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 FUNCTIONS THAT NEARLY PRESERVE G¿-SETS

 1. Introduction. By a G¿-subset of the real line R we mean the

 intersection of a countable family of open sets in R. In real analysis it is of

 interest to note that certain kinds of functions map G¿-sets to G¿-sets. For

 example, the range of a homeomorphic mapping from a G¿-set X to the real

 line must be a G¿-set [1, Theorem 63]. More generally, the range of a

 one-to-one continuous mapping from a Borei set X to the real line must be a

 Borei set [1, Theorem 87]. We pose the question: what kind of functions

 mapping the unit interval [0,1] into R map each G¿-set to a G¿-set?

 This turns out not to be a good question, because most classes of functions

 we study are likely to contain members that map some G¿-set to a set that is

 not a G^-set. So we make a slight modification.

 Definition. Let f be a real valued function defined on [0,1]. We say

 that f is a delta function if for each G^-set X c [0,1], f (X) is the union

 of a G¿-set with a countable set.

 We will study which continuous functions on [0,1] are delta functions

 and which functions of bounded variation on [0,1] are delta functions. We

 will find that a necessary and sufficient condition for a continuous function f

 on [0,1] to be a delta function is that for all but countably many y, f-l(y)

 is a finite set (Theorem 1). This does not work when "function of bounded

 variation" replaces "continuous function". But if f is of bounded variation

 and if f-1(y) is a singleton set for all but countably many y € f[0,l], then

 f is a delta function (Theorem 4). We conclude with some examples of delta

 functions that do not map every G¿-set to a G¿-set.
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 2. Continuous functions. We begin with some nuts and bolts lemmas on

 subsets of R and continuous functions on [0,1]. The first is closely related
 to standard arguments.

 Lemma 1. Let X be a perfect subset of R and let I be an open
 interval that meets X. Then there exists an uncountable closed subset of

 I n X that is a first category set relative to the subspace X.

 The proof is long but straight-forward, so we leave it. The next lemma is
 even easier.

 Lemma 2. Let E be an uncountable subset of an interval J. Then

 there exist disjoint compact subintervals Jx and J2 of J such that

 E n J j and E n J2 are uncountable.

 Proof. Let U denote the union of all open intervals I with rational

 endpoints for which Eni is countable. Then E n U is countable and

 J'U is uncountable. Now let Jx and J2 be disjoint compact subintervals

 of J, each centered at a point in J'U. Then E n J1 and E n J2 must

 be uncountable. □

 We turn now to G¿-sets.

 Lemma 3. Let (Un) be a sequence of mutually disjoint open sets and for

 each n let En be a G¿-set with En c Un. Then Un En is also a

 G¿-set.

 Proof. For each n, let (Vnj)j be a sequence of open sets such that
 Vnj c Un and fi j Vnj = En. Then for each j,

 U V . c U E and moreover U [ fi . V . ] = U E
 nnj nn n jnj nn

 Because the set Un are mutually disjoint, Vnj n Vn'j# = 0 for n t n',
 and it follows that

 u e = u [n v .] = u .[n v .] .
 n n n n nj J n nj

 Because each Un Vnj is open, Un En is a G^-set. □
 Until further notice we assume that f is a continuous function on [0,1]

 such that there are uncountably many points y for which f~1(y) is an

 infinite set.

 Lemma 4. Let U be an open subset of [0,1] and let I be a compact

 interval with I c [0,1 ]'U. Let there be uncountably many y € f (I) such
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 that U n f-1(y) is an infinite set. Then there exist disjoint compact

 intervals Ii and I2 with Ij u la «= U such that f (I i ) u f(I2) c f(I),

 f(Ii) n f(Ia) = 0, and for each k = 1,2, there are uncountably many

 y c f(Ik) f°r which (U'(IX u i2)) n f-1(y) is an infinite set, and length

 f(Ik) < % length f(I).

 Proof. By Lemma 2, there are disjoint compact subintervals Jj and J2

 of the interior of f(I) such that for each k = 1,2, there are uncountably

 many y € Jk for which U n f-,(y) is an infinite set. Because f is

 uniformly continuous on [0,1] there is a number c > 0 such that for no

 interval K of length < c can an interval twice the length of f(K) meet

 both J j and J2, or meet both Jx u J2 and the complement of f(I);

 hence length f(K) < X length f(I) as well.

