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 Derivation Bases and the Hausdorff Measure

 1. Introduction.

 A derivation basis B is a collecton of sets ß where ß

 is a collection of interval-point pairs which are associated by a

 rule which determines how to choose the interval I in terms of

 the point x. For instance, in this paper, any positive

 function 6(*) is used to determine the size of I; e.g. for

 the derivation basis, ß^ = {(I,x): I c. (x - 6(x), x + 6(x))}
 are the elements of D^.

 This paper answers a question posed by B. S. Thomson in

 "Derivation Basis on the Real Line" [5, p. 164] on the relation

 between the Hausdorff measure and the D derivation basis. The

 question is stated as follows: "For 0 < p £ 1, let m^ denote

 the interval function I -► |l|P = m^(I). Then the measure m^

 evidently is related to the classical Hausdorff p-dimensional

 measure. More generally, if h is a monotonically increasing

 function on [0,®), h(0) = 0, then h* denotes the function

 I h(m(I)) = h(ļlļ) and h*^ again represents a measure on R
 that should be related to similar ideas in the theory of Hausdorff

 measures. What is the exact relation here?" It will be shown

 that the Hausdorff measure on a set equals the measure generated
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 by the D derivation basis (1) when the derivative of h at 0

 exists and is finite, (2) when the set is countable or (3) when

 the sura £h( | In|) over the contiguous intervals of a given closed

 set converges • However, it will also be shown that the symmetric

 derivation basis gives rise to a measure which is finite on more

 sets of finite Hausdorff measure than the measure from the D

 derivation basis.

 2. Preliminary information.

 The following definitions will be needed.

 Definition 2.1. Hausdorff measure. Let h be a monotone

 increasing function on [0,®), h(0) = 0, and continuous from the

 right such that the range of h is in [0,®). For <5 > 0 and

 any set E, let

 Ą[Z] = infļl^ hdlj): E e I±, |lj < 6
 and is an interval}

 and nh[E] = sup6>0 Ą[E}. [4, p. 51]

 Definition 2.2. Let h be given as above. Then for a positive

 function ô(*) and any set E, let

 ßg = {(I,x): X is a midpoint of I e (x - 6(x), x + 6(x))ļ,
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 V(h* , ß^[E]) = sup{^jEj h( ļ I± ļ ) : n = {(Ii,xļ)} is a partition of
 [a,b] in ß® and (I,x)€«[E] if x£E}

 and V(h* , DS[E]) = inf6V(h*, ß® [E] ) . When V(h*, DS[E]) is

 being considered as a measure rather than a variation, we write

 h*s(E) = V(h' DS[E] ) .

 Definition 2.3. Let h and 6(#) be given as above. Then let

 ßg = {(I,x): X is an endpoint of I cz (x - ô(x), x + 6(x))},

 V(h* , ß^ [E] ) = sup{£^Ej h( ļ I± I ) : % is a partition in and
 (I,x)€it[E] if x€E},

 and h*D(E) = V(h*, D[E] ) = inf6V(h' ß6[E]).

 Definition 2.4. Let h and 6(#) be given as above. Then, let

 ß^ = {(I,x) : I c (x - ô(x), X + 6(x)) } ,

 V(h*, ßg[E]) - sup{^wjEj h( 1 1± ļ ) : ii is a partition in ß* and
 (I ,x) € it[E] if x € E} ,

 and h*D//(E) = V(h*, D#[E]) = inf6V(h*, ß^[E]).
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 Definition 2.5. Let h be as given above. Let E be any set,

 then the lower symmetric density of E at^ x is ds(x) =

 limļ j i f Q |i^(E A X)/h( 1 1 1 ) where I is symmetric about x.

 Definition 2.6. Let h be as given above. Let E be any set,

 then the right sided lower density of E at_ x is dp(x) =

 limļ ^ J ì g ^(E fi I) / h( 1 1 ļ ) where I has x as a left hand
 end point .

