Real Analysis Exchange Vol. 13 (1987-88)

Miklos Laczkovich, Department of Analysis, Eötvös Lorand University, Eudapest, Muzeum krt. 6-8, Hungary H-1088

A BAIRE TWO FUNCTION WITH NON-BOREL UPPER SYMMETRIC DERIVATIVE

The upper symmetric derivative $\overline{D}f$ of the function f: $\mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$\overline{D}f(x) = \limsup_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} \qquad (x \in \mathbb{R})$$

In [7] E. Wajch proved that if f is Baire 1 then $\overline{D}f$ is Baire 3. Motivated by Eanach's theorem [1] stating that the Dini derivatives of a Eaire α function belong to the Baire $\alpha+2$ class, E. Wajch asked whether $\overline{D}f$ has the same property. In this paper we answer her question in the negative by constructing a Eaire 2 function f such that $\overline{D}f$ is not Borel measurable.

We remark that if f is Lebesgue measurable then so is $\overline{D}f$ (see [2], 2.4). However, for an arbitrary f, $\overline{D}f$ need not be Lebesgue measurable [3]. This shows another difference in the behaviour of symmetric and ordinary derivatives, since the upper bilateral derivative of an arbitrary function is Baire 2 [4]. THEOREM. There exists a Baire 2 function $f: \mathbb{R} \to \mathbb{R}$ such that $\overline{D}f$ is not Borel measurable. The function fmay be taken as the characteristic function of a set $A \cup \mathbb{R}$, where A is G_{δ} and B is F_{σ} .

PROOF. If A is G_{δ} and B is F_{σ} then $H=A \cup B$ is simultaneously $G_{\delta\sigma}$ and $F_{\sigma\delta}$ and hence χ_{H} , the characteristic function of H, is Baire 2.

For $H \subseteq \mathbb{R}$ we shall denote by D(H) the set of those points $x \in \mathbb{R}$ for which there exists a sequence $\{h_k\}_{k=1}^{\infty}$ of positive numbers such that $h_k \rightarrow 0$, $x+h_k \in H$, but $x-h_k \notin H$ (k=1,2,...). It is easy to check that $\overline{D}\chi_H(x) = \infty$ for $x \notin D(H)$ and $\overline{D}\chi_H(x) \leq 0$ for $x \notin D(H)$. We shall construct a G_{δ} set A and an F_{σ} set B such that $D(A \cup B)$ is not Borel; it then follows that $\chi_{A \cup B}$ satisfies the requirements of the theorem.

It is well-known that there exists a non-empty perfect set P such that the elements of P are linearly independent over the rational numbers. (In [6] von Neumann constructs a strictly increasing function φ defined on $(0, \infty)$ such that the elements of $R(\varphi)$, the range of φ , are linearly independent (moreover, algebraically independent) over the rationals. Since $R(\varphi)$ is uncountable and G_{δ} , it contains a non-empty perfect set.)

The condition that the elements of P are linearly

259

independent over the rationals may be expressed in the following form. If $x_1, \ldots, x_n \in P$, r_1, \ldots, r_n are rationals and $\sum_{j=1}^{n} r_j x_j = 0$, then for every i, $\sum_{j=x_j} r_j = 0$.

We shall refer to this property as property (I). We may assume that P consists of positive elements; otherwise we take $P'=\{|x|: x \in P\}$.

Let P_1 and P_2 be disjoint, non-empty, bounded and perfect subsets of P and let K be an analytic and non-Borel subset of P_1 .

We shall construct A and B in such a way that (1) $D(A \cup B) \cap P_1 = K$

holds. This will imply that $D(A \cup B)$ is not Borel.

First we choose a G_{δ} set $U \subset P_1 \times P_2$ such that $K = \{ x \in P_1 : \text{ there is } y \in P_2 \text{ with } (x,y) \in U \}.$ (See [5], §38, IV, Remark 2 and §36, V, Corollary 2.)