 For each positive integer n, partition U into a countable collection of

 mutually disjoint intervals Kni,Kn2,Kn3,..., each of length < c/n. Let E

 denote the set of all y e J! for which U n f~1(y) is an infinite set. For

 each y € E there is an index n for which f-1(y) meets 2 intervals

 Knj. So there is an index N such that for uncountably many y e E, f~1(y)

 meets 2 intervals Kfji« Thus there exist indices i and i' such that for

 uncountably many y e E, f~l(y) meets Kfji and Kní'* By making Iļ = Kjji

 or Kní'» whichever is appropriate, we have an interval It c U of length

 < c, such that there are uncountably many y e E n f(I,) for which

 (U'It) n f_1(y) is an infinite set and moreover f(Ii) n Ji ^ 0. From the

 choice of c it follows that f (I a ) c f(I), and length f(Ij) < length f(I).

 Similarly there is an interval Ia c U of length < c, such that there

 are uncountably many y € E n f(I2) for which (U'I2) n f_1(y) is an

 infinite set and moreover f(I2) n J2 i- 0. It follows from the choice of c

 that f(I2) c f(i), f( i,) n f(i2) = 0, and length f(I2) < * length f(I). Hence

 It and I2 are the desired intervals. □

 We next construct a perfect set in the range of f.

 Lemma 5. Let f be a continuous function on [0,1] and let there be

 uncountably many y c f[0,l] such that f~1(y) is an infinite set. Then

 there exists a family of mutually disjoint compact subintervals {Ia} of [0,1]

 on which f is not constant, where each subscript a is a finite sequence of

 Is and 2s; moreover f(Ia) c f(Ib) and length f(Ia) < % length f(Ib) if
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 b is an initial segment of a, and f(Ia) n f(Ib) = * if neither a nor b
 is an initial segment of the other.

 Proof. Let E be the set of all y e f [0,1 J such that f~l(y) is an
 infinite set that contains no interval. Then E is uncountable. For each

 positive integer n, partitition [0,1] into a countable collection of mutually

 disjoint intervals Kni,Kn2,Kn3,..., each of length < 1/n. For each y e E

 there is an index n for which f-1(y) meets 2 intervals Knļ. So there is
 an index N such that for uncountably many y € E, f-1(y) meets 2

 intervals K^i« Thus there exist indices i and i' such that for

 uncountably many y € E, f-1(y) meets K^i and Kjji'. By making I = Kní

 or Kfji', whichever is appropriate, we have an interval I such that there

 are uncountably many y e E r> f (I) for which ((0,1)'I) n f-'fy) is an

 infinite set.

 By Lemma 4, there exist disjoint compact intervals Ij and I2 with

 I, u l2 c (0,1)'I such that f(It) u f(l2) c f(i), ffij n f(l2) = 0, and for

 each k = 1,2, there are uncountably many y e f(Ik) for which

 ((0,1)'(I u Ii u I2)) n f"l(y) is an infinite set, and length f(Ik) < *

 length f(I).

 By Lemma 4, for each j = 1,2, there exist disjoint compact intervals I j Ł
 and Ij2 with I j x u Ij2 «= (0,1)'(I u lx u l2) such that f(Iji u Ij2) c f ( I j ) ,
 f ( I j ! ) n f(Ija) = 0» and for each k = 1,2, there are uncountably may
 y € E n f(Ijļļ) for which ((0,1)'(I u I, u I2 u ItI u I12 u I21 u ī22)) n f-l(y)
 is an infinite set, and length f(Ijk) < Ä length f(Ij).

 By Lemma 4, for each j = 1,2 and k = 1,2, there exist disjoint compact

 intervals Ijķj and Ij^j with Ijfci u c (0,1)'(I u It u l2 u Ij 1 u lia u
 lai " Ija) such that f(Ijki u Ijka) c f(Ijk)> f(!jki) n f(!jka) = and for
 each i = 1,2, there are uncountably many y e E n f for which

 ((0,1)'(I u It u I2 u IX1 u Ił2 u I2ł u I22 u (U 1 » K~ 1 Ijki)) n f"'(y) is an 1 9 J * K~ 1

 infinite set, and length f(Ijki) < * length f(Ijk)-
 We continue to use Lemma 4 in this way, so for each finite sequence a,

 we select disjoint compact intervals Iai and Ia2 disjoint from all the

 intervals previously selected such that f(Iai u ^aa) c f(Ia)> f(Iai) n

 f(Ia2) = and for each i = 1,2, length f(Iai) < * length f(Ia) and

 there are uncountably many y e E n f (Ia¿) for which infinitely many points of

 f~l(y) lie outside all the previously selected intervals and outside Iai u la2.
 □
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 Lemma 6. Let f be a continuous function on [0,1] and let there be

 uncountably many y € f[0,l] such that f-ł(y) is an infinite set. Then

 there is a G,j-set X c [0,1] such that f(X) is not the union of a G¿-set
 with a countable set.