 We will need the following observation.

 Observation 2.1. Let E c [a,b]. Then, h*g(E) £ h*jj//(E) and

 h*p(E) £ h*jj#(E). If h is concave down, then h*g(E) £ h*p(E).

 Proof . Let 6: R -»• R+. Then, ß®[E] c: ß*[E] and ßß [E] C P¿[ E].

 Therefore, V(h*, ß®[E]) ¿ V(h*, ß*[E]) and V(h' ßß[E]) Ś

 V(h*, ßJ[El). Hence h*g(E) * h*„#(E) and h*D(E) £ h*D#(E).
 g

 Suppose h is concave down. Let it C and let it[E] =

 {(Ii,xļ)}i;i. Then, h( ļlj) Ś Iļlļ 2h(|l±|/2). Let u' cz

 ß6 such that u'[E] » {(Iļ, x^, (I¿, where Iļ, I" are

 closed intervals such that x^ is a right hand endpoint of Iļ

 and the left hand endpoint of l£ and Iļ U l£ - I^. Then, it' [E]
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 c ß6[E]. Since ^ 2^1^1/2) = ^ h(|lļ|) + ^ h(|l¡|),

 V(h*, ß®[E]) * V(h*, ß6[E]). Therefore h*s(E) ¿ h*D(E).

 The most frequently considered Hausdorff measures are the

 a-dimensional measures, where 0 < a < 1, obtained by letting

 n ic ic

 h(x) = X . The h and h ^ measures have two properties in

 common with the Hausdorff measures when h(x) = xa; namely, those

 given in the next two observations -

 ic ic

 Observation 2.2. h and h p are translation invariant.

 Observation 2.3. Let a £(0,1) and h(x) = xa. Then, h* (kE) = ■ ■ b

 kah*s(E) and h*p(kE) = kah*jj(E) where k £ 0, kE = {kx: x € E} .

 We have the following theorem for closed sets and the D

 derivation basis.

 Theorem 2.1. Let E be a closed set in [a,b]. Then ^(E) £

 h*D(E) *

 Proof . If h*jj(E) = ® there is nothing to prove. Assume

 h*jj(E) < a>. Let e > 0 be given. Let 6: R R+ be such
 that (x - 6(x), x + ô(x)) o [a,b] 'E, if x€ [a,b] 'E,

 [a, a + 6(a)) a [a,b] 'E if x = a, similarly if x = b, and
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 V(h*, ßg[E]) < h*jj(E) + e. First assume |^(E) < ®. Let 6Q be

 such that n^(E) - e < ^ (E). Let ô^(x) = min{ô(x), ÔQ} . Let
 o

 u C where ii[E] = { ( , xļ)}ļ2i an<* Xļ*E. Then, E C

 1^ Therefore ^ (E) * ^ h( 1 1 | ) Ś V(h*. ß6 [E]).
 O 1

 Hence ļih(E) - e < V(h*, ß& [E] ) i V(h*, ß0[E]) < h*D(E) + e. Thus

 nV) Ś h*D(E).

 3. The lower right derivate of h is finite at 0.

 Now we consider the case where the lower right derivate of

 h at 0 is finite. In this case the Hausdorff measure is a

 multiple of the Lebesgue measure. D+h(0) is the corresponding

 factor .

 Theorem 3.1. Let E be a closed set in [a,b] . Let

 r - D+h(0) < ®. Then ^h(E) » r|E|.

