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Derivation Bases and the Hausdorff Measure

1. 1Introduction.

A derivation basis B 1is a collecton of sets B where B
is a collection of interval-point pairs which are associated by a
rule which determines how to choose the interval I in terms of
the point x. For instance, in this paper, any positive
function §6(e¢) 1is used to determine the size of I; e.g. for
the D# derivation basis, ﬂg = {(I,x): I < (x - 6(x), x + é(x))}
are the elements of D#.

This paper answers a question posed by B. S. Thomson in
"Derivation Basis on the Real Line" [5, p.l1l64] on the relation
between the Hausdorff measure and the D derivation basis. The
question is stated as follows: “"For 0 < p < 1, let mP denote
the interval function I » |I|P = mP(I). Then the measure uP
evidently is related to the classical Hausdorff p-dimensional
measure. More generally, if h 1is a monotonically increasing
function on [0,«), h(0) = 0, then h* denotes the function
I » h(m(I)) = h(]Il) and h*D again represents a measure on R
that should be related to similar ideas in the theory of Hausdorff
measures. What is the exact relation here?” It will be shown

that the Hausdorff measure on a set equals the measure generated
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by the D derivation basis (1) when the derivative of h at O
exists and is finite, (2) when the set is countable or (3) when
the sum Jh(|I_ |) over the contiguous intervals of a given closed
set converges. However, it will also be shown that the symmetric
derivation basis gives rise to a measure which is finite on more
sets of finite Hausdorff measure than the measure from the D

derivation basis.

2. Preliminary information.

The following definitions will be needed.

Definition 2.1. Hausdorff measure. Let h be a monotone

increasing function on [O,«), h(0) = 0, and continuous from the
right such that the range of h 1is in [0,®). For &8 > 0 and

any set E, let

wh(E] = 1nf{],2 (|1, : E e U2 1, |10 <56

and I; 1is an interval}
hy. h
and p [E] = sup6>O “5[E]‘ [4, p.51]

Definition 2.2. Let h be given as above. Then for a positive
function &(¢) and any set E, let

BZ = {(I,x): x 1s a midpoint of I <« (x - 86(x), x + 6(x))},
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v(n", BZ[E]) = Sup{}:’;[E] h(IIiI): n = {(Ii’xi)} is a partition of

[a,b] in sz and (I,x)€ n[E] if x€E)}
x g * s * ]
and V(h , D°[E]) = infév(h . Bé[E]). When V(h , D°[E]) 1is
being considered as a measure rather than a variation, we write

* *
h™g(E) = v(h", D(E]).

Definition 2.3. Let h and 6(¢) be given as above. Then let

B, = {(I,x): x 1s an endpoint of I < (x - &(x), x + 8(x)},

* 1
v(h, B&[E]) = suplzn[E] h(lIil): n 1is a partition in B and

(I,x)€ n[E] 1if x€E},
and h*[(E) = V(h", D[E]) = infgV(h", B4[E]).

Definition 2.4. Let h and 6&(¢) be given as above. Then, let

BZ = {(I,x): T (x - 8(x), x + &6(x))},

V(n*, sg[E]) = sup{Eﬂ[E] h(|]’.i|): n 1is a partition in Bg and

(I,x) € n[E] 1if x€E},

and h* #(E) = v(n*, DP(E]) = 1nfgv(n*, Bg[E]).
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Definition 2.5. Let h be as given above. Let E be any set,

then the lower symmetric density of E at x 1is ds(x) =

limIII*O uh(E N I)/h(|I|]) where I 1is symmetric about x.

Definition 2.6. Let h be as given above. Let E be any set,

then the right sided lower density of E at x 1is dD(x) =

limIII*O ph(E N I)/h(|I]) where I has x as a left hand

endpoint.
We will need the following observation.

Observation 2.1. Let E c [a,b]. Then, h*s(E) £ h*D#(E) and

h*D(E) < h*D#(E). If h 1is concave down, then h*s(E) < h*D(E).

