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A BAIRE TWO FUNCTION WITH NON-BOREL UPFER SYMMETRIC

DERIVATIVE

The upper symmetric derivative Df of the function

f:R—>R 1is defined by

Df (x) = limsup f(x+h;£f(x~h) (¥ €E€R).

h—-»o

In [7] E. ¥ajch proved that if f is Baire 1 then ©Df
is Baire 3. Motivated by EBanach's theorem [}] statino
that the Dini derivatives of a Eaire o function helonco
to the Baire a+2 class, E. Wajch asked whether Df has
the same property. In this paper we answer her question
in the negative by constructing a Baire 2 function f
such that Df is not Borel reasurakle.

We remark that if f is Lebesgue neasuralkle then
so is Df (see [2], 2.4) . However, for an arbkitrarv f,
Df need not ke Lebesgue measuratle [3]. This shows
another difference in the behaviour of symmetric and
ordinary derivatives, since the upper bilateral derivative

of an arbitrary function is Baire 2 [4].
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THEOREM. There exists a Baire 2 function f:R—-»R
such that Df is not Borel measurable. The function f
may be taken as the characteristic function of a set 2UVUEF,

where A is G6 and B 1is Fo'

PROOF., If A is G6 and B is FO then I=AUB

: : kL 1
is simultaneously G60 and F06 and hence Xy the

characteristic function of H, is Baire 2.

For H< R we shall denote by D(H) the set of those

points x€MR for which there exists a sequence {hk}w
k=1

of positive numbers such that hk—é o, x+hkéEH, but

x-n ¢ H (k=1,2,...). It is easy to check that Dx, (x)=c0

for x€D(H) and 5xH(x)é_O for xq:D(H). We shall con-
struct a G6 set A and an Fo set B such tlat

D(AUB) 1is not Borel; it then follows that sat-

XauB
isfies the requirements of the theorem.

It is well-known that there exists a non-empty perfect
set P such that the elements of P are linearly inderern-
dent over the rational numbers. (In [6] von Neumann con-
structs a strictly increasing function ¢ definecd on
(0,90) such that the elements of R{¢), the rance of o,
are lineaily independent (moreover, algekraically inderen-
dent) over the rationals. Since R(9) 1is uncountable and
G6 , it contains a non-empty perfect set.)

The condition that the elements of P are linearly
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independent over the rationals may be expressed in the

following form. If x.,...,x €P, r.,...,r are ratio-
a 1 n 1 n

nals and Zrixi=0, then for every 1i, r. = 0.
A X =X J

We shall refer to this property as property (I). We may
assume that P consists of positive elements; otherwise
we take P'={]x|: x€&P}.

Let Pl and P2

and perfect subsets of P and let K be an analytic

be disjoint, non-empty, bounded

and non-Borel subset of Pl'

We shall construct A and B in such a way that
(1) D(AVB) NP, =K
holds. This will imply that D(AUB) is not Borel.
First we choose a G, set UCP]_)(P2 such that
K = { XEPl : there is yGP2 with (x,y)&€U }.
(See [S], §38, IV, Remark 2 and §36, V, Corollary 2.)

For every natural number k we define
1
Ak={x+-]zy:(x,y)GU}.

We prove that A is G Let g: (Plx P2)—-’1R be defined

k 6"
by g(x,y) = x + % Yy (xePl, YE Pz). Then g 1is continuous

and one-to-one on P XP,. Indeed, if (xi,yi)EPlX P,

1 1

(i=1,2) and X) t g ¥YS Xy vy, then X=X, and '

by property (I).

6
an F_ subset of [R2. This implies that g((PlXPZ)\U)=V

Now UCPl)(P2 is G and hence (PlXPZ)\U is

is F_ and A =90 = g(BXPN\V is Gg.
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oc
We define A = U Ak ; we show that A is GG’ too.
k=2

To prove this we first remark that Ak(\ Pl = @ for every

k, by property (I). On the other hand, for every xGAk,

dist (P, ,x) < % , where m = max P.. Therefore we have

= o 2
(.3 f\ E{ < dist( <0y vy :

A = A = x: O ist (P, ,x) -} A, .
k=2 K i=2 1" =1 kL=)2 "23

Since each term of the intersection is G5, so is A,
Now we turn to the construction of the set B. We put
By = { 2%y - x, - % Y i X3/X,&EP;, YEP,, Xx;7X,,
xl<x2+i‘-y, kEN, k22 1.
Next we define the sets Bn inductively by

Bn = { x-h : x€P h>»o0, x+heBn_l } (n>2).

