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 AN EXISTENCE THEOREM FOR HIGHER
 PEANO DERIVATIVES IN Fm

 INTRODUCTION. It follows from the Denjoy-Young-Saks theorem that if

 f(x + h) = f(x) + 0(|h|) for every x, then f is almost everywhere
 differentiable. For higher Peano derivatives Denjoy generalized this theorem

 [D], but he had to suppose the continuity of f. A year later Marcinkiewicz

 and Zygmund proved it for measurable functions [MZ]. At the same time

 Marcinkiewicz [Ml] found a third proof. We quote that Zygmund wrote in

 [M2,p.6] about the difference between these proofs: In paper [MZ] this

 theorem " is proved in a very complicated way; in particular, the proof uses

 rather deep results about the behaviour of an analytic function near the

 boundary of its domain of existence. A simplified proof, using exclusively real

 variable is given in [Ml]". In a footnote Marcinkiewicz remarked that his

 proof works for arbitrary functions as well.

 The first generalization for higher dimensions was done by W.H. Oliver.
 His method uses the one dimensional results and Fubini's theorem and he had

 to suppose the measurability of f. In [St, Ch. VIII. §3.] E.M. Stein gives a proof

 of the multidimensional version of the first order case for arbitrary functions.

 This proof is based on ideas similar to the proof of Marcinkiewicz and

 Zygmund, that is based on non- tangential boundedness and convergence of

 certain Poisson integrals. In [St, Ch. VIII. 6.1] Stein remarks that this method is

 also applicable for higher Peano derivatives.

 In Theorem 1 we present a "real variable" proof of this most general

 version of the theorem (for arbitrary function, dimension and order). As far

 as we know this is the first published proof of this theorem. The difference

 between the methods in [St] and ours is similar to that between those in [MZ]

 and [Ml]. It is interesting that our proof is closest to Denjoy's [D], the first

 one of the five proofs mentioned above. In both proofs Lagrange interpolation
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 polynomials are used to establish the Lipschitz properties of the Peano

 derivatives of the original function. Then the original Denjoy-Young-Saks

 theorem (Theorem B) is applied for the (k-l)st derivative and finally this

 result is integrated in order to get an estimation for the original function.

 (In the other "real variable" proof in [Ml], Marcinkiewicz uses Theorem B as

 the initial step of an inductive argument and he splits the original function

 into the sum of two functions. One of these functions is the "good" part of

 the original function; that is, the previous step of the induction is applicable

 for its derivative. During the proof it turns out that the other, "bad", part

 of the splitting is not too bad. That is, the original function, as the sum of

 the good and bad parts still has good differentiability properties.)

 We also remark that during the investigation of the history of this

 theorem, we found first the results in [St] and there a reference to [CZ]; in

 [CZ] we found further references to [01] and [02]; and finally, [01] referred to

 [MZ], [Ml] and [D].

 PRELIMINARIES. We denote by the closure of the set A. We

 denote by mesm(A) the m dimensional Lebesgue measure of A. For a

 multiindex j = (ji,ja,...»jm) we Put Ul := Ji + J* + ••• + Jm »

 j ! '= Jx ł ! Ja * • ••• Jm Ul ! and := x**2 ... x^m where x e W®. For ł * • ••• Ul i2 ... m

 an x = (x, ,x2, . . • ,xm) we put lxi := v/x* + x* + . . . + x^ . For an x € R™
 and an r > 0 we let S(x,r) := (x' € Rm : lx' - xl < r}, W(x,r) :=

 {x' € Rm : x' -xc [0,r]m).

 DEFINITION 1. Let k be a positive integer. A function f : Rm -*■ R is

 said to have Peano derivative at x with respect to the closed set F

 if there exist numbers f(j)(x) for each multiindex j with |j| * k such
 that if we put PfcCf.x.h) := I f(j) (x)hJ/j! , then f(x + h) = Pk(f,x,h) +

 I J I

 o(lhlk) when h •* 0 and x + h c F.

 DEFINITION 2. Let f : F ■* R where F s Rm and F is closed. We say

 that f belongs to Lip(k+1,F) if there exist functions f(j)» 0 < |j| * k
 defined on F, with f(o) = f and M > 0 so that if for every x, x + h e F,
 |j| * k, f(j)(x + h) = Z f( j+t) (x)hť/t ! + Rj(x,h), then

 I I *k
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 (1) |f(j)(x)| and |R^(x,h)| * Mlh«k+1 .
 The norm of an element in Lip(k+1,F) is the smallest M for which the

 inequality (1) holds.

 We remark that if f c Lip(k+1,F), then obviously f is k times Peano

 differentiate with respect to F.

 THEOREM A. Suppose k is a non-negative integer and F is a closed

 set in Fm. Then for any f c Lip(k+1,F) there exists f c Lip(k+l,Fm) such

 that f|p = f and the norm of f is at most a constant times the norm of f

 with a constant independent of f.

 The proof of this Whitney-type extension theorem can be found in

 [St,Ch.VI.Th.4.]. We also remark that from the proof of this theorem it follows

 that there exists f fulfilling Theorem A such that if xc Fm'F, then

 f € C"(S(x,r)) for an r > 0.