 Proof ♦ Let e and 5 be positive numbers and let A *

 {t€ (0,6): h(t)/t < r+e}. Further let J^, j£> ••• be intervals

 such that E C UJ¿ and I(r+e)|jjJ < (r+e)|E| + £• Subdividing

 the intervals we get intervals Iļ, I2» ••• such that E c

 U ig and that ļ Ig ļ € A for each s. Then ^ ] Ifl | )

 < £( r+e) I Ig I < (r+e)|E| + e whence n^(E) Ś c | K | . For the other
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 inequality, let e > 0 be given. Then there exists a ÔQ > 0

 such that r-e < infrty, ,.h(a)/a for all 6 < 6 • Let {I*} be
 Usasò o J-

 any sequence of open intervals such that E c |ljj ^ ® ^

 60. Then ( r- e) 1 1± ļ < h( | IŁ | ) . Therefore

 inf íXiC1"- c> I !£ I : E c Ulļt ļ I± I < 6} í H¿(E) which implies

 that (r-e)ļEļ < n^(E). Since e > 0 was arbitrary, r|E| £

 H^(E) . Thus t|e| = ļi^(E) where r = l/hCO) < ®.

 When D+h(0) < ®, then h*s(E), h*p(E) and h*p#(E) are a

 multiple of the Lebesgue measure and the corresponding factor is

 D+h(0).

 Theorem 3.2. Let R = D+h(0) < ®. Then for E measurable, R | E |

 = h*s(E) = h*D(E) = h*„#(E).

 Proof . First we show that h*p#(E) <1 R | E [ . Let R « D+h(0) =

 infg^Q su^0<a<6 ^(a)/a < "• Let e > 0 be given. Then there

 exists a 6q > 0 such that if 6 < ÔQ, sup^^g h(a)/a < R+e.

 Then, there exists a sequence °Pen intervals such

 that no three intervals intersect (i.e., no interval is contained

 in a union of others) and (R+e)|ljJ < ( R-H e> | E | * e.
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 Define 6: [a,b] such that (x - ô(x) , x + 6(x)) c: i^,

 if xi I^, and 6(x) < 6Q for all x. Let u be a partition

 of [a,b], such that n c ß' and let n[E] = {(Jļ>

 Then, h( | J± | ) < (R+e^JJś (R+e) | X± | . Therefore

 V(h*, ß*[E]) i (R+e)|l±|. Hence h*D#(E) Ś (R+e) ļ E| + e.

 Thus, h*D#(E) i R|e| .

 We now prove the inequality R ļ E ļ £ h*g(E). Let e > 0 be

 given. Then, for each t > 0, there exists an at < t such

 that R-e < h(2at)/2at. Therefore (R-e)2at < h(2at) for each

 t > 0. Let 6(#) be any positive function. Then for any e > 0,

 there exists a t > 0 such that [x-at, x+at] CL (x-ô(x), x+ô(x))

 and 2at < e. Hence by the Vitali Covering Theorem, there are

 points x±€ E and positive numbers a^ such that

 Ie v [xr aļt x±+ a±] ' =0

 and the intervals [x¿~ a¿> a^] are disjoint. Therefore

 (R-e) I E J < (R-e)|[xi- a¿, x£+ ai] | + e < h(2a±) + 2e

 £ V(h*, ß®[E]) + 2e. Since ô(*) was arbitrary, (R-e)|e| £

 h*s(E) + 2 e which Implies that R | E | 1 h*g(E).

 The proof of the inequality R | E | £ h*^(E) follows as above

 with 2at replaced by at and the two-sided interval by one-

 sided.
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 It can therefore be concluded that when the derivative of

 h at 0 exists and is finite then the Hausdorff measure agrees

 with the measure generated by the symmetric derivation basis, the

 D derivation basis, and the derivation basis. However, if

 l)+h(0) < D+h(0) < », none of the measures generated by the three

 derivation bases agree with the Hausdorff measure. Nonetheless,

 the results given above suggest a close relationship between these

 measures. That this is not so is shown by the results which

 follow.

 4. The right derivate of h is infinite at 0.

 One question that remains is what is the relation when h

 has an infinite derivate at 0. For the derivation basis, the

 answer is trivial.

 Theorem 4.1. Suppose D+h(0) » ® . Then, if E is any non-empty

 set in [a,b], h*D#(E) - ».

