Abstract :

I will show how non-standard analysis can help in describing numeration systems, such as that used by fixed-point arithmetics in computers. To achieve the non-standard extension of the total order, instead of the usual definition using ultrafilters, a lexicographical ordering will be used.

Summary

O. Notations

1. Construction of the non-standard extension of a set, with its properties
2.Application to numeration systems : filter or ultrafilter ?
3.Application to computers : use of a lexicographical order
2. Conclusion
3. Bibliography
O. Notations

Because of the incompletude of the printing machine I could use, to denotate the usual mathematical characters, I will use the following :
Existence quantifier : e
Universal quantifier : \mathbf{Y}
Membership relation : \in
Inclusion relation
Intersection relation :
Union relation
Empty set : 0
Power operation : **
Logical "and" operator : "
Logical "or" operator : v
Logical "not" operator : \neg
Indices : a[i]
Mapping : $f(x) f(x, y)$
Indexed mapping $: f[i](x[j])$
```
1.Construction of the non-standard extension of a set, with its properties
    Definitions
        E is a set of "standard objects" or "standard numbers"
        X is a set of "indices"
        A is the set of all the mappings X-->E
        A=E**X={f:X-->E}
    Identification
        For A to be considered an extension of E , we must identify the
        elements of E with some elements of A.
        The elements of A identified to those of E are called the
        "standard elements" of A , the others the "non-standard elements"
        of A.
        If X=0, there is only 1 element in A : not enough.
        If X={x} , there is a bijection between E and A : nothing new.
        We will no more consider these two cases.
        If X contains at least 2 elements, A contains at least as many
        elements as the set P(E) of all the subsets of E , that is
        strictly more than E.
        A method to make the identification having been chosen (several
        are possible), we can then write EcA.
```

```
Properties
            We want to transfer the properties of the "small" set E to the
            "big" set A . We can translate :
elements
    e[1],e[2],...e[n]@E f[1],f[2],...f[n]\inA
properties
    p[1](e[1]) p[1](f[1])="{x\inX:p[1](f[1](x))}\inFcA"
    p[2](e[1],e[2]) P[2](f[1],f[2])="{x\inX:p[2](f[1](x),f[2](x))}\inFcA"
where F is a chosen fixed subset of P(X).
What needs to be \(F\) ?
That depends of which properties we want to be transfered.
Without any hypothesis on \(F\), equality is transfered to an
equivalence relation, and we take the classes : \(A=(E * * X) / F\)
Examples:
Transfer of a reflexive relation ~ :
reflexivity of \(\sim\) on \(E: \neq e \in e^{\sim} e\)
then : \(¥ f \in A \quad ¥ x \in X \quad f(x) \sim f(x)\)
then : \(¥ f \in A \quad\{x \in X: f(x) \sim f(x)\}=X\)
so that the transfer just needs : X \(\in F\)
Transfer of a symmetric relation ~ :
symmetry of ~ on \(E: Y d \in E \quad ¥ e \in E \quad d^{\sim} e==>e^{\sim} d\)
then : \(¥ f \in \mathcal{A} \quad ¥ g \in A \quad ¥ x \in X \quad f(x) \sim g(x)==>g(x) \sim f(x)\)
then : \(¥ f \in A \quad ¥ g \in A \quad\left\{x \in X: f(x)^{\sim} g(x)\right\} c\left\{x \in X: g(x)^{\sim} f(x)\right\}\)
so that the transfer just needs : \(¥ P \in F P C Q==>Q \in F\)
Transfer of an antisymmetric relation ~ :
antisymmetry of ~on \(E: \nexists d \in E \quad ¥ e \in E \quad\left(d^{\sim} e\right)^{\sim}\left(e^{\sim} d\right)==>d=e\)
then : \(¥ f \in A \quad ¥ g \in A \quad ¥ x \in X \quad(f(x) \sim g(x)) \sim(g(x) \sim f(x))==>f(x)=g(x)\)
then : \(¥ f \in \mathbb{A} \neq g \in A \quad\left\{x \in X: f(x)^{\sim} g(x)\right\} \cap\{x \in X: g(x) \sim f(x)\} c\{x \in X: f(x)=g(x)\}\)
so that the transfer just needs : \(¥ P \in F \quad ¥ Q \in F \quad P \not Q Q \in\)
and : \(¥ P \in F \quad P \subset Q==>Q \in F\)
i.e.: Fis a filter
Transfer of a transitive relation ~ :
transitivity of \(\sim\) on \(E \quad ¥ a \in E \quad ¥ e \in E \quad ¥ b \in E \quad\left(a^{\sim} e^{\sim}\right)^{\sim}\left(e^{\sim} b\right)==>a^{\sim} b\)
then : \(¥ f \in A \quad ¥ g \in A \quad ¥ h \in A \quad ¥ x \in X\left(f(x)^{\sim} g(x)\right)^{\wedge}\left(g(x)^{\sim} h(x)\right)==>f(x)^{\sim} h(x)\)
then : \(¥ f \in A \quad ¥ g \in A \quad ¥ h \in A \quad\{x \in X: f(x) \sim g(x)\} \cap\{x \in X: g(x) \sim h(x)\} \subset\{x \in X: f(x) \sim h(x)\}\)
so that the transfer just needs : \(¥ P \in F=Q \in F P Z Q \in F\)
and : \(¥ P \in F \quad P C Q==>Q \in F\)
i.e.: Fis a filter
Transfer of a total relation ~ :
totalness of \(\sim\) on \(E: \neq d \in E \quad ¥ e \in E\left(d^{\sim} e\right) v\left(e^{\sim} d\right)\)
then : \(¥ f \in A \quad ¥ g \in A \quad ¥ x \in X \quad(f(x) \sim g(x)) \cup(g(x) \sim f(x))\)
then : \(¥ f \in A \quad ¥ g \in A \quad\{x \in X: f(x) \sim g(x)\} \|\{x \in X: g(x) \sim f(x)\}=X\)
