F.S. Cater, Department of Mathematics, Portland State University Portland, Oregon 97207

FUNCTIONS THAT NEARLY PRESERVE $\mathbf{G}_{\boldsymbol{\delta}}$-SETS

1. Introduction. By a G_{δ}-subset of the real line R we mean the intersection of a countable family of open sets in R. In real analysis it is of interest to note that certain kinds of functions map G_{δ}-sets to G_{δ}-sets. For example, the range of a homeomorphic mapping from $a G_{\delta}-s e t \quad X$ to the real line must be a $\mathrm{G}_{\boldsymbol{\delta}}-$ set [1, Theorem 63]. More generally, the range of a one-to-one continuous mapping from a Borel set X to the real line must be a Borel set [1, Theorem 87]. We pose the question: what kind of functions mapping the unit interval $[0,1]$ into R map each G_{δ}-set to a G_{δ}-set? This turns out not to be a good question, because most classes of functions we study are likely to contain members that map some G_{δ}-set to a set that is not a $\mathrm{G}_{\delta}-\mathrm{set}$. So we make a slight modification.

Definition. Let f be a real valued function defined on [0,1]. We say that f is a delta function if for each $G_{\delta}-s e t X c[0,1], f(X)$ is the union of a G_{δ}-set with a countable set.

We will study which continuous functions on [0,1] are delta functions and which functions of bounded variation on $[0,1]$ are delta functions. We will find that a necessary and sufficient condition for a continuous function f on $[0,1]$ to be a delta function is that for all but countably many $y, f^{-1}(y)$ is a finite set (Theorem 1). This does not work when "function of bounded variation" replaces "continuous function". But if f is of bounded variation and if $f^{-1}(y)$ is a singleton set for all but countably many $y \in f[0,1]$, then f is a delta function (Theorem 4). We conclude with some examples of delta functions that do not map every $G_{\boldsymbol{\delta}}$-set to a G_{δ}-set.
2. Continuous functions. We begin with some nuts and bolts lemmas on subsets of R and continuous functions on [0,1]. The first is closely related to standard arguments.

Lemma 1. Let X be a perfect subset of R and let I be an open interval that meets X. Then there exists an uncountable closed subset of $I \cap X$ that is a first category set relative to the subspace X.

The proof is long but straight-forward, so we leave it. The next lemma is even easier.

Lemma 2. Let E be an uncountable subset of an interval J. Then there exist disjoint compact subintervals J_{1} and J_{2} of J such that $E \cap J_{1}$ and $E \cap J_{2}$ are uncountable.

Proof. Let U denote the union of all open intervals I with rational endpoints for which $E \cap I$ is countable. Then $E \cap U$ is countable and $J \backslash U$ is uncountable. Now let J_{1} and J_{2} be disjoint compact subintervals of J, each centered at a point in $J \backslash U$. Then $E \cap J_{2}$ and $E \cap J_{2}$ must be uncountable. \quad a

We turn now to G_{δ}-sets.
Lemma 3. Let $\left(U_{n}\right)$ be a sequence of mutually disjoint open sets and for each n let E_{n} be a G_{δ}-set with $E_{n} c U_{n}$. Then $U_{n} E_{n}$ is also a G_{δ}-set.

Proof. For each n, let $\left(V_{n j}\right)_{j}$ be a sequence of open sets such that $V_{n j} \subset U_{n}$ and $n_{j} V_{n j}=E_{n}$. Then for each j,

$$
U_{n} V_{n j} \subset U_{n} E_{n} \text { and moreover } U_{n}\left[n_{j} V_{n j}\right]=U_{n} E_{n}
$$

Because the set U_{n} are mutually disjoint, $V_{n j} \cap V_{n^{\prime}} j^{\prime}=\varnothing$ for $n \neq n^{\prime}$, and it follows that

$$
u_{n} E_{n}=U_{n}\left[n_{n} v_{n j}\right]=U_{j}\left[n_{n} v_{n j}\right]
$$

Because each $U_{n} V_{n j}$ is open, $U_{n} E_{n}$ is a G_{δ} set. \quad.
Until further notice we assume that f is a continuous function on [0,1] such that there are uncountably many points y for which $f^{-1}(y)$ is an infinite set.