 Proof . Let M be any positive integer, let Ô: [a,b] R+ be

 any positive function, and let x€E. Let e > 0 b« such that

 [x-e, x+e] a (x-ô(x), x+6(x)). Since D+h(0) » 08 , there

 exists e' with 0 < e' < e and a positive integer n such
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 that nh(2e'/n) > M.. Let n be a partition in ßg such that

 {(I^x )} it, ļlļļ = 2e'/n» Iļ are non-overlapping and

 U,*, li CI [x-e, x+e]. Then h(|l|) I hdlj) =

 nh(2e'/n) > M. Hence V(h*, ß^[E]) > M. Since ô(») was

 arbitrary, h*D#(E) £ M. Since M was arbitrary, h*D#(E) = ®.

 Sufficient conditions are given below for the h*^ measure

 of a set to be zero. The conditions are those given by

 Besicovitch and Taylor [3] for a set to be of p.*1 measure zero.

 (That not all sets of measure zero are of h*g measure zero

 will be shown later.)

 Theorem 4.2. Let E C [0,1] with E = the closure of E of

 Lebesgue measure zero and let be the contiguous

 intervals of E. Let h be concave down. Suppose I I ) <

 ®. Then h*D(E) = 0.

 Proof » Let e > 0 be given and choose N so that

 < e. Let { en) satisfy In=ļ h( en) < e* Let 6(x) ■ dist(x, E)

 if x^E, 6(x) = en/2 if * is an endpoint of JR, and for all

 other points let ô(x) « dist(x, Then, if n is any

 partition of [0,1] with it c ß6, % = {I.}, Ï h( ļ I ļ ) »
 j J
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 1. 2

 £ 1. h(|lj|) + £ 2 h( ļ I, I ) where the first sum is ovec those

 intervals Ij which have their endpoint Xj an endpoint of a
 contiguous interval to E and the second sum is that of the

 remaining intervals. Thus, J* h(ļljļ) Ś £ ^(en) ^ e*

 Because ļ E ļ = 0, for each j, ļl^ļ = ^ Since
 1 1 N

 each I. from L ) does not meet U. 1 1 J. and since each J< 1 , J L i=l i 1

 2

 i > N, can intersect at most two of the Ij, £ 2 h(ļljļ) £

 ^i-N+1 h(lJiD which follows from the concavity of h. Thus,

 ^ 3 e and since e > 0 was arbitrary, h*p(E) = 0.

 An example of an application of this theorem is given by

 E, the Cantor Ternary Set, in [0,1] where h(x) » xŒ, a ■

 log b/log 3 and 2 < b < 3. For if are Ł^e contiguous

 intervals of E, then iMnlłn=i = (1/3, 1/9, 1/9, 1/27, 1/27,

 1/27, 1/27, l/3n, ..., l/3n, ...} where there are 2n

 intervals of length l/3n+^. Therefore, ][n«i = +

 + 1/b2 + 1/b3 + 1/b3 + 1/b3 + 1/b3 + ... + l/bn + ... + l/bn + ...

 * In"o 2n(l/bn+^") < ® since In"o (2/b)n is a geometric series

 with (2/b) < 1. Hence by the theorem ^(E) » h*p(E) » 0.
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 Corollary 4.1. fi countable union of sets En of_ measure zero

 satisfying ^ 00 » where are the contiguous
 * it

 intervals of En , ls_ of_ h ^ and h g measure zero and_ hence
 it it

 all countable sets are of h ^ and h s measure zero.

 The following example shows that the conditions in Corollary

 4.1 are not necessary and sufficient.

 Example 4.1. Let h(x) = xa where a£(0,l). Then a set E can

 be constructed such that h*g(E) = 0 and the contiguous intervals

 of E, {In} in [0,1] satisfy ïnh(|ln|)--.

