire a with a > 2). The proof

 of Theorem 2 where f(x) = 0 when Ff(x) does not exist and the

 proof of Theorem 3 are obtained by letting 6 = e on Z. This

 produces a Baire 2 guage 60* However, the set of measure 0 is

 crucial in determining that a Baire guage can be used. The

 following construction for Example 1 shows that there is a

 function defined on a set of measure 0 whose integral (which

 is 0) cannot be estimated by a Baire guage. Let C be the

 Cantor ternary set and let {®a)a<0l) be a well ordering of the

 uncountable Borei subsets of C. Let x°, x°, •••, x°, ...

 be a countable subset of BQ. In general if x^, x^, ..., x^, ...

 is a countable subset of B^ and all x^ are distinct for i, ß

 with ß < a, then it is possible to choose distinct
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 xiťBaX a U ^ ^ a ß<a i=l
 00

 because B has cardinality c and 'J 'J {xļ?} has
 ß<a i=l

 cardinality less than c. Define

 Ín 0 otherwise if there is an a so x = xa n
 n

 0 otherwise

 Suppose 6 is a positive Baire function. Consider the Baire

 function g = 1/6. If g is a Baire function, g"^((0,N)) is a

 Borei set. Since g"^((0,®)) contains an uncountable subset of

 the Cantor set, we can choose N so that g~^((0,N)) contains an

 uncountable Borei subset of the Cantor set. By the construction

 of f there is xQ f g_1((0,N)) so f(xQ) = N > g(xQ). Let IQ

 be an interval containing xQ of length ô(xQ) and consider a

 partition containing IQ. For such a partition,

 ^f(zi)Axi £ f(x0)6(x0) > 1.

 Since f J' f(x) dx = 0 and since there are partitions compatible

 with 6 containing IQ, it follows that the integral of f

 cannot be approximated with a Baire guage 6 even if f is

 Lebesgue integrable .

 We now consider the guage needed for the derivation

 basis. This basis gives rise to the Lebesgue-Stielt jes integral

 (cf. [4]). For a positive function 6,
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 IL

 = {(I,x): I is an interval and I c (x - 6(x), x + 6(x))}.
 Jl U

 The D basis is the set of all ßc for various 6 > 0. Let
 Ö

 [Dî] be the basis with the 6 restricted to be Baire
 d M

 [measurable with respect to the Lebesgue-Stielt jes measure m ]
 o

 functions. Let g be a monotone non-decreasing function. We

 prove the following theorems:

 Theorem 4 . If_ f is_ a^ bounded Baire [measurable with respect

 to mg] f unction, then

 D#J f dg = oj; f dg .

 Theorem 5 . f ±s^ a^ Baire [measurable with respect to mg ]

 function and f is_ Lebesgue-Stielt jes integrable with respect

 to g, then

 D#J f dg - dJ/ f dg [- D J/ f dg] .

 To prove Theorem 4 we will utilize a dominated and monotone

 convergence theorem as given by McShane [3]. When we need them,

 McShane's theorems will be restated for the integrals under

 consideration because they were originally stated in an abstract

 setting .

 Proof of Theorem 4. First suppose f is continuous. Then f is

 Riemann-Stielt jes integrable and a constant function can be used
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 for 6. Suppose the theorem for bounded Baire functions is true

 for Baire class ß when ß < a and that f is bounded and in

 Baire class a. Then f = lim f„, f„ € ^ B0 and given e > 0
 n n ß<a ß

 there are Baire functions 6n for approximating J ^ f^ dg
 within e. Let M be a bound on f and let

 E = {x: 1 If 1 - f| 1 < e-M whenever m > n} J . n 1 1 m 1 J

 The En are an increasing sequence of sets and U En = [a,b].

 Let An.k = {x: ôk<x> * 1/n> A Ek and 'i = 'ļ Vk» Ao = 0'
 Let Bn = and let 6(x) = 1/n for x ( Bn- The proof

 that f is üf integrable requires the dominated convergence
 D

 theorem which we now state:

 Dominated Convergence Theorem. Assume {f„} are üf integrable

 with respect to a monotone nondecreasing function g. Assume

 is üf integrable for each i, j = 1, 2, . Assume there
 D

 exists an h which is üf integrable with respect to g and
 D

 |fn(x) I £ h(x) for all x and n. Suppose fn(x) f(x) for
 all x. Then, if for each positive integer j, if for each

 e > 0, and if for each sequence {6n} n in öf, there exists a n B

 6 in üf such that for each (x,I)* ßf there corresponds a
 D 0

 positive integer j(x,I) 2 j such that (x,I)€ ßj? and
 j(x»I)

 ļf^(x) - f(x) I < e*h(x) for all i 2 j(x,I); then, f is Dg
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 integrable and

 lim dJJ fn dg = dJ/ f dg .
 n-*»

 We return to the proof of Theorem 4.

 If (x,I) 6 ßg, there exists an n such that x f Bn
 and 6(x) = 1/n. Therefore x £ which implies there exists a

 k such that Therefore, ^(x) ^ *^n anc* x f Ek> so

 (x, I) € and
 k

 |fm(x) - f(x)| < e-M

 for all m £ k. The theorem is thus true for all Baire classes

 a.

 We note that if f is bounded and measurable with respect to

 m , there is a Baire 2 function f which is bounded and equal
 o

 to f on the complement of a Gg set of mg measure 0. The
 proof for follows by letting 6(x) =6 on an open set G

 containing this G g set and having small mg measure.

 Proof of Theorem 5. Without loss of generality suppose f is a

 nonnegative Baire function [measurable m ] and Lebesgue-Stielt jes
 O

 integrable, and let f « lim fn where fn = min(n, f(x)). We use

 the sets En = {x: f(x) < n}, and A^, An, and Bn as in the

 proof of Theorem 4. Here the corresponding monotone convergence

 theorem of McShane is required.
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 Monotone Convergence Theorem« Let g be a monotone nondecreasing

 function and 0 £ f ļ(x) £ ^ # * # such that

 lim fn(x) = f(x) < +<*>

 for each x. Assume {fn} n are D? [D^] integrable with respect n d M

 to g. Then, if for each 0 < e < 1 and if for any sequence

 {ôn} n in öf [D^l there exists a Ô in D? [D^l such that if n B M B M

 (x,I)€ there exists an n(x,I) for which

 (X,I) ř ßf
 n(x, I)

 and fn(x x)(x) ^ £'f(x)» then f is Dg [D^] integrable and

 lim oJ/fn dg = Dg/f dg [lim dJ/ fR dg = D* / f dg ] .
 n-*° n+®

 We return to the proof of Theorem 5. If (x,I)c ß^, then there

 exists an n such that 6(x) = 1/n and x€Bn. Therefore x * ^

 which implies there exists a k such that xC^ Therefore

 ôfcCx) £ 1/n and f(x) < k. Hence f^C*) = f(x) > e-f(x).
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