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 PERIODIC DECOMPOSITIONS OF FUNCTIONS

 1. Let f:R-»R be a real function and let a^,...,an
 be given real numbers. We say that f=f^+...+fn is an
 (a^, . . . ,an) -decomposition of f if f^ is periodic
 mod a^ for every i=l,...,n. If ^ is a class of real
 functions and each f^ belongs to Tr then we say that
 f=fļ+...+fn is an (a^, ... ,an> -decomposition in f .

 Let A denote the difference operator, that is let
 61

 A f(x)=f(x+a)-f(x) (x€R; f:R - *■ R) .
 cl

 If f=fļ+...+fn is an (a^, ... ,an) -decomposition then
 A fj^O for every i and, as the operators A commute
 ai 1 ai

 we obtain

 (1) A . . . A f = 0.
 al n

 A class 'ř of real functions is said to have the

 decomposition property (d.pr.) if, for every f 6 T and
 a^,...,anG ft, (1) implies that f has an (a^,...,an)-
 decomposition in *5- . Neither the class of all real
 functions , nor C (R) , the class of all continuous functions

 defined on R has the d.pr. Indeed, if f is the identity

 function f(x)=x then A A,f=0 for every a,b€ (R. On the
 â ID

 other hand, if, say, a=b then f does not have an (a,b)-

 decomposition since f is not periodic.

 The following result shows that BC (R) , the class of

 all bounded and continuous functions has the d.pr.

 THEOREM 1 . Let a^ , . . . , a^ be real numbers and f £ BC ((R) .

 Then f has an (a^, . . . ,an) -decomposition in C (R) if
 and only if (1) holds .
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 A special case of the theorem above, namely when n=2

 and a]/a2 irrational, was proved by M. Wierdl in M-
 2. By the norm of the decomposition f=f^+. . •+fn we

 mean max ļ|f.|l , where 11 1 g |ļ = sup{|f(x)l : x £ R) • l^i<n 1,00 , 1 00 11

 We denote by Cn the greatest lower bound of all positive
 numbers C with the property that whenever f G BC (ļR)

 satisfies (1) then f has a continuous (a^ «'/a ) -decom-
 position of norm ^ C^^oo *

 THEOREM 2 . For every n > 2 we have Cn 2n ^ .
 In certain cases better estimates can be proved.

 THEOREM 3. Suppose that f £ BC (H) satisfies (1) ,

 where a^,...,a are pairwise incommensurable . Then f
 has a continuous (a,,..., a ) -decomposition with norm

 1 ^
 not exceeding (2-- 1 Hļfl)^ •

 Probably neither of the bounds 2n ^ and 2~ is
 sharp; the problem of finding the best constants in these

 theorems proves to be surprisingly difficult. The next two

 theorems give sharp estimates in some special cases.

 THEOREM 4. Suppose that f £ BC (fl) satisfies (1) ,

 where either n=2 or n=3 and aļ,a2/a.j are pairwise
 incommensurable . Then f has a continuous (a^,...,a )-
 decomposition with norm not exceeding ]|f |) .

 THEOREM 5. Suppose that l/a^, . . . »l/an are linearly
 independent over the rationals . If f či BC (R) satisfies

 (1) then n . n

 (i) sup f =2 sup f. , inf f = inf f.
 i=l 1 i=l 1

 hold for every continuous (a^, . . . ,aR) -decomposition
 Of f ;

 (ii) there is a continuous (a^, . . . , a^) -decomposition

 f=f, + ...+f suchthat H ' f H = 21l|f.ll
 1 n
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 3. Among the (not necessarily bounded) continuous

 functions satisfying (1) are the polynomials of degree

 less than n. This observation leads to the following

 problems which functions f can be written in the form

 f=p+f ^+. . .+fn where p is a polynomial of degree < n
 and A f4=0 1 (i=l,...,n). We call such a representation ai 1
 an (a^ , . . . , a^) -quasi-decomposition of f.

 If f č C(R) has a continuous (a^, ... ,an> -quasi-
 decomposition then (1) must hold. However, it was shown

 by I.Z. Ruzsa and M. Szegedy that (1) is not sufficient

 for the existence of such a decomposition. We can give
 the exact condition in terms of the n-th modulus of

 continuity of f:

 6n(f) = USUP ilAhf II co = sup5|21(-1) j(?)f V (x+jh)l : x,h€fl'. h G IR co jso V J
 THEOREM 6 . A function f € C (IR) has an (a^, . . . ,afi) -

 quasi-decomposition in C (R) if and only if (1) and

 ôn (f) < ao hold simultaneously.
 As a simple application of this condition, we obtain

 THEOREM 7. A function f has an (a^, . . . #an) -quasi-
 decomposition in C (R) with a linear p if and only if
 (1) holds and f is uniformly continuous .