For every natural number k we define

$$A_k = \{ x + \frac{1}{k} y : (x, y) \in U \}.$$

We prove that A_k is G_{δ} . Let $g: (P_1 \times P_2) \rightarrow \mathbb{R}$ be defined by $g(x,y) = x + \frac{1}{k} y$ $(x \in P_1, y \in P_2)$. Then g is continuous and one-to-one on $P_1 \times P_2$. Indeed, if $(x_1, y_1) \in P_1 \times P_2$ (i=1,2) and $x_1 + \frac{1}{k} y_1 = x_2 + \frac{1}{k} y_2$ then $x_1 = x_2$ and $y_1 = y_2$ by property (I).

Now $U \subset P_1 \times P_2$ is G_{δ} and hence $(P_1 \times P_2) \setminus U$ is an F_{σ} subset of \mathbb{R}^2 . This implies that $g((P_1 \times P_2) \setminus U) = V$ is F_{σ} and $A_k = g(U) = g(P_1 \times P_2) \setminus V$ is G_{δ} . We define $A = \bigcup_{k=2}^{\infty} A_k$; we show that A is G_{δ} , too. To prove this we first remark that $A_k \cap P_1 = \emptyset$ for every k, by property (I). On the other hand, for every $x \in A_k$, dist $(P_1, x) \leq \frac{m}{k}$, where $m = \max P_2$. Therefore we have $A = \bigcup_{k=2}^{\infty} A_k = \bigcap_{i=2}^{\infty} \left\{ \{x: \ 0 < \operatorname{dist}(P_1, x) \leq \frac{m}{i}\} \cup \bigcup_{k=2}^{i} A_k \right\}.$

Since each term of the intersection is G_{δ} , so is A.

Now we turn to the construction of the set B. We put $B_{1} = \{ 2x_{1} - x_{2} - \frac{1}{k} y : x_{1}, x_{2} \in P_{1}, y \in P_{2}, x_{1} \neq x_{2}, \\ x_{1} < x_{2} + \frac{1}{k} y , k \in \mathbb{N}, k \ge 2 \}.$

Next we define the sets B_n inductively by

 $B_n = \{ x-h : x \in P_1, h > 0, x+h \in B_{n-1} \}$ $(n \ge 2).$ We show by induction on n that each B_n is F_{σ} . Let

 $F_{k} = \{ (x, y, z) : x \neq y, x < y + \frac{1}{k}z \} \cap (P_{1} X P_{1} X P_{2})$

for every k=1,2,.... It is easy to see that each F_k is an F_σ subset of \mathbb{R}^3 . Since the map $g_k(x,y,z) = 2x - y - \frac{1}{k} z$ is continuous, this implies that $g_k(F_k)$ is F_σ for every k. Therefore $B_1 = \bigcup_{k=2}^{\infty} g_k(F_k)$ is F_σ . Let n > 1 and suppose that B_{n-1} is F_σ . Then B_n is the image of the F_σ set

{ (x,y) :
$$y > x$$
 } $\cap (P_1 X B_{n-1})$

under the continuous map G(x,y) = 2x - y. Consequently, B_n is F_σ for every n. We define $B = \bigcup_{n=1}^{\infty} B_n$, then it follows that B is also F_σ . We are going to verify (1). We have to show that for any $x \in P_1$, $x \in K$ if and only if $x \in D(A \cup B)$.

Let $x \in P_1 \setminus K$. In order to show $x \notin D(A \cup B)$ it is enough to prove that for every h > 0, $x+h \in A \cup B$ implies $x-h \in A \cup B$.

Let $h \ge 0$ be given and suppose first $x+h \in A$. Then $x+h = x_1 + \frac{1}{k} y$, where $(x_1, y) \in U$ and $k \ge 2$. Since $x \notin K$, we have $x \ne x_1$ by the definition of U. Hence $x-h = 2x - (x+h) = 2x - x_1 - \frac{1}{k} y$, where $x, x_1 \in P_1$, $y \in P_2$, and $x \ne x_1$. Also, because $h \ge 0$, it follows that $x < x_1 + \frac{1}{k} y$. Therefore $x-h \in B_1$ and hence $x-h \in B$.