 Construction. Let A be a non-empty closed set where h*g(A) =

 0, AC [0,1]. Let ian}n-i ^e a sequence of positive numbers

 such that I : a =1 and J h(a v ) = ®. Let { e„} be a Łn=l n ¿n=l v n'

 sequence of positive numbers chosen such that en < an and

 £ h((l-en)an) = ®. By Observation 2.3, h*s(£a^ = ® ^or eac^

 n. Let {IQ} be a sequence of non-overlapping intervals such

 that |lQ| = an and Un IQ * [0,1]. In the left hand side of

 each In, put the set cnA. Let this be DQ. Let E - Un Dn-
 ft ft

 Then, h ft S(E) £ £n h ft g(enA) = 0 and the contiguous intervals of

 E in sum is larger than £n ((l~en)an) = 00 •

 The following is an example of a set of Hausdorff measure
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 *

 zero and h measure infinity.

 Example 4.2» Let h and k be increasing functions on [0,®),

 h(0) = k(0) ■ k(0+) « 0, h,+(0) = <». Then there is a compact

 set E such that h*g(E) « ® and |a.^(E) = 0.

 Proof . Let pQ = 'Q ■ 1, L^° » [0,1]. We proceed by

 induction. Suppose that n is a natural number and that disjoint

 closed intervals L j ^ (j ™ 1, Pn-x) °f length are
 given. Since h' (0) = <», there is a natural number q such

 that qh('n_ļ/2q) > n. Partition each interval L^ ^ into 2q

 intervals of equal length. We obtain intervals j" (i= 1, ...,

 2qpn_i>. There is an ti€(0, kn_]_/2q) such that 2qnpn_ļk(Tļ) <

 1. For each i let L^ be the closed interval of length Tļ

 with the same center at Then ļj^ļ - ^ l^il so
 lJ C jJ. We set pn = 2qpn_ļ, Xn = Tļ. Obviously Xn £ 2-n and

 (!) k(ļL"ļ) - pnk.(n) < 1/n for each n.

 In the rest of the proof we write qn = q.

 Let E =■ nn(Ut L") and let 6: [0,1] -► R+, M(R+. Since

 [0,1] » ^n^X2 ^(x) ^ l/nK there is a natural number N such

 that E H {x: 6(x) > 1/N} is dense in some portion of E, say

 in E HLj ' where < 1 and n > M. There are numbers
 y0> ^2q such that a [y0» ^2ql and that Uyt-1' yt^t^l
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 = {j^: cr Jj *}. For v « 1

 (y2v_i» y2v)- Let Sy be the closed interval with center xy of

 length ^n-i/2q and let n = {Sv}v2ļ* It is easy to see that the

 intervals Sv are disjoint. Since ô(xy) > 1/n > %_]/<!> we

 have il C ßg(E). Thus, V(h*, ß^[E]) 2 I h(|Sy|) - <lh('v-l/2q) >

 n > M so that h*^(E) = 00 . The relation ^(E) » 0 follows at
 o

 once from ( ! ) .

 The author wishes to thank one of the referees for this

 statement and proof of Example 4.2.

 We now consider sets of finite, nonzero Hausdorff measure and

 give some necessary conditions for the symmetric derivation basis

 and the D derivation basis measures to be infinite (respectively

 finite) .

 Theorem 4.3. Let E _be^ a_ nowhere dense, closed set of Lebesgue

 measure zero. Suppose 0 < ^(E) < Then if

 JE d^h(x) " ®» h*D<E) " "•

 Proof » Note that d^(x) is defined to be °> if dp(x) = 0.