 4 . Let S be a non-empty set and let T be a map

 of S into itself. A function g:S-*lR is said to be

 T-periodic, if g«T=g or, equivalently , if ATg=0, where
 ATg = g - g^T. Now let T^,...,Tn be maps of S into
 itself and let f=f,+...+f where f. is T. -periodic * in i i *

 for every i=l,...,n. If the maps T^ commute, i.e.
 T^o T j = Tj°T¿ hold for every i,j, then the operators
 At also commute and we have

 i

 (2) A ...A f = 0.
 X1 xn

 Let ^ be a class of real valued functions defined
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 v
 on S . We say that d" has the decomposition property
 (d.pr.) with respect to the maps (w.r.t.) if

 for every f , condition (2) implies that there

 exists a (T^ , . . . /T^) -decomposition of f in ^ , i.e.
 f=f 1+. . .+fn, where f i £ Y and AT £¿=0 (i=l,...,n).

 i

 Suppose that the class is closed under linear

 operations and let T be a map of S into itself. Then
 Af = f - f*T (f é'ï' ) defines a linear operator on *5"
 such that Ker A consists of all T-periodic functions

 from S" . This observation together with the next theo-

 rem show that some Banach spaces of functions possess

 the d.pr. w.r.t. "reasonable" mappings.

 THEOREM 8. Let X be a linear space over (R, J| . 'ļ
 be a norm on X and T* be a vector topology on X such
 that {x 6 X s 1] xl' ^ 1} is T' -compact , and if

 x^ €• X (k=l,2,...) and ||x^||- > O then x^- ^ O in T' .
 Let A^, . . . ,An be commuting , T' -continuous

 linear maps of X into itself such that

 ļļAi - l)j 1 (i=l,...,n) .
 Then Ker(A^...An) ,as a. linear subspace of X, is
 spanned by the null spaces Ker A^ (i=l, . . . ,n) .

 The conditions of this theorem are satisfied if X

 is a reflexive Banach space with T' being the weak topo-
 logy. It can be shown that the assertion of the theorem

 does not hold for every Banach space X and for every

 system of commuting linear operators A. satisfying

 IIa. - i|| ^ l.
 Applying this theorem it can be proved that the L^(S)

 classes for l^ p <X> possess the d.pr. w.r.t. commuting
 measurable maps which do not decrease measure, and in

 ÖO

 o-finite spaces L (S) has the d.pr. w.r.t. commuting

 measurable maps which do not map sets of positive measure
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 is nowhere dense, so

 lim sup ( (n *B ) n (0,1]) ' lim sup((n *D ) n (0,1])
 m

 PP PP

 is of the first category, hence lim sup ( (n »D ) rv (0,1]) is not
 P mp

 of the first category.

 Since for .each n 6 N the set B n C is residual in

 1 • Xn
 (an,bn) we can choose from this set a sequence {xn,...,x )
 fulfilling the above conditions. Take now xQ e B n C. Since f

 is strongly I ^ -approximately continuous at (xQ,0), this point

 is a strong ^-density point of the> set

 { (x,y ) : If (x,y ) - f(xQ,0)l

 From Theorem 1.1 it follows that the last set is the union G(x ) ' o '

 U P(x ), where G(x ) is open and P(x ) is nowhere dense,
 o o o

 £

 Moreover, G(x0) n Ux»y) : lf(x,y) - f(0,0)| < =' 0.
 For the rest of the. proof we shall need the following lem-

 ma:

 LEMMA 1.6. If (xQ,yo) is a strong ^-density point of
 an open set G, then for each positive integer n there exists a

 number 6n > 0 such that for every h',h" e (0,ón] and for every
 i,j 6 {-n+1, . . . ,0,1, . . . ,n} we have

 G n ([xo +^T'h ,,xo + n'h'] X [yo + ^Ph"'yo + n*h"]) *

 Proof of the lemma is essentially the same as of Lemma 1,

 p. 170 in [16].
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 1 1

 Applying the above lemma to (xn,0), G(xn) and n for

 n G N, le {l,...,ln>, we obtain two positive numbers ^n'^n
 such that for each i,j 6 {-n+1, . . . ,0,1, . . . ,n} and for each