 THEOREM B. Let f : F™ •* F. Then f is differentiable almost

 everywhere if and only if f(x + h) = f(x) + 0(lhl) as h -> 0 for almost

 every x.

 Theorem B for m = 1,2 can be found in [S Ch. IX.]. For higher

 dimensions see [R] and [St Ch.VIII.Th.3.].

 THEOREM 1. Let f : F -> F where F s Rm, F is closed and

 (2) f(x + h) = Pkl(f,x,h) + 0(»hllk) .
 Then for almost every x € F there exist numbers f(j)(x) for |j| = k so
 that

 f (x + h) = Pk(f,x,h) + o(lhlk) (h -* 0, x + h € F) .

 LEMMA 1. Suppose that p(x) = a© + a^1 + ... + a^x^, (x c F) and
 there exist x¡ such that

 (3) |x. - (i/(k + 1))| * 1/ (3 (k + 1))

 and
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 (4) |p(Xļ)l < * for i = 1,2,. ..,k + 1

 Then |ai| < Cfc'e holds for every i = 0,1,..., with a constant Cķ

 depending only on k.

 PROOF of Lemma 1. We put for i = 1,2,. ..,k + 1

 k+1

 n (Xj - X)
 L.(x,x1,...,xk+ļ) := J ;

 (XÍ " X) jîj (xj " Xi}
 j^i

 that is, Lj are the polynomials used in Lagrange interpolation. Plainly

 k+1

 P(x) = Z p(xi)Li(x,xļ
 i=l

 Since the coefficients of Lļ are continuous functions of the variables xj,
 (3) implies that the coefficients of Lļ are bounded by constants depending

 only on k. Thus using (4) Lemma 1 is proved.

 ŁOMA 2. Suppose that P(x) = I ajx^ where x € R® and we use the
 IJI'k

 notation introduced in the Preliminary section. We also suppose that there

 exists a set Q such that

 (5) ""es ( [ 0 , 1 ] m n Q) > 1 - (l/(3(k + 1)))"
 m

 and

 (6) |P(x)| < e for any x € Q .

 Then for any |j| 'k, | aj | < where Cfc is as in Lemma 1.

 PROOF of Lemma 2. We deduce this lemma from Lemma 1 by induction on

 m. For m = 1 it follows from (5) that we can find xj - s fulfilling (3).

 Suppose that Lemma 2 is proved when m = M - 1. We put f(t) :=

 mesM_!(Q n [0,l]M_l * {t}). From (5) and Fubini's theorem it follows that

 mesļ ( {t € [0,1] : f(t) > 1 - (l/3(k + l))""1}) > 1 - l/3(k + 1) .

 And hence we can choose tj such that f(tj) > 1 - (l/3(k + 1))M_1 and tj

 fulfils (3) for i = l,2,...,k+l. In the hyperplanes [0,1]M_1 * {tj} we can
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 apply Lemma 2 with m = M - 1 and hence the coefficients of the polynomial

 m - ļ

 P(xj , . . . ,xM_j , tj) are smaller than •£. But for each tļ the above

 coefficients are polynomials of t¿. Applying Lemma 1 for these polynomials

 we can prove their coefficients are smaller than • e . But they are the

 coefficients of P(x). Therefore, Lauma 2 is proved for m = M.

 PROOF of Theorem 1. Since any closed set can be decomposed into

 countably many bounded closed sets, we can suppose that F is bounded. We

 let

 F' := {x € F : for 0 < r < 1/n,
 n

 mes (F n W(x,r))/rm > 1 - ( 1/3 (k + l))1"}
 m

 We also choose a closed set Fn c F¿ such that mesm(Fn) > ((n-l)/n)mesm(F¿) .

 We put Qn := {x € Fn : for all x' c F,

 |f(x') - Pkļ(f,x,x' - x)| * nix' - x«k} .

 We choose x,x' e Qn and we let h := x' - x. It follows from the

 definition of Qn that for any x" e W(x',lhl) n F we have

 |f(x") - P, ,(f,x',x" - x')| * nix" - x'lk * nmk/2lhlk
 and h / Ir u
 |f(x") - Pk_ļ(f »x,x" - x) I * nix" - xl * n(l + m ) Ihl

 It follows that if we put P(y) := Pk-l(f»x'»y) ~ Pk-l(f»x>y + *' ~ x) « then
 we have

 (7) |P(y) I < Klhlk
 if y + x' e W(x',lhl) n F with K = n-m^/2 + n(l + m1/2)^.