Lemma 4. Let U be an open subset of $[0,1]$ and let I be a compact interval with $I \in[0,1] \backslash U$. Let there be uncountably many $y \in f(I)$ such
that $U \cap f^{-1}(y)$ is an infinite set. Then there exist disjoint compact intervals I_{1} and I_{2} with $I_{1} \cup I_{2} \subset U$ such that $f\left(I_{1}\right) \cup f\left(I_{2}\right) \subset f(I)$, $f\left(I_{1}\right) \cap f\left(I_{2}\right)=\varnothing$, and for each $k=1,2$, there are uncountably many $y \in f\left(I_{k}\right)$ for which $\left(U \backslash\left(I_{2} \cup I_{2}\right)\right) \cap f^{-1}(y)$ is an infinite set, and length $f\left(I_{k}\right)<H_{2}$ length $f(I)$.

Proof. By Lemma 2, there are disjoint compact subintervals J_{1} and J_{2} of the interior of $f(I)$ such that for each $k=1,2$, there are uncountably many $y \in J_{k}$ for which $U \cap f^{-1}(y)$ is an infinite set. Because f is uniformly continuous on $[0,1]$ there is a number $c>0$ such that for no interval K of length $<c$ can an interval twice the length of $f(K)$ meet both J_{1} and J_{2}, or meet both $J_{1} \cup J_{2}$ and the complement of $f(I)$; hence length $f(K)<1 / 2$ length $f(I)$ as well.

For each positive integer n, partition U into a countable collection of mutually disjoint intervals $K_{n_{1}}, K_{n_{2}}, K_{n_{3}}, \ldots$, each of length < c / n. Let E denote the set of all $y \in J_{1}$ for which $U \cap f^{-1}(y)$ is an infinite set. For each $y \in E$ there is an index n for which $f^{-1}(y)$ meets 2 intervals $K_{n i}$. So there is an index N such that for uncountably many $y \in E, f^{-1}(y)$ meets 2 intervals $K_{N i}$. Thus there exist indices i and i^{\prime} such that for uncountably many $y \in E, f^{-1}(y)$ meets $K_{N i}$ and $K_{N i^{\prime}}$. By making $I_{1}=K_{N i}$ or $K_{\mathrm{Ni}^{\prime}}$, whichever is appropriate, we have an interval $\mathrm{I}_{1} \subset \mathrm{C}$ of length <c, such that there are uncountably many $y \in E \cap f\left(I_{1}\right)$ for which $\left(U \backslash I_{1}\right) \cap f^{-1}(y)$ is an infinite set and moreover $f\left(I_{1}\right) \cap J_{1} \neq \varnothing$. From the choice of c it follows that $f\left(I_{1}\right) \subset f(I)$, and length $f\left(I_{1}\right)<H_{2}$ length $f(I)$.

Similarly there is an interval $I_{2} c U$ of length < c, such that there are uncountably many $y \in E \cap f\left(I_{2}\right)$ for which $\left(U \backslash I_{2}\right) \cap f^{-1}(y)$ is an infinite set and moreover $f\left(I_{2}\right) \cap J_{2} \neq \varnothing$. It follows from the choice of c that $f\left(I_{2}\right) \subset f(I), f\left(I_{1}\right) \cap f\left(I_{2}\right)=\varnothing$, and length $f\left(I_{2}\right)</ / 2$ length $f(I)$. Hence I_{1} and I_{2} are the desired intervals.

We next construct a perfect set in the range of f.
Lemma 5. Let f be a continuous function on $[0,1]$ and let there be uncountably many $y \in f[0,1]$ such that $f^{-1}(y)$ is an infinite set. Then there exists a family of mutually disjoint compact subintervals $\left\{\mathrm{I}_{\mathrm{a}}\right\}$ of $[0,1]$ on which f is not constant, where each subscript a is a finite sequence of 1s and 2s; moreover $f\left(I_{a}\right) \subset f\left(I_{b}\right)$ and length $f\left(I_{a}\right)</{ }_{2}$ length $f\left(I_{b}\right)$ if
b is an initial segment of a, and $f\left(I_{a}\right) \cap f\left(I_{b}\right)=\varnothing$ if neither a nor b is an initial segment of the other.