Proof. Let &: R » R'. Then, Bg[E] cag[z] and B4[E] ¢ sﬁ[z].
Therefore, V(h", B3[E]) < V(h*, ﬁz[E]) and V(n*, B.[E]) <

# |
v(n*, BSIE]). Hence h* (E) < h*#(E) and h*(E) < W #(E).
Suppose h 1s concave down. Let n C:B§ and let =n[E] =

n

{(xxp}o, - Then, 1,00 w(lT,D) < 1,0 2n(]1,|/2). Let =' <
Bs such that n'[E] = {(Ii, xi), (II, xi)}izl where Ii, 13 are
closed intervals such that x; 1is a right hand endpoint of Ii

and the left hand endpoint of I and Ii U I; =1

1 Then, ='[E]

io
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< Bg[E]. Since 2121 2h(|Ii|/2) = zi:l h(|1i|) + '2121 h(llzl)»

v(n*, BZ[E]) < v(n*, BglE]). Therefore h* (E) < h*p(E).

The most frequently considered Hausdorff measures are the
a-dimensional measures, where 0 < a < 1, obtained by letting
h(x) = x*. The h*s and h*D measures have two properties in
common with the Hausdorff measures when h(x) = x%; namely, those

given in the next two observations.

Observation 2.2. h*s and h*D are translation invariant.
Observation 2.3. Let «€(0,1) and h(x) = x*. Then, h*s(kE) =

k%h* (E) and h*p(KE) = k®h* (E) where k 20, KE = {kx: x €E}.

We have the following theorem for closed sets and the D

derivation basis.

h*p(E).

Proof. 1If h*D(E) = » there is nothing to prove. Assume
h*D(E) {o. Let €> 0 be given. Let §: R » R" be such
that (x - 6(x), x + 6(x)) < [a,b]\E, 1if x€ [a,b]\E,

[a, a + §(a)) <« [a,b]\E if x = a, similarly if x = b, and
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V(h*, ﬁé[E]) < h*D(E? + €. First assume uh(E) { ». Let 60 be
such that ph(E) - €< pg (E). Let Gl(x) = nin{6(x), 60}- Let
o
n < 661 where =[E] = {(Ii’ xi)}i:1 and x{ € E. Then, E C
n h n *
LJ1=1 I,. Therefore uéo(E) < 2131 h(|11|) < V(h, sél[z]).
h * * *
Hence p (E) - € < V(h , 35 [E]) € V(h , leE]) <h D(E) + €. Thus
1

h *
B (E) < h (E).

3. The lower right derivate of h is finite at O.

Now we consider the case where the lower right derivate of
h at O 1is finite. 1In this case the Hausdorff measure is a
multiple of the Lebesgue measure. th(O) is the corresponding

factor.

Theorem 3.1. Let E be a closed set in ([a,b]. Let

r = D'h(0) < =. Then uP(E) = r|E|.

Proof. Let € and & be positive numbers and let A =
{te(0,8): h(t)/t < r+e}. Further let J;, J,, ... be intervals
such that E < UJ; and 2(r+e)|J1| < (r+€)|E| + e. Subdividing
the intervals Ji we get 1intervals 11, 12, ees such that E C
LJIS and that |I | €A for each s. Then ph6 < Eh(llsl)

< 2(r+e)|Is| < (r+g) |E| + € whence ph(E) € r|E|. For the other
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inequality, let € > O be given. Then there exists a 6§, > 0

such that r-¢ < inf h(a)/a for all 6§ < 60. Let {Ii} be

0<a<s

any sequence of open intervals such that E < | |1,] <8<

1=1 42
8y- Then 2121 (r-e)|1,] <« 21:1 h(|I;[). Therefore
inf{ii(r-e)llilz EcUr, |1,]< 8} < pg(E) which implies

that (r-e¢)|E| < uP(E). Since € > 0 was arbitrary, r|E| €

u(E). Thus r|E| = uP(E) where r

D'h(0) < =.
+ . * * *
When D'h(0) < =, then h J(E), h p(E) and h D#(E) are a
multiple of the Lebesgue measure and the corresponding factor is

DTh(0).

Theorem 3.2. Let R = B+h(0) < ». Then for E measurable, R|E]|

* * *
= h" (E) = h'(E) = ™[ #(E).