 Proof. Let the intervals Ia be as in Lemma 5, and let Ia = [ra,sa]. Let

 Y consist of all points y that lie in f(Ia) for infinitely many indices a.

 For fixed n, Y c Ua f(Ia) where a runs over those sequences of length
 n. It follows that Y is the intersection of a contracting sequence of nonvoid

 compact sets, and Y is likewise nonvoid and compact. Length f(Ia) tends

 to 0 as the length of the sequence a tends to ». It follows from the

 construction that Y has no isolated points, and Y is a perfect set.

 For each sequence a, use Lemma 1 to construct a nonvoid closed

 uncountable subset Ya of Y n f(Ia) that is a first category subset of Y.

 Then [ra,sa] n f-1(Ya) is a closed set and (ra,sa) n f-'fYj^ is a G¿-set.

 Put X = Ua (ra,sa) n f-1(Ya). By Lemma 3, X is a G¿-set. Moreover f(X)

 is a first category set relative to the subspace Y, and every point of Y is

 a condensation point of f(X). Consequently for any countable set C, f(X)'C

 is a dense first category set relative to Y. Thus f(X)'C cannot be a

 G¿-set relative to Y; but Y is a subspace of R, so f(X)'C is not a

 G¿-set relative to R. Finally, X is a G¿-set, but f(X) is not the union of

 a G ¿-set with a countable set in R. □

 Lemma 6 proves half of our first result. The converse will be easy.

 Theorem 1. Let f be a continuous function on [0,1]. Then f is a

 delta function if and only if for all but at most countably many points y,

 f-l(y) is a finite set.

 Proof. If there exist uncountably many y for which f~ł(y) is an

 infinite set, then by Lemma 6, f is not a delta function.

 Now assume there are only countably many y for which f-I(y) is an

 infinite set. Let U c [0,1] be an open set. Then f maps each component

 interval of U to a connected set; i.e., to the union of an open set and a

 finite set. It follows that f(U) is the union of an open set and a countable

 set.

 Now let X be a G¿-subset of [0,1]. Let Ux 3 U2 3 U3 3 ••• be a

 contracting sequence óf open sets such that X = fln Un. Let f(Un) = Vn u

 Cn where Vn is open and Cn is a countable set. Then
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 f(n u ) c n f(u v ) n rr n v ny

 and any point y in the difference of these sets must have infinitely many
 points in f-1 (y) . Thus

 f(f1 U ) u (countable set) = fl f(U ) n n n n'

 But fln f(Un) = nn(vn u cn) = tnn Vn] U (countable set). It follows that

 f(X) = f(nn Un) = {[f1n VnJ ' (countable set)} u (countable set)

 But iln Vn ' (countable set) is a G¿-set because each Vn is open. So f
 is a delta function. a

 By a nowhere monotonie function on [0,1] we mean a function on [0,1]

 that is not monotonie on any subinterval of [0,1]. Routine arguments (we will

 leave) show that if f is continuous, nowhere monotonie, the points y for

 which f-»(y) is an infinite set, is a second category set in R. Thus f

 cannot be a delta function. Indeed if f is nowhere monotonie on any

 subinterval of [0,1], f cannot be a delta function.

 So if f is a continuous delta function on [0,1] then any subinterval of

 r0,l] meets an interval on which f is monotonie; thus f is differentiable

 on a dense subset of [0,1]. Before we give another application of delta

 functions we need a lemma on intervals in R.

 CD

 Lena 7. Let c > 0. Then there exists a sequence (^n)n_Q mutually
 disjoint closed subintervals of [0,1] such that the left endpoint of I0 is

 0, the right endpoint of Ij is 1, En (length In) < c, the set

 [0,l]'Un In is dense in itself, the set Un In is dense in [0,1], and for

 each n * 2, the midpoint of In is also the midpoint of the interval joining

 the midpoints of the two intervals among I0,Ii,..*,In-i that In lies between.

 The proof is a straight-forward inductive construction, so we leave it.

 Theorem 2. Let c > 0. Then there is a continuous delta function f on

 [0,1] such that the measure of the set of all points where f is

 differentiable is < c.

