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 NON-STANDARD ANALYSIS AND NUMERATION SYSTEMS

 Abstract :

 I will show how non-standard analysis can help in describing numeration
 systems, such as that used by fixed-point arithmetics in computers.
 To achieve the non-standard extension of the total order, instead of
 the usual definition using ul t raf i 1 ter s , a lexicographical ordering
 will be used*
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 0 • Notát i ons

 Because of the incompletude of the printing machine I could use,
 to denotate the usual mathematical characters, I will use the following :
 Existence quantifier : É
 Universal quantifier : ¥
 Membership relation : €
 Inclusion relation : c

 Intersection relation : fl

 Union relation : U

 Empty set : 0
 Power operation : **
 Logical "and" operator : Ä
 Logical "or" operator : v
 Logical "not" operator : -i
 Indices : a [ i ]
 Mapping : f(x) f(x,y)
 Indexed mapping : f[i](x[j])

 1 • Construct ion of the non-standard extension of a set, with its properties

 Def i n i t ions

 E is a set of "standard objects" or "standard numbers"
 X is a set of "indices"

 A is the set of all the mappings X-->E
 A=E**X={f :X-->E}

 Identification

 For A to be considered an extension of E , we must identify the
 elements of E with some elements of A .

 The elements of A identified to those of E are called the

 "standard elements" of A , the others the "non -standard elements"
 of A .

 If X=0 , there is only 1 element in A : not enough.
 If X={x} , there is a bisection between E and A : nothing new.
 We will no more consider these two cases.

 If X contains at least 2 elements, A contains at least as many
 elements as the set P(E) of all the subsets of E f that is
 strifctly more than E .
 A method to make the identification having been chosen (several
 are possible), we can then write EcA .
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 Properties
 We want to transfer the properties of the "small" set E to the
 "big" set A . We can translate :

 e 1 ement s

 e[l],e[2],...e[n]€E f [ 1 ] , f [ 2 ] , . . . f [ n ]€ A
 properties

 P[ 1 ] (ßf 1 ] ) P[ 1 ] (f [ 11 ) =M ix€X:p[ 1 ] (f [ 1 1 (X ) ) } <= F c A "
 p[2](e[l],e[2]) P [ 2 ] ( f [ 1 ] , f [ 2 J ) = " { x€X : p[ 2 J ( f f I ] ( x ) , f [ 2 ] < x ) ) I € F c A "

 where F is a chosen fixed subset of P(X) .
 What needs to be F ?

 That depends of which properties we want to be transfered.
 Without any hypothesis on F , equality is transfered to an
 equivalence relation, and we take the classes : A=(E**X)/F

 Examples:
 Transfer of a reflexive relation ~ :

 reflexivity of ^ on E : ¥e€E e"e
 then : ¥f€A ¥x€X f(x)~f(x)
 then : ¥f€A {x€X : f ( x ) ~f ( x ) } =X
 so that the transfer just needs : X€F

 Transfer of a symmetric relation ~ :
 symmetry of " on E : ¥d€E ¥e€E d"e==>e"d
 then î ¥f€A ¥g€A ¥x€X f ( x ) "g ( x ) = = >g ( x ) "f ( x )
 then : ¥f€A ¥g€A {x€X : f ( x ) "g ( x ) } c f x€X : g(x)"f(x)}
 so that the transfer just needs : ¥PeF PcQ==>QçF

 Transfer of an antisymmetric relation " :
 antisymmetry of ^ on E : ¥d€E ¥e£E ( d"e ) Ä ( e"d ) = = >d =e
 then : ¥f€A ¥g€A ¥x€X ( f ( x ) ^g ( x ) ) A ( g ( x ) "f ( x ) ) = = > f ( x ) =g ( x )
 then î ¥f € A ¥g€A |x€X : f ( x ) "g ( x ) } D { x€X : g ( x ) ~f ( x ) } c { x€X : f(x)=g(x)}
 so that the transfer just needs i ¥P€F ¥Q€F PèQ€F

 and : ¥P€F PcQ==>Q€F
 i.e.: F is a filter

 Transfer of a transitive relation "" :

 transitivity of " on E : ¥a€E ¥e€E ¥b€E ( a ^e ) A ( e"b ) = = >a"b
 then : ¥f€A ¥g<=A ¥h€A ¥x€X ( f ( x ) "g ( x ) ) A ( g ( x ) "h ( x ) ) = = > f ( x ) "h ( x )
 then : ¥f€A ¥g€A ¥h€A {x€X : f ( x ) ~g ( x ) } fi { x€X : g ( x ) "h ( x ) } c { x€X : f ( x ) ~h ( x ) }
 so that the transfer just needs : ¥P€F ¥Q€F P£Q€F

 and : ¥P€F PcQ==>Q€F
 i.e.: F is a filter

 Transfer of a total relation ** :

 totalness of " on E : ¥d€E ¥e€E (d"e)v(e"d)
 then : ¥f€A ¥g€A ¥x€X ( f ( x ) "g ( x ) ) v ( g ( x ) "f ( x ) )
 then : ¥f€A ¥g€A {x€X : f ( x ) "g ( x ) } î) { x€X : g ( x ) "f ( x ) } =X
 so that the transfer just needs : P€F< - = >-»( X-PçF )

 and : ¥P€F PcQ==>Q€F
 i.e.: F is an ultrafilter

 thus : { x€X : f(x)"g(x)} and {x€X : g(x)"f(x)} contain two
 complementary subsets of X , one of which being in F , with
 the sets including it.

 remark : both complementary subsets cannot be in F , otherwise their
 empty intersection would also be in F , and t^he resulting
 system would be inconsistent, since the properties could
 be accepted even if true for no x€X .