so that the transfer just needs : \(P \in F<==>\neg(X-P \in F)\)
and : \(¥ P \in F \quad P c Q==>0 \in F\)
i.e.: \(F\) is an ultrafilter
thus \(:\{x \in X: f(x) \sim g(x)\}\) and \(\{x \in X: q(x) \sim f(x)\}\) contain two complementary subsets of \(X\), one of which being in \(F\), with the sets including it.
remark : both complementary subsets cannot be in \(F\), otherwise their empty intersection would also be in \(F\), and the resulting system would be inconsistent, since the properties could be accepted even if true for no \(x \in X\).
General case :
If \(F\) is an ultrafilter, all properties can be transfered,
and the theorems on \(A\) can be demonstrated as on \(E\), using the classical logic; in particular, the identification can be done by the equivalence class of the constant applications : \(e[0] "="\left\{f \in E^{* *} X:\{x \in X: f(x)=e[0]\} \in F\right\}\)
If \(F\) is only a filter, the properties expressed with an irreductible "or" or "there exists" or a "not" which is not in terminal position are not transfered ; it seems to be linked with the non-transfer of the excluded-third-case principle, so that the intuitionnistic logic would work, but not the classical.
The transfer of preorder, equivalence, and order relations need only a filter. But a total order would be transfered to a partial order, unless the filter is an ultrafilter. But this partial order can be completed into a total order using other methods, which will be studied further on.
```

```
2.Application to numeration systems : filter or ultrafilter ?
    Definitions
        E : set of digits, finite, totally ordered
        X : set of index
        If b=Card(E), we can see a base-b number as a mapping X-->E
        The order on the numbers should be deduced from the order on the
        digits, and should be total.
        Let's take X finite, since the number of places where you can
        write a digit is always finite in practice, though it can be big.
        Then, with E**X , you can represent (Card(E))**(Card(X)) different
        numbers, that can still be chosen at your convenience, several
        conventions being used in practice.
    But what happens with an ultrafilter ?
        On a finite X , all the ultrafilters are principal (i.e. contain
        exactly one singleton).
        If you take the classes (E**X)/F, all the mappings that have the
        same value at x[F] (where {x[F]}\inF ) are equivalent, so that we
        have in fact as many numbers as we have digits : no new numbers.
    Could we take an infinite X ?
        Example :
        with X=N, there are infinite numbers and no infinitesimals
        with X=7, there are infinite numbers and infinitesimals
    But there are some drawbacks :
        1/ This means some circularity : to construct N , we need N .
        2/ Assume I want to decide if fsg:
                -if the ultrafilter F is principal, with {x[F]}\inF :
            I just need to look if f(x[F])sg(x[F])
                -if the ultrafilter F is not principal, there are 3 cases :
                    with K={x\inX: f(x)<q(x)}
                    1-if K is finite, it is a finite union of singletons,
                    which are not in F , so that K is not in F .
                    2-if X-K is finite, K is a finite intersection of
                        complements of singletons, which are in F, since the
                        singletons are not, so that K is in F .
                    3-neither K nor X-K is finite, and I must decide which
                        of them is in F . That means that before I can compare
                        any f,g I must have done an infinite (non-denumerable)
                        choice between the parts of }X\mathrm{ and their complement.
                                    This is impossible in practice for anybody and any
                                    computing machine.
        3/ We must allow F to be a filter, and will then be allowed to
                make only a denumerable choice (which can be defined by a
                certain algorithm) to decide if a part is in f or its
                complement is in F , knowing that both cannot be in F ,
                but it is possible that neither is in F (it is even
                almost always the case).
                But the order is not total, because of the undecided pairs.
    Remark
    Assume X is finite and F is a filter which is NOT an ultrafilter.
    We find the same type of discussion in 3 cases than for an
    ultrafilter on an infinite X .
    If this could be more precisely formalized, it could perhaps be
    used to simulate or imitate proofs involving the non-denumerable
    choice with a system that is finite, so that every calculation
    and case-checking would be assured to terminate in finite time.
```