Proof. Let E be the set of all $y \in f[0,1]$ such that $f^{-1}(y)$ is an infinite set that contains no interval. Then E is uncountable. For each positive integer n, partitition [0,1] into a countable collection of mutually disjoint intervals $K_{n_{1}}, K_{n_{2}}, K_{n 3}, \ldots$, each of length $<1 / n$. For each $y \in E$ there is an index n for which $f^{-1}(y)$ meets 2 intervals $K_{n i}$. So there is an index N such that for uncountably many $y \in E, f^{-1}(y)$ meets 2 intervals $K_{N i}$. Thus there exist indices i and i^{\prime} such that for uncountably many $y \in E, f^{-1}(y)$ meets $K_{N i}$ and $K_{N i^{\prime}}$. By making $I=K_{N i}$ or $\mathrm{K}_{\mathrm{Ni}^{\prime}}$, whichever is appropriate, we have an interval I such that there are uncountably many $y \in E \cap f(I)$ for which $((0,1) \backslash I) \cap f^{-1}(y)$ is an infinite set.

By Lemma 4, there exist disjoint compact intervals I_{1} and I_{2} with $I_{1} \cup I_{2} \subset(0,1) \backslash I$ such that $f\left(I_{1}\right) \cup f\left(I_{2}\right) \subset f(I), f\left(I_{1}\right) \cap f\left(I_{2}\right)=\varnothing$, and for each $k=1,2$, there are uncountably many $y \in f\left(I_{k}\right)$ for which $\left((0,1) \backslash\left(I \cup I_{1} \cup I_{2}\right)\right) \cap f^{-1}(y)$ is an infinite set, and length $f\left(I_{k}\right)<{ }_{1}$ length $f(I)$.

By Lemma 4, for each $j=1,2$, there exist disjoint compact intervals $I_{j_{1}}$ and $I_{j_{2}}$ with $I_{j_{1}} \cup I_{j_{2}} \subset(0,1) \backslash\left(I \cup I_{1} \cup I_{2}\right)$ such that $f\left(I_{j_{1}} \cup I_{j_{2}}\right) \subset f\left(I_{j}\right)$, $f\left(I_{j_{1}}\right) \cap f\left(I_{j_{2}}\right)=\varnothing$, and for each $k=1,2$, there are uncountably may $y \in E \cap f\left(I_{j k}\right)$ for which ($\left.(0,1) \backslash\left(I \cup I_{1} \cup I_{2} \cup I_{11} \cup I_{12} \cup I_{21} \cup I_{22}\right)\right) \cap f^{-1}(y)$ is an infinite set, and length $f\left(I_{j k}\right)$ < $/ / 2$ length $f\left(I_{j}\right)$.

By Lemma 4, for each $j=1,2$ and $k=1,2$, there exist disjoint compact intervals $I_{j k 1}$ and $I_{j k 2}$ with $I_{j k 1} \cup I_{j k 2} \subset(0,1) \backslash\left(I \cup I_{1} \cup I_{2} \cup I_{11} \cup I_{12} \cup\right.$ $\left.I_{21} \cup I_{22}\right)$ such that $f\left(I_{j k 1} \cup I_{j k 2}\right) \subset f\left(I_{j k}\right), f\left(I_{j k 1}\right) \cap f\left(I_{j k 2}\right)=\varnothing$, and for each $i=1,2$, there are uncountably many $y \in E \cap f\left(I_{j k i}\right)$ for which $\left((0,1) \backslash\left(I \cup I_{1} \cup I_{2} \cup I_{11} \cup I_{12} \cup I_{21} \cup I_{22} \cup\left(U_{i, j}^{2}, k=1 \quad I_{j k i}\right)\right) \cap f^{-1}(y)\right.$ is an infinite set, and length $f\left(I_{j k i}\right)$ < $1 / 2$ length $f\left(I_{j k}\right)$.

We continue to use Lemma 4 in this way, so for each finite sequence a, we select disjoint compact intervals $I_{a_{1}}$ and $I_{a_{2}}$ disjoint from all the intervals previously selected such that $f\left(I_{a_{1}} \cup I_{a_{2}}\right)$ c $f\left(I_{a}\right), f\left(I_{a_{1}}\right) \quad n$ $f\left(I_{a_{2}}\right)=\varnothing$, and for each $i=1,2$, length $f\left(I_{a i}\right)<y_{2}$ length $f\left(I_{a}\right)$ and there are uncountably many $y \in E \cap f\left(I_{a i}\right)$ for which infinitely many points of $f^{-1}(y)$ lie outside all the previously selected intervals and outside $I_{a_{1}} \cup I_{a_{2}}$.

