Miklos Laczkovich, Department of Analysis, Eötvös Ioránd University, Eudapest, Mhzeum krt. 6-8, Hungary in-l088

A BAIRE TWO FUNCTION WITH NON-BOREL UPFER SYMMETRIC DERIVATIVE

The upper symmetric derivative $\overline{\mathrm{D}} \mathrm{f}$ of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
\bar{D} f(x)=\limsup _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h} \quad(x \in \mathbb{R})
$$

In [7] E. Vajch proved that if f is Baire 1 then $\bar{D} f$ is Baire 3. Motivated by Eanach's theorem [I] stating that the Dini derivatives of a Eaire a function helong to the Baire $\alpha+2$ class, E. Wajch asked whether $\overline{\mathrm{D}} \mathrm{f}$ has the same property. In this paper we answer her question in the negative by constructing a Eaire 2 function f such that $\overline{\mathrm{D}} \mathrm{f}$ is not Borel measurarle.

We remark that if f is Lebesçue measurakle then so is $\overline{\mathrm{D}} \mathrm{f}$ (see [2], 2.4). However, for an arbitrary f, $\overline{\mathrm{D}} \mathrm{f}$ need not ke Lebesque measurable [3]. This shows another difference in the behaviour of symmetric and ordinary derivatives, since the upper bilateral derivative of an arbitrary function is Baire 2 [4].

THEOREM. There exists a Baire 2 function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\overline{\mathrm{D}} \mathrm{f}$ is not Borel measurable. The function f may be taken as the characteristic function of a set $A \cup F$, where A is G_{δ} and B is F_{σ}.

PROOF. If A is G_{δ} and B is F_{σ} then $F=A \cup B$ is simultaneously $G_{\delta \sigma}$ and $F_{\sigma \delta}$ and hence X_{H}, the characteristic function of H, is Baire 2.

For $H \subset \mathbb{R}$ we shall denote by $D(H)$ the set of those points $x \in \mathbb{R}$ for which there exists a sequence $\left\{h_{k}\right\}_{k=1}^{\infty}$ of positive numbers such that $h_{k} \rightarrow 0, x_{k} \in H$, kut $x-h_{k} \notin H \quad(k=1,2, \ldots)$. It is easy to check that $\bar{D} X_{H}(x)=\infty$ for $x \in D(H)$ and $\bar{D} X_{H}(x) \leqq 0$ for $x \notin D(H)$. We shall construct $a G_{\delta}$ set A and an F_{σ} set B such trat $D(A \cup B)$ is not Borel; it then follows that $X_{A \cup B}$ satisfies the requirements of the theorem.

It is well-known that there exists a non-empty perfect set P such that the elements of P are linearly indererident over the rational numbers. (In [6] von Neumann corstructs a strictly increasing function φ defined on $(0, \infty)$ such that the elements of $R(\varphi)$, the range of φ, are linearly independent (moreover, algekiraically inderendent) over the rationals. Since $R(\varphi)$ is uncountable and G_{δ}, it contains a non-empty perfect set.) The condition that the elements of P are linearly
independent over the rationals may be expressed in the following form. If $x_{1}, \ldots, x_{n} \in P, r_{1}, \ldots, r_{n}$ are rationals and $\sum_{1}^{n} r_{i} x_{i}=0$, then for every $i, \sum_{x_{j}=x_{i}} r_{j}=0$.

We shall refer to this property as property (I). We may assume that P consists of positive elements; otherwise we take $P^{\prime}=\{|x|: x \in P\}$.

Let P_{1} and P_{2} be disjoint, non-empty, bounded and perfect subsets of P and let K be an analytic and non-Borel subset of P_{1}.

We shall construct A and B in such a way that

$$
\begin{equation*}
D(A \cup B) \cap P_{1}=K \tag{1}
\end{equation*}
$$

holds. This will imply that $D(A \cup B)$ is not Borel.
First we choose $a G_{\delta}$ set $U \subset P_{1} X P_{2}$ such that $K=\left\{x \in P_{1}:\right.$ there is $y \in P_{2}$ with $\left.(x, y) \in U\right\}$. (See [5], §38, IV, Remark 2 and §36, V, Corollary 2.)