Proof. First we show that h*D#(E) < R|E|]. Let R = D+h(0) =

inf h(a)/a < ». Let € > 0 be given. Then there

6>0 SYPoca<s

exists a 6, > 0 such that if 6 < 8, h(a)/a < R+e.

#YPocacs
Then, there exists a sequence {Ii}i:1 of open intervals such

that no three intervals intersect (i.e., no interval is contained

in a union of others) and 21:1 (R+e)|Ii| < (R+e)|E] = e
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Define §: [a,b] » RY such that (x - &(x), x + 8(x)) & 14,

if x€I;, and 8(x) < 60 for all x. Let © be a partition
of [a,b], such that = < Bg and let =[E] = {(J,, xi)}izl.
Then, J.0, h(|J; 1) < I,2, (R+e)|3 |<,2; (R+e)|1;]. Therefore
v(h*, Bﬁ[E]) < 21:1 (R+e)|I,|. Hence h*D#(E) < (R+e) |E| + e.
Thus, h*p#(E) < R|E|.

We now prove the inequality R|E| £ h*S(E). Let €> 0 be
given. Then, for each t > 0, there exists an a, < t such
that R-e < h(Zat)/Zat. Therefore (R-e)2a, < h(2a,) for each
t > 0. Let &(¢) be any positive function. Then for any € > O,
there exists a t > 0 such that [x-at, x+at] < (x=8(x), x+6(x))
and Zat < €. Hence by the Vitali Covering Theorem, there are

points xié.E and positive numbers ay such that

|E N\ U1:1 [x,- a;, x+ aill =0
and the intervals [x;- ay, x;+ aj] are disjoint. Therefore
(R-©) [E| < };7) (R-o)|[x;~ a;, x;+ a ]| + €< [0 h(2a)) + 2¢
< V(h*, BZ[E]) + 2e. Since &(+) was arbitrary, (R-¢)|E| £
h*,(E) + 2¢ which implies that R|E| < h* (E).

The proof of the inequality R|E| ¢ h*D(E) follows as above
with 2at replaced by ap and the two—-sided interval by one-

sided.
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It can therefore be concluded that when the derivative of
h at 0 exists and is finite then the Hausdorff measure agrees
with the measure generated by the symmetric derivation basis, the
D derivation basis, and the D# derivation basis. However, if
th(O) < B+h(0) { », none of the measures generated by the three
derivation bases agree with the Hausdorff measure. Nonetheless,
the results given above suggest a close relationship between these
measures. That this is not so is shown by the results which

follow.

4. The right derivate of h is infinite at O.
One question that cemains is what is the relation when h
has an infinite derivate at 0. For the D# derivation basis, the

answer is trivial.

Theorem 4.1. Suppose ‘3+h(0) = . Then, if E 1is any non-empty

set in [a,b], h'p#(E) = =.

Proof. Let M be any positive integer, let 6&: [a,b] » R+ be
any positive function, and let x€E. Let g > 0 be such that
[x-€e, xte] = (x-6(x), x+5(x)). Since .B+h(0) = o there

exists €' with 0 < € < € and a positive integer n such
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that nh(2€'/n) > M._ Let = be a partition in ﬁg' such that

{(Ii’xi)}i:1 < m, |1;] = 2¢'/n, 1; are non-overlapping and

Uizl Ii < [x-€g, xte]. Then zﬂ[E] h(|I|) 2 21:1 h(|Ii|) =

nh(2€'/n) > M. Hence V(h*, BZ[E]) > M. Since 68(*) was

arbitrary, h*D#(E) 2 M. Since M was arbitrary, h*D#(E) = ®,

Sufficient conditions are given below for the h*D measure

of a set to be zero. The conditions are those given by

Besicovitch and Taylor [3] for a set to be of ph measure zero.

h

*
(That not all sets of p° measure zero are of h g Tmeasure zero

will be shown later.)

Theorem 4.2. Let E < [0,1] with E = the closure of E of

Lebesgue measure zero and let {Ji}izl be the contiguous

intervals of E. Let h be concave down. Suppose Eizlh(lJil) <

©. Then h*D(E) = 0.