Lemma 6. Let f be a continuous function on [0,1] and let there be uncountably many $y \in f[0,1]$ such that $f^{-1}(y)$ is an infinite set. Then there is a $G_{\delta}-s e t \quad X \subset[0,1]$ such that $f(X)$ is not the union of a $G_{\delta}-s e t$ with a countable set.

Proof. Let the intervals I_{a} be as in Lemma 5, and let $I_{a}=\left[r_{a}, s_{a}\right]$. Let Y consist of all points y that lie in $f\left(I_{a}\right)$ for infinitely many indices a. For fixed $n, Y \subset U_{a} f\left(I_{a}\right)$ where a runs over those sequences of length n. It follows that Y is the intersection of a contracting sequence of nonvoid compact sets, and Y is likewise nonvoid and compact. Length $f\left(I_{a}\right)$ tends to 0 as the length of the sequence a tends to ∞. It follows from the construction that Y has no isolated points, and Y is a perfect set.

For each sequence a, use Lemma 1 to construct a nonvoid closed uncountable subset Y_{a} of $Y \cap f\left(I_{a}\right)$ that is a first category subset of Y. Then $\left[r_{a}, s_{a}\right] \cap f^{-1}\left(Y_{a}\right)$ is a closed set and $\left(r_{a}, s_{a}\right) \cap f^{-1}\left(Y_{a}\right)$ is a $G_{\delta}-s e t$. Put $X=U_{a}\left(r_{a}, s_{a}\right) \cap f^{-1}\left(Y_{a}\right)$. By Lemma 3, X is a G_{δ}-set. Moreover $f(X)$ is a first category set relative to the subspace Y, and every point of Y is a condensation point of $f(X)$. Consequently for any countable set $C, f(X) \backslash C$ is a dense first category set relative to Y. Thus $f(X) \backslash C$ cannot be a G_{δ}-set relative to Y; but Y is a subspace of R, so $f(X) \backslash C$ is not a G_{δ} set relative to R. Finally, X is a $G_{\delta-s e t, ~ b u t ~}^{f(X)}$ is not the union of a $G_{\delta}-s e t$ with a countable set in R.

Lemma 6 proves half of our first result. The converse will be easy.
Theorem 1. Let f be a continuous function on $[0,1]$. Then f is a delta function if and only if for all but at most countably many points y, $f^{-1}(y)$ is a finite set.

Proof. If there exist uncountably many y for which $f^{-1}(y)$ is an infinite set, then by Lemma 6, f is not a delta function.

Now assume there are only countably many y for which $f^{-1}(y)$ is an infinite set. Let $U \subset[0,1]$ be an open set. Then f maps each component interval of U to a connected set; i.e., to the union of an open set and a finite set. It follows that $f(U)$ is the union of an open set and a countable set.

Now let X be a G_{δ}-subset of [0,1]. Let $U_{1} \supset U_{2} \supset U_{3} \supset \cdots$ be a contracting sequence of open sets such that $X=n_{n} U_{n}$. Let $f\left(U_{n}\right)=V_{n} u$ C_{n} where V_{n} is open and C_{n} is a countable set. Then

$$
f\left(n_{n} U_{n}\right) \subset n_{n} f\left(U_{n}\right)
$$

and any point y in the difference of these sets must have infinitely many points in $f^{-1}(y)$. Thus

$$
f\left(n_{n} U_{n}\right) \cup(\text { countable set })=n_{n} f\left(U_{n}\right)
$$

But $n_{n} f\left(U_{n}\right)=n_{n}\left(V_{n} \cup C_{n}\right)=\left[n_{n} V_{n}\right] \cup$ (countable set). It follows that

$$
f(X)=f\left(n_{n} U_{n}\right)=\left\{\left[n_{n} V_{n}\right] \backslash \text { (countable set) }\right\} u \text { (countable set) }
$$

But $n_{n} V_{n} \backslash$ (countable set) is a G_{δ}-set because each V_{n} is open. So f is a delta function.

By a nowhere monotonic function on [0,1] we mean a function on [0,1] that is not monotonic on any subinterval of [0,1]. Routine arguments (we will leave) show that if f is continuous, nowhere monotonic, the points y for which $f^{-1}(y)$ is an infinite set, is a second category set in R. Thus f cannot be a delta function. Indeed if f is nowhere monotonic on any subinterval of $[0,1], f$ cannot be a delta function.