 We define T(y) on [0,1]® by T(y) := P(ylhl). Since x' € Fn and

 since we have (7), we can apply Lemma 2 with « = Klhl^, and with K' =

 we get I a j | < K' Ihl^, where aj is any coefficient of T(y). It follows
 that ( aj I < K'lhlk~ I J I where aj is any coefficient of P(y). And hence for
 0 é j J I < k - 1

 (8) (a J jí I = |fMv(x') - I fM u .(x)hVt!| < J I j+t| <k u

 < K' j ! lx' - xlk_|j| .
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 In particular, note that since x was an arbitrary element of Qn, (8)

 assures the uniform continuity of f(j) on Qn for 0 * |j| < k - 1. Hence,
 cl

 f(j) may be extended continuously to Q and these f(j)(x)*s are the
 cl

 coefficients of P]c-i in (2). It also follows that s Qn; that is, Qn

 is also closed. From (8) it follows that f e Lip(k,Qn). By Theorem A we can

 define a Whitney extension f of f|_ such that f c LipikjlR®) and if
 wn

 x € Fm'Qn, then there exists a neighborhood U of x such that f c CW(U).

 We show that Theorem 1 holds for f. From f e Lip(k,Fm) it follows that

 f ( j) c Lip(k - |j|,Rm). Thus when |j| = k - 1 by Theorem B f(j) is totally
 differentiate a.e. Thus if we denote the partial derivative df(j)/dxs by
 f(j+e(s))> then we have for |j| = k - 1

 _ _ m _

 (9) f, (j) (x + h) = f, (x) + I f , . , n(x)h + o(llhB) (j) (j) (j+e(s) , . , ) s

 where h = (h1,h2,...,hin) and plainly o(Hhl) does not depend on the
 direction of h.

 Obviously there exists a set of full measure D so that f(j+e(s)) exists
 on D for each s = l,...,m. From Theorem A and (8) it also follows that for

 0 < I j I * k - 1 the functions f(j)(x + w^) are absolutely continuous
 (Lipschitz) functions of w for w e R. That is, they are the integrals of

 their derivatives. Suppose that |j| = k - 2 and the segment x, x + h

 intersects D in a set of linear measure IhH. Then

 (10) f(j)(x ♦ h) . f(j)(x) ♦

 + Jl ^0 <f(j+e(s))(x)hs +
 m _

 + J) _ f , -, / s . i ļs(x)h 'us h w + o(h2w))dw = (j+e(s)+e(u))v , -, / s . i 'us s

 = I f.. v(x)hq/q! + o( >hKa) .
 I j+qMk (j+q)

 Since D is of full measure, there exists a set D ' (x) of directions of full

 measure such that if h/lhl c D'(x), then (10) is true. Plainly o(HhR3) is

 again uniform in the above directions because o(lhl) above was also

 uniform. By the continuity of the functions f(j) for |j| < k - 1 (10) is
 true for all h. Iterating this integration process we can prove that
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 (11) U; + h) = ï fn U q; ,(x)hq/q! + o( BhBk : = U; |j+q|*k U q;

 := P, .(f,x,h) + o(Hh#k"' j|) for 0 < |j| * k - 1 .
 K, J

 When J J I = 0 we get Theorem 1 for f.

 Since f is an extension of f|_ , we proved that (11) is true for almost
 un

 every x € Qn when * + h € Qn. We now prove that if x is a point of
 density of Qn, then the last assumption can be replaced by x + h € F. If

 x is a point of density of Qn, then there exists a function w(h) such that

 w(h) is o(lhl), and for every x' € S(x,HhB) there exists a point R(x') €

 Qn so that IR(x') - x'l < w(h). Suppose thai x e Qn and x + h € F.

 Since R(x + h) € Qn, we have |f(x + h) - P^-iff^x + h),x + h - R(x + h))| *
 * nix + h - R(x + h)|k. Using (11) we obtain

 (12) Pk_j(f,R(x + h),x + h - R(x + h)) =

 = ï (P.. .(f,x,R(x + h) - x) + o(BhBk '**'))(x + h - R(x + h))*Vj! =
 |j|<k K,J

 = I P. .(f,x,R(x + h) - x)(x + h - R(x + h))J/j! + o( «hllk) ,
 |j|<k K,J

 where we used that |x + h - R(x + h) | < w(h) = o(BhB). Using (2) at R(x + h)

 and (12) at x with |j| = 0 we get

 f(x + h) - Pj^ifjX.h) = Pk_ļ(f»R(x + h),x + h - R(x + h)) +

 + 0(w(h)k) - Pk(f,x,h) =

 = I P, .(f,x,R(x + h) - x) (x + h - R(x + h))^/j! - P,(f,x,h) +
 I j|<k K'J K

 + o(lhlk) = J p .(f,x,R(x + h) - x)(x + h - R(x + h))^/j! +
 I Jl<k k,J

 + I f, U) n(x)(x + h - R(x + h))^/j ! - 0(w(h)k) - P, (f,x,h) + o(BhBk) = |j|=k U)

 = Z P, .(f,x,R(x + h) - x) (x + h - R(x + h))^/j! -
 |j|*k K'J

 - Pk(f,x,h) + o(lhlk) = o(»hlk) ,
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 where the last equality holds because the first sum on the left hand of this

 equality is at R(x + h) the Taylor polynomial of the polynomial

 PfcffjXjh) and hence they are equal.

 Therefore we proved that Theorem 1 is true for almost every point of Qn

 for every n. It follows from the definition of Qn and from the Lebesgue

 density theorem that Theorem 1 is true for F.
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