@
Proof. Let € > 0 be given and choose N so that 21=N+1 h(|3, )
< e. Let {eg,} satisfy znzl h(e ) < €. Let 8(x) = dist(x, E)

if x¢E, 8(x) = e /2 if x is an endpoint of J,, and for all

N

i=1 Ji)° Then, if = 1is any

other points let &(x) = dist(x, U

partition of [0,1] with =<cBg, = = {I;}, Zx ¢E h(|Ij|) =
b
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21 h(IIjI) + 22 h(lel) where the first sum is over those
intervals Ij which have their endpoint x4 an endpoint of a

contiguous interval to E and the second sum is that of the
remaining intervals. Thus, 21 h(|1j|) <y h(e ) < e-
— . @
Because |E| = 0, for each j, leI = 14op 1940 Ijl. Since
each I. from 22 does not meet U N J and since each J
i i=1 "1 i

i > N, can intersect at most two of the I 22 h(IIjI) <

@
21=N+1 h(lJil) which follows from the concavity of h. Thus,

)) h(|I,|]) < 3¢ and since € > 0O was arbitrary, h*D(E) = 0.
xjeE i

An example of an application of this theorem is given by

E, the Cantor Ternary Set, in [0,1] where h(x) = x%*, a =
log b/log 3 and 2 < b < 3. For if {Ji}i:1 are the contiguous
intervals of E, then {lJnI}n:I = {1/3, 1/9, 1/9, 1/27, 1/27,
1/27, 1/27, ..., 1/3%, ..., 1/3®, ...} where there are 2"
intervals of length 1/3%"1. Therefore, anl |Jn|a = 1/b + 1/b2
+1/62 + /b3 + /63 + /b3 + 1/b3 + Lo+ /B0 4+ ol + /B0 + ..
=7 2n(1/bn+l) <= since J °  (2/b)" 1s a geometric serles
n=0 n=0

with (2/b) < 1. Hence by the theorem ph(E) = h*D(E) = 0.
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Corollary 4.1. A countable union of sets E, of measure zero

satisfying 21:1 h(IJ:I) { », where J? are the contiguous

intervals of E.» is of h*D and h*s measure zero and hence

* * '
all countable sets are 25_ h D and h g Measure zero.

The following example shows that the conditions in Corollary

4.1 are not necessary and sufficient.

Example 4.1. Let h(x) = x* where ae¢ (0,1). Then a set E can

be constructed such that h*s(E) = 0 and the contiguous intervals

of E, {I}} 1in [0,1] satisfy ] h(|I |) = =.

Construction. Let A be a non-empty closed set where h*s(A) =

0, A c [0,1]. Let {an}n:1 be a sequence of positive numbers
@™ -]
such that 2n=1 a = 1 and En=1 h(an) =, Let {g,} bea

 a and

sequence of positive numbers chosen such that ¢ a

n
2 h((1-ey)a,) = =. By Observation 2.3, h*s(snA) = 0 for each
n. Let {In} be a sequence of non-overlapping intervals such

that |I | =a, and U I = [0,1]. In the left hand side of

n
each I,, put the set ¢ A. Let this be D,. Let E=U, D,.
Then, h*s(E) < Xn h*s(enA) = 0 and the contiguous intervals of

E in sum is larger than En ((1-ep)ay) = =.

The following is an example of a set of Hausdorff measure
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zero and h*s measure infinity.

Example 4.2. Let h and k be increasing functions on [O0,=),
h(0) = k(0) = k(0+) = 0, h't(0) = . Then there is a compact

set E such that h*s(E) = o and pk(E) = 0.

Proof. Let p, =i, =1, L1° = [0,1]. We proceed by

induction. Suppose that n 1is a natural number and that disjoint

closed intervals Lg_l (j=1, «¢., pn—l) of length Ap-1 are
given. Since h'+(0) = o, there is a natural number q such
that qh(kn_1/2q) > n. Partition each interval L§~1 into 2q

intervals of equal length. We obtain intervals J? (i= 1, ...,

2qp,_1). There is an 1€ (0, xn_l/Zq) such that 2qnp,_;k(n) <

n

1. For each 1 1let Li be the closed interval of length 1
n n n
with the same center at Ji' Then IJil = A\p-1/29 > ILil so that

n n -
L, ©J;. Weset p,=2qp 3, A, =n. Obviously A, <2 T and

€)) 21 k(IL;I) = p_k(n) < 1/n for each n.