So if f is a continuous delta function on $[0,1]$ then any subinterval of [0,1] meets an interval on which f is monotonic; thus f is differentiable on a dense subset of [0,1]. Before we give another application of delta functions we need a lemma on intervals in R.

Lemma 7. Let $c>0$. Then there exists a sequence $\left(I_{n}\right)_{n=0}^{\infty}$ of mutually disjoint closed subintervals of [0,1] such that the left endpoint of I_{0} is 0 , the right endpoint of I_{1} is $1, \Sigma_{n}$ (length I_{n}) < c, the set $[0,1] \backslash U_{n} I_{n}$ is dense in itself, the set $U_{n} I_{n}$ is dense in $[0,1]$, and for each $n \geq 2$, the midpoint of I_{n} is also the midpoint of the interval joining the midpoints of the two intervals among $I_{0}, I_{1}, \ldots, I_{n-1}$ that I_{n} lies between.

The proof is a straight-forward inductive construction, so we leave it.
Theorem 2. Let $c>0$. Then there is a continuous delta function f on [0,1] such that the measure of the set of all points where f is differentiable is < c.

Proof. Let $\left(I_{n}\right)_{n=0}^{\infty}$ be the intervals in Lemma 7. We define functions g_{n} for each $n \geq 2$ as follows. If $n \geq 2$ and $I_{n}=[a, b]$, make $g_{n}(1 / 2(a+b))=$ the distance between the midpoints of the two intervals among $I_{0}, I_{1}, \ldots, I_{n-1}$ that I_{n} lies between. Make $g_{n}[0, a]=0=g_{n}[b, 1]$, and make g_{n} linear on $[a, 1 / 2(a+b)]$ and $[\not / 2(a+b), b]$. Thus each g_{n} is a
continuous function on $[0,1]$ and $f=\sum_{n=2}^{\infty} g_{n}$ is also continuous on $[0,1]$. Moreover $\quad f^{-1}(y)$ is a finite set for $y \neq 0$. By Theorem 1 , f is a delta function.

It remains only to prove that f is not differentiable at any $x \in(0,1) \backslash U_{n=0}^{\infty} I_{n}$. There are infinitely many indices n such that no interval among $I_{0}, I_{1}, \ldots, I_{n-1}$ lies between x and I_{n}. We obtain from construction, $|f(x)-f(p)|>|x-p|$ where p is the midpoint of I_{n}. On the other hand, if $q \in(0,1) \backslash U_{n=0}^{\infty} I_{n}$, then $f(x)-f(q)=0$. Because x is an accumulation point of $(0,1) \backslash U_{n=0}^{\infty} I_{n}, \quad f$ is not differentiable at x.
3. Bounded variation. In this section f will be a function of bounded variation on the interval [0,1]. Such a function can be discontinuous at only countably many points, but these points may make a considerable difference. For example, Theorem 1 is not in general true when "continuous function" is replaced by "function of bounded variation." Indeed there exist functions of bounded variation f that are not delta functions, such that $f^{-1}(y)$ has more than two points for no y.

Theorem 3 There exists a function f on bounded variation on [0,1] such that f is not a delta function and for each point $y, f^{-1}(y)$ is at most a doubleton set. Moreover, there is an open subset U of [0,1] such that $f(U)$ is not the union of a $G_{\delta-s e t}$ with a countable set.

Proof. Let C denote the Cantor set. Each point of C is uniquely expressed as the sum $\sum_{n=1}^{\infty}\left(2 a_{n}\right) 3^{-n}$, where $\quad\left(a_{n}\right)$ is a sequence of 0 and ls. Let I be a complementary interval of C of the form $\left(x, x+3^{-2 k-1}\right)$ where $x=\Sigma_{n=1}^{2 k}\left(2 a_{n}\right) 3^{-n}+3^{-2 k-1} \in C$. Let U be the union of all such intervals. Then U is an open dense subset of $[0,1]$ disjoint from C.