 Assume J d *(x) d^(x) » ®. Let M be a positive integer. £ D
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 Then, there exists a -simple function s(x) = an^£ such
 n

 that d_*(x) > s(x) v ' for all x€E and T r. a |i^(E v ) > M where D v ' ^n=l n^ v n'

 the En are pairwise disjoint. Let e > 0 be given. Because

 |i is a regular measure, there exists a closed set Fn O En

 such that M^(F ) > U^(E ) - e/a 2n, n= 1, 2, ..., r. Let
 n n n

 6(x) be any positive function. Let 6ļ(x) be a positive

 function such that 6^(x) £ 6(x) for all x€[0,l],

 (x-ôj^x), x+6ļ(x)) e [0,1] ' E if x£[0,l]'E, and 6ļ(x) <

 (l/3)dist(Fn, Um'lf m^n Fm) for x€Fn, n = 1

 l/an > djj(x) for xíEa, for each e < 0ļ(x), there exists an

 I such that X is a left hand end point of I, |l| < e and

 (*) l/an > |ih(E H I)/h(|l|).

 For each n, by the Vitali Covering Theorem for Hausdorff

 measures, there exists intervals {ln}^, satisfying (*) which
 S S~ J.

 are disjoint J and T ^ ^(F ñ In) > [i^(F ) - e/a 2n. The J ^s=l n s n' n

 choice of 0ļ(x) implies that all 1^ are pairwise disjoint.

 Therefore ^ h( ( | ) > an „h(E (1 ij)

 > ïn'l »» Cî """n " O > Ul

 = ùn=l I r a fih(F x n' ) - I Ln»l r. e/2n > J Ln=l r. a n^ nh(E v ) - 2^ ^n=l r. e/2n ùn=l n x n' Ln»l Ln=l n^ v n ^n=l
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 > M - 2e. Therefore. V(h*, ß61 [E] ) 1 M - 2e. Hence, h*D(E) £

 M since V(h*, ß^[E]) ¡> V(h*, ß^[E]) and ô(x) was
 ic

 arbitrary. Since M was arbitrary, h q(E) ■ ®.

 Note. If E is the Cantor set and h(x) = xa where a =

 log2/log3, Besicovitch [1] proved that dp(x) =0 on E.
 *

 Therefore h p(E) = ® by the above theorem.

 The analogous theorem holds for the symmetric derivation

 basis .

 Theorem 4.4. Let E _be_ a^ nowhere dense , closed set of Lebesgue

 measure zero. Assume 0 < ^(E) < ®. Then, if d_^(x) d^(x)

 = o», h*a(E) = ®.

 Proof . The proof is the same as that for Theorem 2.6 with

 ds(x) replacing dQ(x).

 The following example, given by Besicovitch [1], is that of a

 set E of finite Hausdorff measure which has d_(x) = 0 at

 almost every point x € E. For this set h* (E) « <» by the S

 previous theorem.

 2 k

 Example 4.3. Let E ■ {x: x » a^/n^ + + ak^n^ + ***
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 ok-l 2^"! 2^"^
 where takes the values 0, In , 2n , 3n . ,

 9k-l 9k-l
 (n^ -l)n* for all k} . Besicovitch notes that if n = 10

 and h(x) = then 0 < ii^(E) < « and ds(x) = 0 a.e. p*1.
 4c

 Therefore h S(E) = ».

 The above Theorem 4.4 does not give necessary and sufficient

 conditions for h*s(E) to be finite. For let Eļ be a set such

 that n^(Eļ) = 0 and h*g(Eļ) = ». Let E be a set such that

 0 < ^k(E) < oo and J d *(x) d^i^(x) < ®. Then ¡L S

 JE UE dgl(X) d^h(X) < ® aIld h*S(El U E) = °° •

 A necessary condition for h* (E) to be finite when p,*1 is S

 finite is given by the following theorem.

 Theorem 4.4. Let E = UnEn where E and En are measurable

 sets and the E__ are pairwise disjoint. If de(x) £ d_ > 0 for ■ - - - - - - - il - - - - > ■ ■ ■ - o II ■

 each X * E_ n and | *, d ^U^(E r ) < », then h*_(E) s < ».