 General case :

 If F is an ultrafilter, all properties can be transfered,
 and the theorems on A can be demonstrated as on E , using the
 classical logic ; in particular, the identification can be done
 by the equivalence class of the constant applications :
 e [ 0 ] " = " { f €E* *X : { x€X : f ( x ) =e [ 0 ] }€F }

 If F is only a filter, the properties expressed with an irreductible
 "or" or "there exists" or a "not" which is not in terminal

 position are not transfered ; it seems to be linked with the
 non-transfer of the excluded-thi rd-case principle, so that
 the i ntui t i onn i st i c logic would work, but not the classical.

 The transfer of preorder, equivalence, and order relations need only
 a filter. But a total order would be transfered to a partial
 order, un less the filter is an ultrafilter. But this partial
 order can be completed into a total order using other methods,
 which will be studied further on.
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 2 . Appi ication to numeration systems : filter or ultrafilter ?

 Definitions

 E : set of digits, finite, totally ordered
 X : set of index

 If b=Card(E) , we can see a base-b number as a mapping X-->E
 The order on the numbers should be deduced from the order on the

 digits, and should be total.
 Let's take X finite, since the number of places where you can
 write a digit is always finite in practice, though it can be big*
 Then, with E**X , you can represent ( Card ( E ) ) ** ( Card ( X ) ) different
 numbers, that can still be chosen at your convenience, several
 conventions being used in practice.

 But what happens with an ultrafilter ?
 On a finite X , all the ultrafilters are principal (i.e. contain
 exactly one singleton).
 If you take the classes (E**X)/F , all the mappings that have the
 same value at x[F] (where {xTF]}€F ) are eguivalent, so that we
 have in fact as many numbers as we have digits : no new numbers.

 Could we take an infinite X ?

 Example :
 with X=N , there are infinite numbers and no infinitesimals
 with X = 7. , there are infinite numbers and infinitesimals

 But there are some drawbacks :

 1/ This means some circularity : to construct N , we need N .
 2/ Assume I want to decide if fśg :

 -if the ultrafilter F is principal, with |xrF]}€F :
 I just need to look if f ( x [ F ] ) Í g ( x [ F ] )

 -if the ultrafilter F is not principal, there are 3 cases :
 with K = I x€X : f (x)iq(x) }
 1-if K is finite, it is a finite union of singletons,

 which are not in F , so that K is not in F *
 2-if X-K is finite, K is a finite intersection of

 complements of singletons, which are in F, since the
 singletons are not, so that K is in F .

 3-neither K nor X-K is finite, and I must decide which
 of them is in F . That means that before I can compare
 any f,g I must have done an infinite ( non-denumerable )
 choice between the parts of X and their complement.
 This is impossible in practice for anybody and any
 computing machine.

 3/ We must, allow F to be a filter, and will then be allowed to
 make only a denumerable choice (which can be defined by a
 certain algorithm) to decide if a part is in F or its
 complement is in F , knowing that both cannot be in F ,
 but it is possible that neither is in F (it is even
 almost always the case).
 But the order is not total, because of the undecided pairs.

 Remark

 Assume X is finite and F is a filter which is NOT an ultrafilter.

 We find the same type of discussion in 3 cases than for an
 ultrafilter on an infinite X .

 If this could be more precisely formalized, it could perhaps be
 used to simulate or imitate proofs involving the non-denumerable
 choice with a system that is finite, so that every calculation
 and case -check i ng would be assured to terminate in finite time.
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 3 • Appi i cat i on to computers : use of a lexicographical order

 E=fO,l} is the set of logical values of the elementary bits
 X is the set of indexes of the bits in a machine word

 (usually card(X) will be a power of 2 , often 8,16,32,64)
 We now take E**X , and F={X} , which is a (degenerate) filter,
 but not an ultrafilter if X has more than one element.

 Thus, we have the full richness of new numbers in A= ( E* *X ) /F = E* *X ,
 and the order relation i can be transfered, but it is not total.

 But this partial order can be enriched, so as to become total :
 take a total order on X (finite), and on A the lexicographical
 order induced by the order on the indexes : it is compatible
 and richer than the order generated by the filter, and it is total.
 This was possible because X was finite (in fact, we needed only
 that X has a maximum to define a lexicographic order).

 There are many ways to define the identification function
 between the "new numbers" and the "standard" ones, as can be seen
 on the figures 1 to 4 .

 Other possible applications :

 -Integer Double- or Multi- Precision :
 E is the set of single precision integers (standard numbers),
 X has 2 elements for double precision, or "n" for multi-precision,
 A=E**X is the set of double or multi-precision numbers,
 with an identification function similar to Fig. 3.0 (if positive
 unsigned integers) or to Fig. 3.2 with E= ł -2 , - 1 , 0 , 1 } (if signed
 integers )

 -Fixed-point real numbers
 similar to Fig. 2.2

 -Floating-point real numbers
 similar to Fig. 2.2 but with an non-constant "density", the new numbers
 being more numerous near 0 , and the big numbers being more and more
 far from each other, in an approximately exponential manner.

 4 . Cone 1 us i on

 There are many ways to use such non-standard analysis, I tried to
 show that the often neglected finite models that can be built
 are usable in a great variety of situations, in particular to get
 adeguate models of the calculations made in computers.
 Other approaches can be found in the bibliogrnphy given.
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