If $x+h\in B$, then $x+h\in B_n$ for some $n\geq 1$ and thus $x-h\in B_{n+1}$ by the definition of the sets B_n . Hence $x+h\in A\cup B$ implies $x-h\in A\cup B$ as we stated.

Next let $x \in K$ be fixed. Our aim is to show that $x \in D(A \cup B)$. Since $x \in K$, there is a $y \in P_2$ such that $(x,y) \in U$. Let $h_k = \frac{1}{k} y$ (k=2,3,...), then $h_k > 0$, $h_k \rightarrow 0$ and $x+h_k = x + \frac{1}{k} y \in A_k \subset A \cup B$ holds for every $k \ge 2$. In order to complete the proof of $x \in D(A \cup B)$ it is enough to show that $x - \frac{1}{k} y \notin A \cup B$ for every $k \ge 2$.

Suppose that $x - \frac{1}{k} y \in A$. Then $x - \frac{1}{k} y = x_1 + \frac{1}{j} y_1$, where $x_1 \in P_1$, $y_1 \in P_2$ and $j \ge 2$. However, this clearly contradicts property (I).

Finally, suppose that $x - \frac{1}{k} y \in B_n$ with $n \ge 1$. We show that every $z \in B_n$ can be written in the form

(2)
$$z = 2(x_n - x_{n-1} + \dots + (-1)^{n-1}x_1) + (-1)^n(x_0 + \frac{1}{j}u),$$

where $x_0, x_1, \dots, x_n \in P_1, u \in P_2, j \ge 2$ and

 $x_1 > x_2 > \ldots > x_n > z$

This statement will be proved by induction on n. For n=1 the assertion follows from the definition of B_1 . Suppose the assertion is valid for $n-1 \ge 1$ and let $z \in B_n$. Then there exist $x_n \in P_1$ and h > 0 such that $z = x_n - h$ and $x_n + h \in B_{n-1}$. By the induction hypothesis we have

(3)
$$x_n + h = 2(x_{n-1} - x_{n-2} + \dots + (-1)^{n-2}x_1) + (-1)^{n-1}(x_0 + \frac{1}{j}u),$$

where $x_0, \ldots, x_n \in P_1$, $u \in P_2$, $j \ge 2$ and $x_1 > \ldots > x_{n-1} > x_n + h$. Then $z = x_n - h < x_n$. Also, $z = 2x_n - (x_n + h)$, and, by substituting the value of $x_n + h$ given by (3), we obtain (2).

Now, if $x - \frac{1}{k} y \in B_n$ then $x - \frac{1}{k} y$ equals the right hand side of (2). Using property (I) it follows that j = k, n is odd, y = u and hence

$$x = 2(x_n - x_{n-1} + \dots + x_1) - x_0.$$

For n=1, x_1 and x_0 are distinct, and thus the last equation contradicts property (I). For n > 1, the elements x_1, \ldots, x_n are distinct, so the last equation again contradicts property (I). This contradiction completes the proof of the theorem. REFERENCES

- [1] S. Banach, Sur les fonctions dérivées des fonctions mesurables, Fund. Math. 3 (1922), 128-132.
- [2] F.M. Filipczak, Sur la structure de l'ensemble des points où une fonction continue n'admet pas de dérivée symétrique, Dissertationes Math. 130 (1976).
- [3] F.M. Filipczak, Sur les dérivées symétriques des fonctions approximativement continues, Colloq. Math. 34 (1976), 249-256.
- [4] O. Hájek, Note sur la mesurabilité B de la dérivée supérieure, Fund. Math. 44 (1957), 238-240.
- [5] K. Kuratowski : Topology I. Academic Press, 1966.
- [6] J. von Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), 134-141.
- [7] E. Wajch, On symmetric derivatives of functions of the first class of Baire, Demonstratio Math.
 19 (1986), 189-195.

Received June 25, 1987