 Proof . For each x € E, let ô(x) be so small that if |l| <

 6(x) and x(En, then ^(EQ 0 I)/h(|l|) > (l/2)dn> Then, for

 any partition u c where it[E] « { ( » x^)}ļ™ļ»

 Lm. Łi=l hC 1 1 1 i' . I ) < **1=1 L™ Łn=l I " 2d"Vh(E n r n n I,) i * 2l £,n=l " d~V(E n K n ) < ». Łi=l 1 i' . **1=1 Łn=l n r n i £,n=l n K n
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 Therefore V(h*, ß|[E] ) ¿ 2^ d~V(En) and h*g(E) *

 2^ Ln=l " d"1lih(E r ) < ». Ln=l ti r n

 Corollary 4.2. If at each point of E, d_(x) > d > 0, then

 h*s(E) < ».

 The same theorems hold for the Ü derivation basis*

 Even given the necessary conditions for a set to be of finite

 (or infinite) measure with respect to the symmetric derivation

 basis (respectively, the D derivation basis) it does not follow

 'k

 that when h S(E) is finite that it is equ^al to the Hausdorff

 measure. In the following example a set E has finite measure

 with respect to the symmetric derivation basis measure, but this

 measure is not equal to the Hausdorff measure of the set.

 Example 4.4. The Cantor Ternary Set E with h(x) = xa where

 a ■ log2/log3 satisfies u^(E) = 1 < h*_(E) < ». (It is known - - ■ ■ S

 that ļih(E) = 1, nh(E n [0, 1/3]) - 1/2 etc.)

 Proof . Let J be any symmetric interval about a point x€E.

 Let I be the largest contiguous interval of E in [0,1] in

 J. Without loss of generality, assume I is to the right of x

 in J. The h(ļlļ) £ O E) since J contains at least one
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 portion of E of diameter |l| to the left of I in J and

 each such portion has ļj.*1 measure h(|l|). For e*ch Interval I

 = [a,b] contiguous to E there are two intervals contiguous to

 E on opposite sides of I one of these intervals having length

 three times the length of I. It follows that |j| can be no

 larger that 12 times ļ I ļ ; for otherwise, a larger interval

 than I would be contained in J. Thus h(ļjļ) £ h( 12 ļ I ļ ) =

 h( 12 ) h( 1 1 1 ) í h(12)nh(J O E). Hence ^h(J OE)/h(|j|) *

 (ih(J C' E)/h(12)lih(J fi E) = l/h(12) . Therefore dg(x) £ l/h(12)

 for all x€E. Hence h*_(E) < ®. Again, let J be any interval

 with center x€E. Let I be the largest contiguous interval

 of E in [0,1] contained in J. Assume I is to the right

 of X in J. Fix I = [a,b] with |l| = l/3n. Fix y in

 [b, b + l/3n] f' E. Let x be in [a - l/3n, a] O E. Then

 (i^(E H J) does not depend on the choice of x because E flj =

 E 0 ([a - l/3n, a] U [b,y]) no matter which x in [a - l/3n, a]

 HE is chosen. However, ļjļ is minimized when x = a. There-

 fore fix x = a. Now let y vary in [b, b + l/3n]. Since the

 left hand endpoints of the contiguous intervals in [b, b + l/3n]

 are dense in [b, b + l/3n] HE, it suffices to prove that

 h(|j|) Ž M2)(2/3)^(E f' J) when y is in one of the contiguous

 intervals of [b, b + l/3n] O E.

 First, let y £ b + l/3n. Then h(|l|) = (l/2)pih(E O J)

 and I J ļ I 4 1 1 1 . Therefore, h(|j|) I h(4)(l/2)jih(E r' J) -
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 h(2)h(2/3)ļj.h(E H J) > h(2)(2/3)nh(E H J) . The principle of