For every natural number k we define

$$
A_{k}=\left\{x+\frac{1}{k} y:(x, y) \in U\right\}
$$

We prove that A_{k} is G_{δ}, Let $g:\left(P_{1} X P_{2}\right) \rightarrow \mathbb{R}$ be defined by $g(x, y)=x+\frac{1}{k} y \quad\left(x \in P_{1}, y \in P_{2}\right)$. Then g is continuous and one-to-one on $P_{1} X P_{2}$. Indeed, if $\left(x_{i}, Y_{i}\right) \in P_{1} X P_{2}$ $(i=1,2)$ and $x_{1}+\frac{1}{k} y_{1}=x_{2}+\frac{1}{k} y_{2}$ then $x_{1}=x_{2}$ and $y_{1}=y_{2}$ by property (I).

Now $U \subset P_{1} \times P_{2}$ is G_{δ} and hence $\left(P_{1} \times P_{2}\right) \backslash U$ is an F_{σ} subset of \mathbb{R}^{2}. This implies that $g\left(\left(P_{1} X P_{2}\right) \backslash U\right)=V$ is F_{σ} and $A_{k}=g(U)=g\left(P_{1} \times P_{2}\right) \backslash V$ is G_{δ}.

We define $A=\bigcup_{k=2}^{\infty} A_{k}$; we show that A is G_{δ}, too.
To prove this we first remark that $A_{k} \cap P_{1}=\varnothing$ for every k, by property (I). On the other hand, for every $x \in A_{k}$, $\operatorname{dist}\left(P_{1}, x\right) \leqq \frac{m}{k}$, where $m=\max P_{2}$. Therefore we have

$$
A=\bigcup_{k=2}^{\infty} A_{k}=\bigcap_{i=2}^{\infty}\left\{\left\{x: \quad 0<\operatorname{dist}\left(P_{1}, x\right) \leqq \frac{m}{i}\right\} \cup \bigcup_{k=2}^{i} A_{k}\right\}
$$

Since each term of the intersection is G_{δ}, so is A.
Now we turn to the construction of the set B. We put $B_{1}=\left\{2 x_{1}-x_{2}-\frac{1}{k} y: x_{1}, x_{2} \in P_{1}, y \in P_{2}, \quad x_{1} \neq x_{2}\right.$, $\left.x_{1}<x_{2}+\frac{1}{k} y, \quad k \in \mathbb{N}, \quad k \geqq 2\right\}$.
Next we define the sets B_{n} inductively by

$$
B_{n}=\left\{x-h: x \in P_{1}, h>0, x+h \in B_{n-1}\right\} \quad(n \geqq 2)
$$

re show by induction on n that each B_{n} is F_{σ}. Let

$$
\mathrm{F}_{\mathrm{k}}=\left\{(\mathrm{x}, \mathrm{y}, \mathrm{z}): \mathrm{x} \neq \mathrm{y}, \mathrm{x}<\mathrm{y}+\frac{1}{\mathrm{k}} \mathrm{z}\right\} \cap\left(\mathrm{P}_{1} \times \mathrm{P}_{1} \times \mathrm{P}_{2}\right)
$$

for every $k=1,2, \ldots$ It is easy to see that each F_{k} is an F_{σ} subset of \mathbb{R}^{3}. Since the map $g_{k}(x, y, z)=$ $2 x-y-\frac{1}{k} z$ is continuous, this implies that $g_{k}\left(F_{k}\right)$ is F_{σ} for every k. Therefore $B_{1}=\bigcup_{k=2}^{\infty} g_{k}\left(F_{k}\right) \quad$ is F_{σ}. Let $n>1$ and suppose that B_{n-1} is F_{σ}. Then B_{n} is the image of the F_{σ} set

$$
\{(x, y): y>x\} \cap\left(P_{1} \times B_{n-1}\right)
$$

under the continuous map $G(x, y)=2 x-y$. Consequently, B_{n} is F_{σ} for every n.
We define $B=\bigcup_{n=1}^{\infty} B_{n}$, then it follows that B is also F_{σ}.

We are going to verify (1). We have to show that for any $x \in P_{1}, x \in K$ if and only if $x \in D(A \cup B)$.

Let $x \in P_{1} \backslash K$. In order to show $x \notin D(A \cup B)$ it is enough to prove that for every $h>0, x+h \in A \cup B$ implies $x-h \in A \cup B$.

Let $h>0$ be given and suppose first $x+h \in A$. Then $x+h=x_{1}+\frac{1}{k} y$, where $\left(x_{1}, y\right) \in U$ and $k \geqq 2$. Since $x \notin K$, we have $x \neq x_{1}$ by the definition of U. Hence $x-h=2 x-(x+h)=2 x-x_{1}-\frac{l}{k} y$, where $x, x_{1} \in P_{1}$, $y \in P_{2}$, and $x \neq x_{1}$. Also, because $h>0$, it follows that $x<x_{1}+\frac{l}{k} y$. Therefore $x-h \in B_{1}$ and hence $x-h \in B$.