1'
e show by induction on n that each B is Fo' Let
1
Fk = { (x,y,2) : x#Y, x<y+Ez 1N (Plx PlXPZ)
for every k=1,2,.... It is easy to see that each Fk
is an Fch subset of tR3. Since the map gk(x,y,z)
2 -y - % z 1is continuous, this implies that gk(Fk)
00
is F_ for every k. Therefore B, = U g (F,) is
o 1 k=2 k' k
F_. Let n>1 and suppose that B _, 1is F . Then

Bn is the image of the Fc set
{ (x,y) + y>x }(V (P;XB_ _;)
under the continuous map G(x,y) = 2x - y. Consequently,

Bn is Fo for every n.

oo
We define B = U Bn , then it follows that B is also Fc.
n=1
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We are going to verify (l1). We have to show that for
any x€P;, x€K if and only if x € D(AUB).
l\ K. In order to show x ¢ D(AYB) it is
enough to prove that for every h>0, x+h& AUB implies

let x& P

x-h € AUB.
Let h7? 0 be given and suppose first x+h € A. Then
X+h = Xy t -]]z' y, where (xl,y)E U and kZ2. Since
x¢K, we have x # Xy by the definition of U. Hence
x-h = 2x - (x+h) = 2x - X, - % y, wWhere erlé Pl ,
yE& P, , and x # Xq. Also, because h>»0, it follows
that x{ X, + % y. Therefore x-h¢ B, and hence x-h&B.
If x+h€B, then x+h€Bn for some nZ1l and thus

x-h & B by the definition of the sets B . llence

+1
x+th& AUB implies x-h€ AUB as we stated.

Next let x€ K be fixed. Our aim is to show that

x € D(AUB). Since x€XK, there is a yé_P2 such that

(x,y)€U. Let h =%y (k=2,3,...), then h >0, h=>0

k
and x+h, = x + % y € AkC AVUB holds for every k2Z2.
In order to complete the proof of x & D(AVUB) it is
enough to show that x - % y ¢ AW B for every k2Z2.

Suppose that x - y € A. Then x -

~l

_ 1
Y_xl'*'a-"yll

~l-

where xlé Pl ylé P, and j_Z_Z. However, this clearly
contradicts property (I).
Finally, suppose that x - % yéBn with n2X1.

We show that every zé_Bn can be written in the form
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(2) z = 2(x_-x 1

aXpopte et DT + (1P (x +

u),
where xo,xl,...,xnéPl, uéPz, jZ2 and

x1> x2> ...)xn>z.

This statement will be proved by induction on n.
For n=1 the assertion follows from the definition of
Bl' Suppose the assertion is valid for n-1>1 and let

z € Bn' Then there exist xné Pl and h>0 such that
z =x,-h and x +h € B _,. By the induction hypothesis

we have

(3) x_+h = 2(x__ -X et (1) 2% )

n-1" n—2+ l)

+ DM+ % ),

where xo,...,xnePl, uéPz, jZ2 and

X7 «-.7 %, 1> X *h. Then 2z = x -h<x_ . Also,
z = 2xn - (xn+h) , and, by substituting the value of
xn+h given by (3), we obtain (2).

Now, if x = % v E B, then x - -]% y equals the
right hand side of (2). Using property (I) it follows
that j =k, n 1is odd, y = u and hence

X = 2(x =X _ *...4xq) = x .

o
For n=1, Xy and x, are distinct, and thus the
last equation contradicts property (I). For n>»1, the
elements XyreeosX, are distinct, so the last equa-
tion again contradicts property (I). This contradic-

tion completes the proof of the theorem.
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