$F=\langle\langle I\rangle, X\rangle \quad f_{y}(I I)=2$
$(\forall y C E) f_{p}(I)=y f_{y}(I I)=2$
$E=\langle 0.1,2.3\rangle \quad F=\langle(I\rangle, X\rangle,(I)=y \quad(\forall, C E) f(I I)=3$
(\forall, CE $) f(: I)=y \therefore(: I I)=3$

FIGURE 2.3

FIGUPE 3.0
$F=\langle X\rangle$
$(\forall y \in E)(\forall, E X)$
$f,(x)=y$

FIGUPE

$F=\langle X\rangle$
$(\forall y \in E) f_{y}(I)=y f_{y}(I I)=3+0-y$

FIGURE 4
$F=\langle\langle I I\rangle, X\rangle$
$(\forall y \in E) \quad f_{y}(I)=1 \quad f_{y}(I I)=v$

$E=\langle 0,1,2,3\rangle$
$x^{\prime}=\langle I, I I\rangle$
$F=\langle\langle I I\rangle . X\rangle$
$(\forall y \in E) \quad f_{y}(I)=2 f_{y}(I I)=y$

FIGURE 3.2
$E=<0,1,2,3\rangle$
$x=\langle I, I I\rangle$ $\operatorname{lem}_{0,0}$

```
3.Application to computers : use of a lexjcoqraphical order
    E={0,1.} is the set of logical values of the elementary bits
    X is the set of indexes of the bits in a machine word
        (usually card(X) will be a power of 2 , often 8,16,32,64)
    We now take E**X, and F={X}, which is a (degenerate) filter,
    but not an ultrafilter if X has more than one element.
    Thus, we have the full richness of new numbers in A=(E**X)/F=E**X ,
    and the order relation s can be transfered, but it is not total.
    But this partial order can be enriched, so as to become total :
    take a total order on X (finite), and on A the lexicographical
    order induced by the order on the indexes : it is compatible
    and richer than the order generated by the filter, and it is total.
    This was possible because X was finite (in fact, we needed only
    that X has a maximum to define a lexicographic order).
    There are many ways to define the identification function
    between the "new numbers" and the "standard" ones, as can be seen
    on the figures 1 to 4.
Other possible applications :
-Integer Double- or Multi- Precision :
    E is the set of single precision integers (standard numbers).
    X has 2 elements for double precision, or "n" for multi-precision,
    A=E**X is the set of double or multi-precision numbers,
    with an identification function simjlar to Fig. 3.0 (if positive
    unsigned integers) or to Fig. 3.2 with E={-2,-1,0,1} (if signed
    integers)
-Fixed-point real numbers
    similar to Fig. 2.2
-Floating-point real numbers
    similar to Fig. 2.2 but with an non-constant "densit.y", the new numbers
    being more numerous near 0 , and the big numbers being more and more
    far from each other, in an approximately exponential manner.
```


4. Conclusion

```
There are many ways to use such non-standard analysis, I tried to show that the often neglected finite models that can be built are usable in a great variety of situations, in particular to get adequate models of the calculations marie in computers. Other approaches can be found in the bibliography aiven.
\begin{tabular}{|c|c|}
\hline L. Haddad & : "Condorcet et les Ultrafiltres" (Colloque de Luminy-1985) \\
\hline A. Marquetty & : "Approche algebrigue de l'analyse non-standard" (R.A.E Vol.8-n \({ }^{\circ} 1\)-1982/83-p.39-57) \\
\hline A.Marquetty & S.Gladkoff: "L'analyse non-standard expliquee aux mathematiciens non logiciens" (to appear in "Eleutheria" : Pr.S.P.Zervos - Athens - Greece) \\
\hline J.Mycielski & : "Einistic real analysis" (R.A.E Vol.6-1980/81) \\
\hline J. Marthoing & "Elenents pour une théonie du eintime (Átérispue 109. 110 (1983) p 235.244 ) \\
\hline E Rex : & Lei mathématigna now-Stanctarit, vieille de 60 cons? (Pul…situm IRMA 1978 ) \\
\hline
\end{tabular}
```