 1 € {1,...,1 ' } we have ' n

 G (xj n ). n ( [x n + ~^*h n n , xj n + ¿."hl nnJ X 1 [¿l.h" n n* ¿.h"]) n nJ/ i 0. n n n n , n nnJ 1 n n* n nJ/

 Obviously we can choose a sequence to be decreasing.

 i

 We can also suppose that pr = kjļ e N. Now take k^ = n^ and
 n

 k" = - for m * e N (nm has the same meaning as in the first
 m h" * m

 m

 part of the proof of the theorem). Both sequences jj ^

 ^m^meN are i-ncreasinS» If an art)itrary increasing
 sequence of positive integers and r ć N is arbitrary, then,

 reasoning 0 as before, J where = (xļ - h .xļ; + hi ' for ngN 0 J n n n n n '

 and 1 e '{1,...,1 }, we conclude that

 CO

 ( U k' .B)) X [-1,1]
 p=r p

 oo 1
 » n

 V U (<ki ) • U u °<*n>>
 p=r p p n-l 1=1

 is nowhere dense and so

 (lim sup (k' . B) ) x [-1,1]
 P P

 1

 ' lim sup ((k¿ ,k" ) U U QU1))
 P P mp n=l 1=1 n

 is of the first category. Hence
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 1
 n

 lim sup ((k' ,k" ) • U U G'U*))
 P mp mp n=l 1=1 n

 is not of the first category. From this we conclude that (0,0)

 is not a strong ^-density point of the set {(x,y) : lf(x,y)
 1

 e n
 - f(0,0)l < -ït-}, e ¿ since this set is disjoint from U U G(x^). n ¿ n=l 1=1 n

 The contradiction ends the proof.

 THEOREM 1.5. 11' 1* : R4" ~ R is strongly ^-approximately

 continuous, then for every interval (z^Zg) each point of the
 set f ((z^zg)) is its deep strong ^-density point.

 Proof. Apply Theorem 1.2, Lemma 1.2, Theorem l.M, re-

 sults of [15] stating the same as Theorem 1.5 for one-dimensional

 case and Theorem 1.3.

 REMARK 1.2. In [2] one can find the anaUje^result with much

 easier proof because for simple ^-density the notions of special

 and deep ^-density points coincide ([2], Th. 10). In the case

 of strong ^-density the situation is different, as the follow-
 2

 ing example shows: if A = [-1,1] ' ((0,1] * {0}), then (0,0)

 is a special strong ^-density point of A but it is not a deep

 strong Ig-density point of A. The second assertion is nearly
 obvious. To prove the first one put = {(x,y) : x 6 (0,1), 2~1«x

 + 2~*~2*x2 < y < 2~^*x + 2~*~2«x2} for i 6 N and let BQ
 CD

 - U K. . Obviously B and B = B u (R2 ' [-1,1 ]2) are open
 i=l

 p

 sets, moreover, I ? R ' A' and (0,0) is a strong I^-disper-
 sion point of B. We shall sketch the proof of this last asser-

 tion.
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 Let ikń^ncN' VeN be increasinS sequences of positive

 integers. We shall find an increasing sequence (np)peN P03^~
 2

 tive integers such that lim sup ((lo ,kļļ )*BQ) n [0,1] e 1ļ'
 P PP

 kn • kn
 We shall consider three cases: lim y? - ~, 0 < lim - 7 < »

 n-~» Y» n-*-~ kn
 k"

 and lim - =0.
 1/ '

 Al-*0©

 In the first case let i for each n € N be a positive
 i k" i +1 k"

 integer such that 2 á - <2 (we can suppose that- -7 ž:2).
 K ki

 -i k11

 Put t>n = 2 n . Since 1 ¿ bn < 2 for each n, then there
 n

 exists a convergent subsequence {bn } p ^ . Let b0 = lim b p p ^ • p-® p

 If PQ denotes the straight line y = bQ*x> then it is not dif-
 2

 ficult to observe that lim sup ((k' ,k" )»K.. ) n [0,1] = p

 P P P np
 O *

 n [0,1] . If Pj is the straight line y = bQ 2~J »x for any
 integer j , then a moment of reflection shows that

 00

 lim sup ((k¿ ,k" ).BQ) n [ 0 , 1 ] 2 = U' P. J n [0,1]2. P P P j=- J

 knD
 In the second case choose a subsequence {-7^ con-

 kHp

 vcrgent to a positive and finite limit b . If P., j eN u {0},
 J

 o

 means the same as above, then lin sup ((k' ' ,k" ) ' »B ) n [0,11 l,J n ' n ' o l,J
 P P P

