A. MARQUETTY, Université de METZ, 34, rue Ronsard, 94100 ST-MAUR (FR.)

DERIVATIVES AND N.S.A. (NON STANDARD ANALYSIS)

1.- What you may say about classical derivatives -

When you study the possible generalizations of a derivative of a mapping f from a collection A into a collection B, you need to avoid as much as you can the particular properties of the specific structures of A and B.

Let $\phi(x, a)=[f(x)-f(a)]/(x-a)$ (1) be a mapping from A² into a collection C, the derivative f'(a) at the point a of A is classically defined by f'(a)=lim $\phi(x,a)$ when x + a.

For instance, if f'(a) is a vector derivative, A is a field, B, an n-dimensional vector space and C, a p-dimensional ($p \le n$) vector space.

The meaning of the expression " $x \neq a$ " is more accurate if we consider a mapping d_A from A² into an ordered structure (E, <, 0=infE), dense in 0 ($u \in E$)($\exists v \in E$) 0 < v < u ($u \in E$) means: for any u in E.

Hence, "x \rightarrow a" means (u \in E)($\exists x \in A$) 0 < d_A(x,a) < u

We write "x $\frac{1}{E}$, a" if E' ε cofE (cofinality of E) (u ε E)($\exists v \varepsilon E'$) 0 < v < u

and if $(u \in E)(\exists x \in A) d_A(x,a) \in E'$ and $0 < d_A(x,a) < u$ (2)

generalized derivatives - If d_{C} is a mapping from C² into E,

 D_{ϕ,E_A,E_C,d_A,d_C} f(a)=f'(a) εC is a derivative of f(x) at a εA if E_A , $E_C \varepsilon cofE$ and (v εE)($\exists u \varepsilon E$) if $d_A(x,a) \varepsilon E_A$ and $0 < d_A(x,a) < u$ then

 $d_{C}[\phi(x,a),f'(a)] \in E_{C}$ and $0 < d_{C}[\phi(x,a),f'(a)] < v$

is a mapping, not always defined by (1) but depending on the wanted generalization of the derivative.

(E, <, 0) is the only structure used.

2.- What they say about N.S.A. (N.S.A. terminology) -

2.1 - <u>Non standard extension of (E, <)</u> - The order < induces an order <' on a collection ^XE of mappings from a collection X into E by (f,g \in ^XE) f <' g iff (x \in X) f(x) < g(x) but even if E is totally ordered, many elements f and g are not comparable.

The number of comparable elements can be increased if (f,g ε^{X} E) f <' g iff { x εX : f(x) < g(x)} ε F, F being a non principal filter on X A <u>non standard extension</u> of E is the collection ${}^{*}E {}^{*}E/F$ such that ${}^{*}f \varepsilon {}^{*}E iff {}^{*}f = \{ g \varepsilon {}^{*}E : \{x : g(x)=f(x)\} \varepsilon F$. Hence, ${}^{*}f {}^{*}c {}^{*}g iff (f \varepsilon {}^{*}f)(g \varepsilon {}^{*}g) \{ x \varepsilon X : f(x) < g(x)\} \varepsilon F$ 2.2 - <u>Standard elements of ${}^{*}E$ </u> - Let u be an element of E. ${}^{*}u \varepsilon {}^{*}E iff$ ${}^{*}u = \{ f \varepsilon {}^{*}E : \{ x \varepsilon X : f(x)=u\} \varepsilon F \} ({}^{st}E : collection of standard elements of {}^{*}E)$ 2.3 - <u>Halo of {}^{*}u (a halo is a monad in [1] and [2]) -</u>

The halo of u is the collection Hal(u) such that $f \in Hal(u)$ iff (v $\in t \in X$: inf(u,v) < f(x) < sup(u,v)} $\in F$ with inf(u,v)=inf(v,u)=u and sup(u,v)=sup(v,u)=v if u < v

Superior and inferior halo, $\operatorname{Hal}^{+}(^{*}u) = \{ f \in \operatorname{Hal}(^{*}u): u < f(x) \}$ and $\operatorname{Hal}^{-}(^{*}u) = \{ f \in \operatorname{Hal}(^{*}u): f(x) < u \}$ can also be defined.

A <u>near standard</u> element is an element in Hal(^{*}u) (^{*}u ε stE).

If u is an origin of E ((u ε E) u < 0 or 0 < u) then Hal(^{*}0) is the collection of <u>infinitesimals</u> of ^{*}E.