 €0

 Proof. Let (In) 11 ^ be the intervals in Lemma 7. We define functions 11 n=0 ^

 gn for each n * 2 as follows. If n * 2 and In = [a,b], make

 gn(%(a+b)) = the distance between the midpoints of the two intervals among

 Io.Ii.-..,In-i that In lies between. Make gn[0j&] = 0 = Ān[b>l]j and

 make gn linear on [a,^(a + b)] and [^(a + b),b]. Thus each gn is a
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 continuous function on [0,1] and f = ^n_2 Sn is also continuous on [0,1].
 Moreover f~l(y) is a finite set for y f 0. By Theorem 1, f is a delta
 function.

 It remains only to prove that f is not differentiable at any

 X e (0,1)'U :0 In« There are infinitely many indices n such that no
 interval among I0, Ix , . . . , In-i lies between x and In. We obtain from

 construction, |f(x) - f(p)| > |x - p| where p is the midpoint of In. On

 the other hand, if q € (0,l)'Un™Q In, then f(x) - f(q) = 0. Because x is
 CO

 an accumulation point of (0,l)'Un_g In, f is not differentiable at x. □

 3. Bounded variation. In this section f will be a function of bounded

 variation on the interval [0,1]. Such a function can be discontinuous at only

 countably many points, but these points may make a considerable difference.

 For example, Theorem 1 is not in general true when "continuous function" is

 replaced by "function of bounded variation." Indeed there exist functions of

 bounded variation f that are not delta functions, such that f~ł(y) has

 more than two points for no y.

 Theorem 3 There exists a function f on bounded variation on [0,1]

 such that f is not a delta function and for each point y, f-l(y) is at

 most a doubleton set. Moreover, there is an open subset U of [0,1] such

 that f(U) is not the union of a G¿-set with a countable set.

 Proof. Let C denote the Cantor set. Each point of C is uniquely
 CO

 expressed as the sum ^n_ļ (2an)3 n, where (an) is a sequence of 0s and
 Is. Let I be a complementary interval of C of the form (x, x + 3~2k-i)
 where x = (2an)3"~n + 3~2^_1 € C. Let U be the union of all such
 intervals. Then U is an open dense subset of [0,1] disjoint from C.

 Let I be as in the preceding paragraph and let u € I. Let
 00

 u - x = bn2-n where each bn = 0 or 1 and bn = 1 for infinitely

 many n. Define g(u) = x + E "j (2bn)3-4^-2n € I and f(u) = g(u) + 3-ak-x e q.
 For t e [0,1]'U define g(t) = f(t) = t. Then g is increasing on [0,1]

 and has total variation 1. Moreover, the total variation of f is

 ^ 1 + 2 Ej 3-ak-1 = 1 + 2 (measure of U) < 3, and f has bounded variation
 on [0,1]. If Uj , u2 c U and f(ux) = f(u2), note that the component

 interval of U containing uj is determined by the last nonzero term of the
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 expansion of f(ui) in which the power of 3 is odd, and the terms that

 precede it; thus ux and u2 lie in the same component interval and it

 follows that g(uj) = g(u3), Uj - x = u2 - x and U! = u2. Consequently

 is at most a doubleton set for each point y. Clearly f(x, x + 3~2^-1)
 is an uncountable nowhere dense subset of C, and f(U) is a first category

 set relative to C such that each point of C is a condensation point of
 f(U).

 If D is any countable set, f(U)'D is a dense first category set of C

 and is not a G¿-set relative to C, or to R. Thus f(U) is not the union

 of a countable set with a G¿-set relative to R, and f is not a delta
 function. □

 Before we give a sufficient condition for a function of bounded variation

 to be a delta function, we need more notation. Let f be a function on the

 interval [0,1]. We say that f is an L-function if f(x+) exists for each

 x € [0,1) and if f(x-) exists for each x e (0,1]. (We admit infinite limits.)

 We note that if f is an L-function, then f has at most countably many

 points of discontinuity. For take any c > 0, and set g = arc tan f. It is

 easy to see that the set {x c (0,1) : |g(x+) - g(x)| + |g(x) - g(x-)| > «} is

 finite. It follows that the set of all points of discontinuity of g and hence

 of f is countable.

 Lemma 8. Let f be an L-function and let X be a subinterval of

 [0,1]. Then f(X)'f(X) is countable.