In the rest of the proof we write , = q-
Let E =N_(U; LT) and let &: [0,1] » RY, MeR'. since
118t S ] : ’ ’ ‘
[0,1] = U {x: &(x) > 1/n}, there is a natural number N such
that E N {x: 8§(x) > 1/N} 1is dense in some portion of E, say

in E F\Ln-l, where NA -1 <1 and n > M. There are numbers

]
n-1 2q
Yos *+*»s yzq such that Lj = [yo, y2q] and that {[yt_l, yt]}tsl
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o« For v=1, ..., q choose a number x, €E N

(Yoy-1» Y2y)+ Let S be the closed interval with center x, of

= q
length An_l/Zq and let = {Sv}v=1' It is easy to see that the

intervals S, are disjoint. Since &(x,) > 1/n > Np-1/4, we

S * S
have © < Bg(E). Thus, V(h', Bg[E]) 2 ) h(|8v|) = ah(hp_1/24) >
n > M so that h*S(E) = o, The relation pk(E) = 0 follows at

once from (!).

The author wishes to thank one of the referees for this

statement and proof of Example 4.2.

We now consider sets of finite, nonzero Hausdorff measure and
give some necessary conditions for the symmetric derivation basis
and the D derivation basis measures to be infinite (respectively

finite).

Theorem 4.3. Let E be a nowhere dense, closed set of Lebesgue

measure zero. Suppose 0 < uh(E) < @. Then if

fo attx) a(x) = =, h' (E) = =

Proof. Note that d;l(x) is defined to be « if dD(x) = 0.

Assume IE d;l(x) dph(x) = o, Let M be a positive integer.
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Then, there exists a-simple function s(x) = z XE (x) such

n=1 n

-1 r
that dD (x) > s(x) for all x€E and 2n=1 a p (En) > M where

the E, are pairwise disjoint. Let € > 0 be given. Because

uh is a regular measure, there exists a closed set F, < E;

such that uh(Fn) > uh(En) - e/anzn, n=1, 2, ..., r. Let

8(x) be any positive function. Let 61(x) be a positive
function such that §;(x) < &(x) for all x€[0,1],

(x-&l(x), x+61(x)) < [0,1]\E if =xe€[0,1]\E, and §(x) <

r
(1/3)dist(F, Um=1, ntn Fm) for x€F,, n=1, ..., r. Since

/a, > dp(x) for x€E_, for each €< §;(x), there exists an

I such that x 1is a left hand endpoint of I, |I| < € and
(*) 1/a; > wE n 1)/h(|1]).

For each n, by the Vitali Covering Theorem for Hausdorff

measures, there exists intervals {Iz}Nn satisfying (*) which

s=1

are disjotnt and ] % W N > B ) - /a2 The

choice of él(x) implies that all IZ are pairwise disjoint.

Therefore § T I N n(|i2) > I a I M uMeEn1d

2 0l 3 Lot whr a1 > I a iR - era2®

= anl anuh(Fn) - 2n 1 8/2 > Xn =1 nu (E ) - 22:n=l e/
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> M - 2e. Therefore. V(h", B [E]) 2 M - 2e. Hence, h*p(E) 2
M since V(h*, ﬁé[E]) 2 V(h*, BGI[E]) and 6(x) was

arbitrary. Since M was arbitrary, h*D(E) = o,
Note. If E 1is the Cantor set and h(x) = x* where a =
log2/log3, Besicovitch [1] proved that dp(x) = 0 on E.

Therefore h*D(E) = » by the above theorem.

The analogous theorem holds for the symmetric derivation

basis.

Theorem 4.4. Let E be a nowhere dense, closed set of Lebesgue

measure zero. Assume O < ph(E) { . Then, if IE d;l(x) duh(x)

*
=, h¥(E) = =.

Proof. The proof is the same as that for Theorem 2.6 with

ds(x) replacing dD(x).

The following example, given by Besicovitch [1], is that of a
set E of finite Hausdorff measure which has ds(x) =0 at
almost every point x € E. For this set h*s(E) = o by the
previous theorem.