Let I be as in the preceding paragraph and let $u \in I$. Let $u-x=\Sigma_{n=1}^{\infty} b_{n} 2^{-n}$ where each $b_{n}=0$ or 1 and $b_{n}=1$ for infinitely many n. Define $g(u)=x+\sum_{n=1}^{\infty}\left(2 b_{n}\right) 3^{-4 k-2 n} \in I$ and $f(u)=g(u)+3^{-2 k-1} \in C$. For $t \in[0,1] \backslash U$ define $g(t)=f(t)=t$. Then g is increasing on $[0,1]$ and has total variation 1. Moreover, the total variation of f is $\epsilon 1+2 \Sigma_{I} 3^{-2 k-1}=1+2$ (measure of U) <3, and f has bounded variation on $[0,1]$. If $u_{1}, u_{2} \in U$ and $f\left(u_{1}\right)=f\left(u_{2}\right)$, note that the component interval of U containing u_{i} is determined by the last nonzero term of the
expansion of $f\left(u_{i}\right)$ in which the power of 3 is odd, and the terms that precede it; thus u_{1} and u_{2} lie in the same component interval and it follows that $g\left(u_{1}\right)=g\left(u_{2}\right), u_{1}-x=u_{2}-x$ and $u_{1}=u_{2}$. Consequently $f^{-1}(y)$ is at most a doubleton set for each point y. Clearly $f\left(x, x+3^{-2 k-1}\right)$ is an uncountable nowhere dense subset of C, and $f(U)$ is a first category set relative to C such that each point of C is a condensation point of $\mathrm{f}(\mathrm{U})$.

If D is any countable set, $f(U) \backslash D$ is a dense first category set of C and is not a G_{δ}-set relative to C, or to R. Thus $f(U)$ is not the union of a countable set with a G_{δ}-set relative to R, and f is not a delta function.

Before we give a sufficient condition for a function of bounded variation to be a delta function, we need more notation. Let f be a function on the interval $[0,1]$. We say that f is an L-function if $f(x+)$ exists for each $x \in[0,1)$ and if $f(x-)$ exists for each $x \in(0,1]$. (We admit infinite limits.)

We note that if f is an L-function, then f has at most countably many points of discontinuity. For take any $\varepsilon>0$, and set $g=\operatorname{arc} \tan f$. It is easy to see that the set $\{x \in(0,1):|g(x+)-g(x)|+|g(x)-g(x-)|>\varepsilon\}$ is finite. It follows that the set of all points of discontinuity of g and hence of f is countable.

Lemma 8. Let f be an L-function and let X be a subinterval of $[0,1]$. Then $\overline{f(X)} \backslash f(X)$ is countable.

Proof. Let $a=\inf x, b=\sup X$. Let D be the set of all points of discontinuity of f in (a,b); let $T_{+}=\{f(x+): x \in D\}, T_{-}=\{f(x-): x \in D\}$, $V=\{f(a+), f(b-)\}$. Let $y \in \overline{f(X)} \backslash f(X)$. There are $x_{n} \in X \quad$ such that $f\left(x_{n}\right) \rightarrow y$. Let $\left(t_{n}\right)$ be a monotone subsequence of $\left(x_{n}\right)$ and let $t_{n} \rightarrow t$. Because $\lim f\left(t_{n}\right)=y \notin f(X)$, we have $t_{n} \neq t$ for each n. If $t \in(a, b)$, then $t \in D$ and $y \in T_{+} u T_{-}$; if $t \in\{a, b\}$, then $y \in V$. Hence $\bar{f}(\bar{X}) \backslash f(x) \subset T_{+} \cup T_{-} u V$ which is countable.

We offer more notation.
(1) For any sets P and Q, let $P \sim Q$ mean that $(P \backslash Q) \cup(Q \backslash P)$ is countable.
(2) Let α denote the system of all subsets of R that can be expressed as the union of a $\mathrm{G}_{\boldsymbol{\delta}}$-set and a countable set.

Lemma 9. (1) If $P \sim Q$ and $Q \in a$, then $P \in a$.
(2) If $P_{1}, P_{2}, P_{3}, \ldots \in a$, then $\cap P_{n} \in a$.

We leave the proof.
Theorem 4. Let f be an L-function and let the set

$$
S=\left\{y \in R: f^{-1}(y) \text { has at least two elements }\right\}
$$

be countable. Then f is a delta function. Moreover, if f is strictly monotonic on $[0,1]$, then f maps G_{δ}-sets in $[0,1]$ to G_{δ}-sets in R.