 Proof. Let a = inf X, b = sup X. Let D be the set of all points of

 discontinuity of f in (a,b); let T+ = {f(x+) : x e D}, T_ = íf(x-) : x e D),

 V = (f(a+), f(b-)]. Let y € f(X)'f(X). There are xn e X such that

 f(xn) y. Let (tn) be a monotone subsequence of (xn) and let tn -* t.

 Because lim f(tn) = y i f(X), we have tn i- t for each n. If te (a,b),
 then t € D and y e T+ u T_; if te {a,b}, then y e V. Hence

 f(X)'f(x) c T+ u T_ u V which is countable. □

 We offer more notation.

 (1) For any sets P and Q, let P * Q mean that (P'Q) u (Q'P) is

 countable.

 (2) Let a denote the system of all subsets of R that can be expressed

 as the union of a Gg-set and a countable set.
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 Lemma 9. (1) If P ~ Q and Q € Q, then P c Q.

 (2) If P i ,P 2 1P3 f ••• f Q» then í) Pn € Q.

 We leave the proof.

 Theorem 4. Let f be an L-function and let the set

 S = {y e R : f 1 (y) has at least two elements}

 be countable. Then f is a delta function. Moreover, if f is strictly

 monotonie on [0,1], then f maps G¿-sets in [0,1] to G¿-sets in R.

 Proof. Let A be an open set in [0,1] and let B = [0,1]'A. There are

 intervals ••• such that A = U Jn. Set F = f[0,l], Kn = [0,l]'Jn,

 Fn = f(Kn). According to Lemma 8 we have f[0,l] ~ F and f(Kn) ~ Fn

 (n = 1,2,3,...). It follows that il f(Kn) ~ (1 Fn. Since S is countable, we

 have F(A) - f[0,l]'f(B) and f(B) = f (il Kn) - fl f(In). Hence f(A) - F'n Fn

 which is a G¿-set. Thus f(A) € 0.

 Now let A = fl An, where A1,A2,A3, ... are open in [0,1]. Since S is

 countable, we have f (A) - fl f(An). Applying what has just been proved and

 Lemma 9 we get f(A) e 0 which completes the proof that f is a delta

 function.

 Finally, let f be strictly monotonie on [0,1]. For any interval J, f(J)

 and f(J) differ by a countable set by Lemma 8, so f(J) is a G¿-set. In

 the notation of the preceding two paragraphs, f(A) = U f(Jn) is a Gg-set

 by Lemma 3, and f(A) = fl f(An) is a G¿-set because f is one-to-one. □

 Unfortunately the condition in Theorem 4 is not necessary for f to be a

 delta function. Witness the delta function f(x) = |x - %'.

 Does there exist a one-to-one function of bounded variation on [0,1] that

 does not map every G¿-set to a G¿-set? This is a natural question in view

 of Theorem 4. The following example shows that the answer is yes.

 Let C denote the Cantor set and let U denote the open set (0,1)'C.

 Let UuUajUs, ... denote the components of U, let the left endpoint of Un

 be an and the midpoint of Un be dn. For each n, define f(an) = dn
 and f(dn) = an. For all other points t, define f(t) = t. Then f is a

 one-to-one function on I = [0,1]. It is easy to show (and we leave it) that

 the total variation of f is * 1 + 4(measure of U) = 5, so f is of bounded

 variation on I. Now C n f(U) = {ani i® a countable dense subset of C and

 is not a G¿-set relative to C or to R. So f(U) is not a G¿-set.
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 Does there exist a continuous function on I that is one-to-one and does

 not map every G¿-set to a G$-set? No, because a one-to-one continuous

 function on I must be strictly monotonie. It is not difficult to show that if

 f is continuous on I and if for each point y, f~l(y) contains at most two

 points, then f is piecewise strictly monotonie. However we do have the

 following example. Let <t> be an infinitely many times differentiable function

 on R such that 0 = 0 on (-»,0] u [1,»), 0 > 0 on (0,1/3) u (2/3,1), 0 < 0

 on (1/3,2/3), /^3 0 < Xļ/3 0 and 0 = 0. Let C be the Cantor set
 and let Un = (an,bn) be disjoint intervals such that U Un = I'C and let

 en = bn - an (n = 1,2,3,...). Set V-(x) = n~2£" 0((* ~ an)/£n) and
 f(x) - J*X iKx e I) . It can be shown that f is infinitely many times

 0

 differentiable, f~ ł(y) contains at most three points for each y and f is

 a delta function by Theorem 1. As in the preceding paragraph, f(I'C) is not

 a G¿-set in R.
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