2 k
Example 4.3. Let E = {x: x = a1/n2 + a2/n2 + ak/n2 + ...
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Zk—l

k-1
where a, takes the values 0, ln R 2n2

k-1
3n2.

k-1
n2 —l)n2 for all k}. Besicovitch notes that if n = 10

(
and h(x) = x1/2, then 0 < YME) <= and d (x) = 0 a.e. ph.

Therefore h*S(E) = o,

The above Theorem 4.4 does not give necessary and sufficient
conditions for h*S(E) to be finite. For let E; be a set such

that ph(El) =0 and h*s(El) = o, Let E be a set such that
h -1 h
0 < p™E) < » and IE d_"(x) dp (x) < ». Then

-1 h *
IEIUE d_"(x) dp(x) <= and h (E; U E) = =.

h

A necessary condition for h*s(E) to be finite when pu°~ 1is

finite is given by the following theorem.

Theorem 4.4. Let E = UnEn where E and En are measurable

sets and the E_  are pairwise disjoint. If d (x) 2d;, >0 for

o ~-1h *
each x¢ E, and Znal dn o (En) { o, then h S(E) { =,

Proof. For each x€E, let 6&(x) be so small that 1f |I| <

8(x) and x€E_, then p,h(En n 1)/n(]1|) > (1/2)dn. Then, for

any partition n s’ where =[E] = ((I,, x,) T,
8 1* "i77i=1

-]

© ..-1h -1h
Loy v D < L2 17, 2d 50 B N1 <2 7 duNED) < -

239



WME ) and b (E) ¢

* s ® -1
Therefore V(h , 55[51) < 22n=1 d_

= ~-1h
2] 1 4 W(E) < =

Corollary 4.2. 1If at each point of E, dg(x) >d > 0, then

*
h s(E) { =,
The same theorems hold for the D derivation basis.

Even given the necessary conditions for a set to be of finite
(or infinite) measure with respect to the symmetric derivation
basis (respectively, the D derivation basis) it does not follow
that when h*s(E) is finite that it is equg¢al to the Hausdorff
measure. In the following example a set E has finite measure
with respect to the symmetric derivation basis measure, but this

measure 1s not equal to the Hausdorff measure of the set.

Example 4.4. The Cantor Ternary Set E with h(x) = x* where

a = log2/log3 satisfies ph(E) =1¢< h*s(E) < ». (It is known

that pP(E) =1, WPEn [0, 1/3]) = 1/2 etc.)

Proof. Let J be any symmetric interval about a point x€E.
Let I be the largest contiguous interval of E im [0,1] 1in
J. Without loss of generality, assume I 1is to the right of =x

in J. The h(|I|) ¢ ph(J N E) since J contains at least one
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portion of E of diameter |I| to the left of I in J and
each such portion has ph measure h(|I|). For each interval I
= [a,b] contiguous to E there are two intervals contiguous to
E on opposite sides of 1 one of these intervals having length
three times the length of I. It follows that |J| can be no
larger that 12 times |I|; for otherwise, a larger interval
than I would be contained in J. Thus h(|J|) £ h(12|I]) =
h(12)h(|1I]|) < h(12)uP A E). Hence uP(J nE)/B(|I]) 2
(I N E)/h(12)pP(J n E) = 1/h(12). Therefore d (x) > 1/h(12)
for all x¢€¢ E. Hence h*s(E) { . Again, let J be any interval
with center x€E. Let 1 be the largest contiguous interval
of E in [0,1] contained in J. Assume I 1is to the right
of x in J. Fix I = [a,b] with |I| =1/3". Fix y in
[b, b+ 1/3"] N E. Let x be in [a - 1/3®, a] N E. Then
uh(E N J) does not depend on the choice of x because E NJ =
E N ([a-1/3", a] U [b,y]) no matter which x in [a - 1/3%, a]
NE 1s chosen. However, |J| is minimized when x = a. There-
fore fix x = a. Now let y vary in [b, b + 1/3%]. Since the
left hand endpoints of the contiguous intervals in [b, b + 1/37%]
are dense in [b, b + 1/3"] N E, it suffices to prove that
h(|J|) 2 h(2)(2/3)p™E N J) when y 1is in one of the contiguous
intervals of [b, b + 1/3%] N E.