2.4 - Main difference between classical analysis (C.A.) and non standard analysis (N.S.A.) -

C.A. uses properties of density: ($u \in E$)($\exists v \in E$) if u < a then u < v < a (fig.1) N.S.A. uses properties of near standard elements :

if $u \in Hal$ (a) then ($v \in {}^{st}E$) if v < a then v < u < a (fig.2)

fig. 1 (u,v,a $\varepsilon^{st}E$) _____ fig. 2 (v,a $\varepsilon^{st}E$)

2.5 - Infinite elements - An element f is an infinite positive element iff (f εf)(u εE) {x εX : u < f(x)} εF . Negative infinite elements can be defined and even infinite elements neither positive nor negative if F is not an ultrafilter.

2.6 - <u>Non standard extension of a mapping from (A, <) into (B, <)</u> -If u and v are mappings from X into A and B, defining elements ${}^{*}u \ \varepsilon \ A = {}^{X}A/F$ and ${}^{*}v \ \varepsilon \ B = {}^{X}B/F$, the non standard extension of f is ${}^{*}f$ such that ${}^{*}f({}^{*}u) = {}^{*}v$ if { x:f(u(x))=v(x)} εF .

2.7 - <u>Transfer principe</u> - The definition of a derivative with a mapping ϕ needs structures on A, B and C with, at least, two binary operations (see 1: "classical derivatives"). For instance, if an additive operation + is defined by a mapping from A² into A, an additive operation *+ can be defined on *A by *a *+ *a'= *a" and {x $\in X:a(x)+a'(x)=a''(x)$ } $\in F$.

If $a, a' \in {}^{st}A$, then *+ determine on ${}^{st}A$, a structure isomorphic to the structure determined by + on A.

The generalization of this property to any relation leads to the transfer principle used in N.S.A.

3.- What you can say about non standard derivatives -

A non standard derivative ${}^{*}f'$ of a mapping f from A into B is given by non standard extensions ${}^{*}f$ of f from ${}^{*}A$ into ${}^{*}B$ and ${}^{*}\phi$ from A² into ${}^{*}C$ of the mapping ϕ defining f'.

We have if "($\exists f'(a) \in C$) if a' \in Hal(^{*}a) then ^{*}f'(a') \in Hal[^{*}f'(^{*}a)] " then ^{*}f'(^{*}a) is the non standard derivative.

For instance, we can say that f is continuous at a when if a' ϵ Hal(a) then $f(a') \epsilon$ Hal[f(a)]. Hence f is the non standard derivative of order zero of f at the point a.

It may be prooved that if a classical derivative f'(a) does exist, the non standard derivative is $f'(a) \in {}^{st}C$. But a non standard derivative may exist even if f'(a) doesn't.

For instance, if a is an isolated point of A $((\exists a_p, a_s \in A)(a' \in A) a' < a_p a_s < a' or a'=a_p, a_s, a)$. In that case, if $a' \in A'$ is defined by $a' \in A'$ such that $(\exists x_o \in X) \{x \in X: Im\{a'(x):x_o < x\} = \{a_p, a, a_s\}\} \in F$ then $a' \in Hal(a)$ and it may exist f'(a) such that $f'(a') \in Hal[f'(a)]$.

N.S. Analysts may also define f'(a) when a or f'(a) are infinite elements of A or C and n-non standard derivatives f'(a) if they consider iterated non standard extensions $s^{n} e^{t}$ of any collection E.

4.- <u>Comments</u> - The concept of non standard derivative is useful only with a good knowledge of N.S.A., especially when infinite elements are needed: in that case, mappings with an infinite number of values are used. N.S. Analysts use the <u>concurrent theoreme</u>: "infinite mappings" are defined by a collection of "finite mappings" : the <u>concurrent relations</u>.

The sets can be defined as elements of iterated non standard extensions ${}^{n}s^{*}E_{o}={}^{*}({}^{n}E_{o})$ of a boolean structure on $E_{o}=\{0,1\}$. But it does exist collections of elements that cannot be defined in that way : <u>external sets</u>.

Nevertheless, it could be interesting to understand what N.S. Analysts say about non standard derivatives.

REFERENCES

[1] Martin Davis, "Applied non standard analysis" John Wiley (1977)

[2] Abraham Robinson, "Non standard analysis" Studies in Logic,

North-Holland (1966)