Proof. Let A be an open set in $[0,1]$ and let $B=[0,1] \backslash A$. There are intervals $J_{1}, J_{2}, J_{3}, \ldots$ such that $A=U J_{n}$. Set $F=\overline{f[0,1]}, K_{n}=[0,1] \backslash J_{n}$, $F_{n}=\overline{f\left(K_{n}\right)}$. According to Lemma 8 we have $f[0,1] \sim F$ and $f\left(K_{n}\right) \sim F_{n}$ ($n=1,2,3, \ldots$). It follows that $\cap f\left(K_{n}\right) \sim \cap F_{n}$. Since S is countable, we have $F(A) \sim f[0,1] \backslash f(B)$ and $f(B)=f\left(\cap K_{n}\right) \sim \cap f\left(I_{n}\right)$. Hence $f(A) \sim F \backslash \cap F_{n}$ which is a G_{δ}-set. Thus $f(A) \in a$.

Now let $A=\cap A_{n}$, where $A_{1}, A_{2}, A_{3}, \ldots$ are open in $[0,1]$. Since S is countable, we have $f(A) \sim n f\left(A_{n}\right)$. Applying what has just been proved and Lemma 9 we get $f(A) \in a$ which completes the proof that f is a delta function.

Finally, let f be strictly monotonic on [0,1]. For any interval $J, f(J)$ and $\overline{f(J)}$ differ by a countable set by Lemma 8, so $f(J)$ is a $G_{\delta}-$ set. In the notation of the preceding two paragraphs, $f(A)=U f\left(J_{n}\right)$ is a $G_{\delta}-s e t$ by Lemma 3, and $f(A)=\cap f\left(A_{n}\right)$ is a G_{δ}-set because f is one-to-one. a

Unfortunately the condition in Theorem 4 is not necessary for f to be a delta function. Witness the delta function $f(x)=|x-1 / 2|$.

Does there exist a one-to-one function of bounded variation on [0,1] that does not map every G_{δ}-set to a $G_{\delta}-s e t$? This is a natural question in view of Theorem 4. The following example shows that the answer is yes.

Let C denote the Cantor set and let U denote the open set (0,1) \C. Let $U_{1}, U_{2}, U_{3}, \ldots$ denote the components of U, let the left endpoint of U_{n} be a_{n} and the midpoint of U_{n} be d_{n}. For each n, define $f\left(a_{n}\right)=d_{n}$ and $f\left(d_{n}\right)=a_{n}$. For all other points t, define $f(t)=t$. Then f is a one-to-one function on $I=[0,1]$. It is easy to show (and we leave it) that the total variation of f is $\leqslant 1+4$ (measure of U) $=5$, so f is of bounded variation on I. Now $C \cap f(U)=\left\{a_{n}\right\}$ is a countable dense subset of C and is not a G_{δ}-set relative to C or to R. So $f(U)$ is not a G_{δ}-set.

Does there exist a continuous function on I that is one-to-one and does not map every G_{δ}-set to a G_{δ}-set? No, because a one-to-one continuous function on I must be strictly monotonic. It is not difficult to show that if f is continuous on I and if for each point $y, f^{-1}(y)$ contains at most two points, then f is piecewise strictly monotonic. However we do have the following example. Let \varnothing be an infinitely many times differentiable function on R such that $\varnothing=0$ on $(-\infty, 0] \cup[1, \infty), \varnothing>0$ on $(0,1 / 3) \cup(2 / 3,1)$, $\varnothing<0$ on $(1 / 3,2 / 3), \int_{0}^{1 / 3} \phi<\int_{2 / 3}^{1} \phi$ and $\int_{0}^{2 / 3} \phi=0$. Let C be the Cantor set and let $U_{n}=\left(a_{n}, b_{n}\right)$ be disjoint intervals such that $U U_{n}=I \backslash C$ and let $\varepsilon_{n}=b_{n}-a_{n} \quad(n=1,2,3, \ldots)$. Set $\psi(x)=\Sigma_{n=1}^{\infty} n^{-2} \varepsilon_{n}^{n} \phi\left(\left(x-a_{n}\right) / \varepsilon_{n}\right) \quad$ and $f(x)=\int_{0}^{x} \psi(x \in I)$. It can be shown that f is infinitely many times differentiable, $f^{-1}(y)$ contains at most three points for each y and f is a delta function by Theorem 1. As in the preceding paragraph, $f(I \backslash C)$ is not a G_{δ}-set in K .

REFERENCES

1. Waclaw Sierpinski, Introduction to General Topology, The University of Toronto Press, Toronto, 1934.