First, let y > b+ 1/3%. Then h(|I|) = (1/2)uE n )

and |J| 2 4|1|. Therefore, h(|J|) 2 h(4)(1/2)uP(E nJ) =
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h(2)h(2/3)uE N J) > h(2)(2/3)pP(E N J). The principle of
mathematical induction will be used to prove that h(|J|) 2
h(2)(2/3)uh(E N J) when y 1is in one of the contiguous
intervals of [b, b+ 1/3®] N E. Let m=1. Let y €

(2/3)ph(E NnJ) and

(b + 1/3%1 b + 2/3%%1]. Then, h(|I])

|J3] 2 2|1| + (2/3)|1] = [(6 + 2)/3]|I|. Therefore h(|J|) 2

h((6 + 2)/3)(2/3)uP(E N J) = h(6 + 2)(1/3)pE n T)

h(2)h(3 + 1)(1/3)™E N 3) > h(2)h(3)(1/3)E N )
h(2)(2/3)pBE N J). Assume h(|J|) > h(2)(2/30PENJI) for y
in the contiguous intervals I' in ([b, b + 1/3"] N E where
|1'| = 1/3™K for all K< m. Let y be in one of the
contiguous intervals I" in [b, b + 1/3"] N E where |I"] =

nt+s n+s

n+m m-1 n+m m-1 .
1/3%M. Then b+ ] 1 3./37 +1/377 {y<b+] 1 i /3
+2/3™® ghere j =0 or 2 and (1 + r/2MNI) = WNE NJ)
where r = Xm-l 12°+ 1 where i_=0 1f j_ =0 and 1i_=1

s=1 s s s s

if jg = 2. Note that |[J| 2 2|I| + 2(k/3™)|I| where k =

Xm-l

3 3® + 1. Therefore h(|J])
s=1 “s

> h(2|I| + 2(k/3™)|I]) = h(2)h((3%+k)/3D)(2%/(2%r))pD(ENT)
= h(2)h(3m+k)(1/(2m+r))ph(E(\J). Hence, it suffices to show

that h(3%+k)/(2%r) 2 2/3. Now, 3n(3® + JT1 3 3%+ 1) -

3h([3%2 + zzg:i js3s + 2]/2) > 3[h(3%2) + 2::1 h(2js3s) + h(2)]/2
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= 30(2/3)h(3%) + 3]°77 h(233%)/2 + 3n(2)/2 > 2%2 +

G/nT1 1 2% + 3n(2/3) > 2%2 + 2]1 1 2% + 2 = 2"2 + 2r.

Thus, h(3%+k)/(2%r) > 2/3 and h(|J]) > h(2)(2/3)uB(E n J).

By the principle of mathematical induction, h(]|J|) >
h(2)(2/3)ph(E N J) for any y 1in the contiguous intervals of
[b, b+ 1/3"] N E. Therefore, if {J4} 1s any finite collection

of non-overlapping intervals in BZ that covers E, Xi h(|Jil) 2
21 h(2)(2/3)ph(E g} Ji) > h(2)(2/3)ph(E) = h(2)(2/3). Thus,
v(n*, Bg(E]) > h(2)(2/3) for all &(x) which implies that

h*s(E) 2 h(2)(2/3). 1t remains to show that h(2)(2/3) > 1.
Now h(2)(2/3) = h(6)/3, so it suffices to show that h(6) > 3.

But, h(6) = h((9 + 3)/2) > [n(9) + h(3)]/2 = (4 + 2)/2 = 3.

In example 4.2 a set was found to have Hausdorff measure zero
and symmetric derivation basis measure infinity. It is unknown as
to whether a Borel set of infinite symmetric derivation basis
measure contains a set of finite symmetric derivation basis
measure [2]. Assuming it does, the above examples show that when
.§+h(0) = o, for a closed set E, all possible combinations of
zero, finite and infinite values can occur subject only to the
condition that ph(E) < h*s(E) < h*D(E) where the second

inequality is valid when h 1s concave.
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