If $x+h \in B$, then $x+h \in B_{n}$ for some $n \geqq 1$ and thus $x-h \in B_{n+1}$ by the definition of the sets B_{n}. Hence $x+h \in A \cup B$ implies $x-h \in A \cup B$ as we stated.

Next let $x \in K$ be fixed. Our aim is to show that $x \in D(A \cup B)$. Since $x \in K$, there is a $y \in P_{2}$ such that $(x, y) \in U$. Let $h_{k}=\frac{l}{k} y \quad(k=2,3, \ldots)$, then $h_{k}>0, h_{k} \rightarrow 0$ and $x+h_{k}=x+\frac{1}{k} y \in A_{k} \subset A \cup B$ holds for every $k \geqq 2$. In order to complete the proof of $x \in D(A \cup B)$ it is enough to show that $x-\frac{l}{k} y \notin A \cup B$ for every $k \geqq 2$. Suppose that $x-\frac{1}{k} y \in A$. Then $x-\frac{1}{k} y=x_{1}+\frac{1}{j} y_{1}$, where $x_{1} \in P_{1}, y_{1} \in P_{2}$ and $j \geqq 2$. However, this clearly contradicts property (I).

Finally, suppose that $x-\frac{l}{k} y \in B_{n}$ with $n \geqq l$. We show that every $z \in B_{n}$ can be written in the form

$$
\begin{equation*}
z=2\left(x_{n}-x_{n-1}+\ldots+(-1)^{n-1} x_{1}\right)+(-1)^{n}\left(x_{0}+\frac{1}{j} u\right) \tag{2}
\end{equation*}
$$

where $x_{0}, x_{1}, \ldots, x_{n} \in P_{1}, u \in P_{2}, j \geqq 2$ and
$x_{1}>x_{2}>\ldots>x_{n}>z$.
This statement will be proved by induction on n. For $n=1$ the assertion follows from the definition of B_{1}. Suppose the assertion is valid for $n-1 \geqq 1$ and let $z \in B_{n}$. Then there exist $x_{n} \in P_{1}$ and $h>0$ such that $z=x_{n}-h$ and $x_{n}+h \in B_{n-1}$. By the induction hypothesis we have

$$
\begin{align*}
x_{n}+h= & 2\left(x_{n-1}-x_{n-2}+\ldots+(-1)^{n-2} x_{1}\right)+ \tag{3}\\
& +(-1)^{n-1}\left(x_{0}+\frac{1}{j} u\right),
\end{align*}
$$

where $x_{0}, \ldots, x_{n} \in P_{1}, \quad u \in P_{2}, j \geqq 2$ and
$x_{1}>\ldots>x_{n-1}>x_{n}+h$. Then $z=x_{n}-h<x_{n}$. Also, $z=2 x_{n}-\left(x_{n}+h\right)$, and, by substituting the value of $x_{n}+h$ given by (3), we obtain (2).

Now, if $x-\frac{1}{k} y \in B_{n}$ then $x-\frac{1}{k} y$ equals the right hand side of (2). Using property (I) it follows that $\mathrm{j}=\mathrm{k}, \mathrm{n}$ is odd, $\mathrm{y}=\mathrm{u}$ and hence

$$
x=2\left(x_{n}-x_{n-1}+\ldots+x_{1}\right)-x_{0} .
$$

For $n=1, x_{1}$ and x_{0} are distinct, and thus the last equation contradicts property (I). For $n>1$, the elements x_{1}, \ldots, x_{n} are distinct, so the last equation again contradicts property (I). This contradiction completes the proof of the theorem.

REFERENCES
[1] S. Banach, Sur les fonctions dérivées des fonctions mesurables, Fund. Math. 3 (1922), 128-132.
[2] F.M. Filipczak, Sur la structure de l'ensemble des points où une fonction continue n'admet pas de dérivée symétrique, Dissertationes Math. 130 (1976).
[3] F.M. Filipczak, Sur les dérivées symetriques des fonctions approximativement continues, Colloq. Math. 34 (1976), 249-256.
[4] O. Hájek, Note sur la mesurabilité B de la dérivée supérieure, Fund. Math. 44 (1957), 238-240.
[5] K. Kuratowski : Topology I. Academic Press, 1966.
[6] J. von Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), 134-141.
[7] E. Wajch, On symmetric derivatives of functions of the first class of Baire, Demonstratio Math. 19 (1986), 189-195.