 mathematical induction will be used to prove that h(ļj|) £

 h(2)(2/3)n^(E H J) when y is in one of the contiguous

 intervals of [b, b + l/3n] A E. Let m = 1. Let y €

 [b + l/3n+1, b + 2/3n+1] • Then, h(|l|) = (2/3)^ih(E 0 J) and

 I J I 1 2 1 1 1 + (2/3) 1 1 1 = [(6 + 2 ) /3 ] 1 1 1 . Therefore h(|j|) *

 h( (6 + 2)/3)(2/3)iih(E A J) = h(6 + 2)(l/3)nh(E n J) =

 h(2)h(3 + l)(l/3)tah(E 0 J) > h( 2 ) h( 3 ) ( 1/3 ) ^h(E A J) =

 h(2)(2/3)(ih(EA J). Assume h( | j| ) > h(2)(2/3)nh(E A J) for y

 in the contiguous intervals I' in [b, b + l/3n] A E where

 1 1' I » l/3n+^ for all K < m. Let y be in one of the

 contiguous intervals I" in [b, b + l/3n] f) E where |l"| =

 1/ 3n+m ^ Then b + jm-1 S=1 j S /3n+s + 1/3n+m ^ y ¿ b + £m"ļ S - JL j S /3n+s S=1 S S - JL S

 + 2/3n+m where js = 0 or 2 and (1 + r/2m)h<I) = nh(E OJ)

 where r = 1° LSS1 | i 28 ł 1 where i_ S ■ 0 if j. Js ■- 0 and i_ s = 1 LSS1 S S Js s

 if j8 - 2. Note that |j| £ 2 | I | + 2(k/3m)|l| where k =

 IUI J.3* + 1. Therefore h(|j|)

 * h(2 1 1 J + 2(k/3m)|l|) - h(2)h((3m+k)/3m)(2m/(2m+r))p.h(E 0 J)

 - h(2)h(3m+k)(l/(2m+r))iih(EOj). Hence, it suffices to show

 that h(3m+k)/(2m+r) ¿ 2/3. Now, 3h(3m + jg3S + 1) =

 3h( [ 3m2 + 2lm~] S31 j 3 3s + 2] /2) > 3[h(3m2) + 1™'] S=± h(2j S 3s) + h(2)]/2 S31 3 S=± S
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 - 3h(2/3)h(3m) + h(2j 3s)/2 + 3h(2)/2 > 2m2 +
 S3x S

 (3/2)h(2)XmZÎ" S- 1 i S 2S + 3h(2/3) > 2m2 + 2^m~ļ" S- J. i S 2S + 2 = 2ra2 + 2r. S- 1 S S- J. S

 Thus, h(3m+k)/(2m+r) £ 2/3 and h(|j|) > h(2)(2/3)^h(E H J).

 By the principle of mathematical induction, h(ļjļ) >

 h(2)(2/3)n^(E 0 J) for any y in the contiguous intervals of

 [b, b + l/3n] f' E. Therefore, if {J¿} is any finite collection

 of non-overlapping intervals in ß® that covers E, ^ h(ļj^ļ) £

 h(2)(2/3)nh(E O JA) > h(2)(2/3)nh(E) = h(2)(2/3). Thus,

 V(h* , ß® [E] ) > h(2)(2/3) for all 6(x) which implies that

 h*s(E) ^ h(2)(2/3). It remains to show that h(2)(2/3) > 1.

 Now h(2 ) ( 2/3 ) = h(6)/3, so it suffices to show that h(6) > 3.

 But, h(6) = h( (9 + 3 ) / 2 ) > [h(9) + h(3) ] /2 = (4 + 2)/2 = 3.

 In example 4.2 a set was found to tu» ve Hausdorff measure zero

 and symmetric derivation basis measure infinity. It is unknown as

 to whether a Borei set of infinite symmetric derivation basis

 measure contains a set of finite symmetric derivation basis

 measure [2]. Assuming it does, the above examples show that when

 l)+h(0) = for a closed set E, all possible combinations of

 zero, finite and infinite values can occur subject only to the

 condition that p,^(E) £ h*g(E) £ h*^(E) where the second

 inequality is valid when h is concave.
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