 00

 = U p. n [0,1]2.
 j=i J
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 In the third caso, lim sup ((k' ,k" ) *B ) n [0,1]^ - 0
 P np np °

 for any increasing sequence

 Hence regardless ° of behaviour of (k'}„CM and {k"} ° n ntN n nCN

 there exists an increasing sequence such that

 lim sup ((k' ,k" ) • Bq ) n [0,1 ]2 e
 P PP

 2. Now, we start to investigate separately I j -approxi-
 mately continuous functions. We shall extend some of O'Malley's

 results from [131 concerning separately approximately continuous

 •functions to the category case.
 2

 Let 7"Xy be the collection of all subsets U ,of R with
 y

 the Baire property such that for any x,y G R the sets U , Ir
 A

 have the Baire property and are Ij-open.

 THEOREM 2.1. The collection T forms a topology on
 * y y

 The continuous functions relative to this topology are precisely

 the separately I j -approximately continuous functions.

 Proof. To prove the first assertion we shall only show

 that for. each index set A, if U belongs to T for all
 xy

 a G A, then U = U U has the Baire property (the rest is
 a£A

 easy ) .

 For any D 6 we denote

 2
 <p (D) = {(t,y) G R : t is an I. -density point of A

 for some A e Sj, A-C Dy},

 2

 <p y (D) = {(x,t) GR : t is an Ij-density point of A y

 for some A e Sj, A CDX>.
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 Note that <p (D) A D, <p. (D) A D are of the first category (ci'.
 X y

 [2], th. 4). Consequently, <Py(<Px(D)) AD is of the first cat-
 egory .

 Let B be a Baire kernel of U (i.e. a subset of U hav-

 ing the Baire property such that each subset of U ' B having

 the Baire property is of the first category). We may assume that

 B is a Borei set. It is enough to prove that U C (py(<Px(B)) since
 this inclusion together with the known facts B C U, <PV('PX(B))

 ' B e Jņ imply that U e S^. So, let (xQ,y0)€U. Then (x0»y0)

 e Ua for some a € A. From the properties of a Baire kernel, it

 follows that U ' B e Ig. By the Kuratowski-Ulam theorem, (see
 for example [141), there is a residual set E C R such that

 (Ua)* ' By e I j for all y € E. Since Uq e Txy, therefore xq
 is an Ij-density point of (uQ)y for all y e (u )x Thus it

 O

 follows that xq is an I j -density point of B^ for all
 y 6 ^Ua^x n E* Consequently, (UQ)X HEC Hence
 O 0 0

 (Ua)x V is included in R ' E, so it is of the first
 o o

 category. .This implies that yQ is an Ij-den-sity point of (U a ) a xo

 H (<p x (B)) since, by U G T , it" is an I, -density point of x *q xy *

 (Ua)x • Thus (x0,y0) e <Py(<Px(B)).

 The second assertion follows immediately from the defini-

 tion of Txy and from the fact that a separately I j -approximate-
 ly continuous function has the Baire property (cf. [18]).

 THEOREM 2.2. If (xQ,yQ) e U € T , then (xQ,y0) is
 not a strong I2~dispersion point of U.
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 Proof. We may .assume that (x0»y0) = ( 0., 0 ) . At first,

 we shall construct sequences ^ń^ł^n^ rea^ positive numbers
 tending decreasingly to 0 such that for any n G N and i,j

 G{-n+l, . . . ,n} we have

 Let n G N. From U G T it follows that 0 is an I j -density

 point of U°. Therefore, by Lemma 0.1, there exists 6n > 0 such

 that for any h g (°>6n) and i G {-n+1, . . . ,n-> we have

 h, ì h] n U° í I,.

 Choose h^ g (0,min {l/n,6n}). Fix any i G {-n+1, . . . yn) . Observe

 that, since U G Txy, therefore 0 is an Ij-denisty point of

 Ut for each tG hń> n hn^ n U°* ^0> -Lemma 0.1, we can

 choose ó ( t ) > 0 such that for any h G (0,6 (t)) and 'j' G {-n+1,

 . . . ,n} we have

 h, i h] n ut t I,.

 Consequently,
 co

 h' , ì h> ] n U° = U A n n* , n nJ p

 where Ap = {t : t G [ì~ h¿, £ h¿] n U°, 6 (t ) * ķ for p G N.

 Then we can choose pQ = pQ ( i ) G N such that A So» for

 each t G A m and for any h G (0,l/pQ(i)) and j g {-n+1,...,

 n}, we obtain
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 (^h, ih] n-ut i I,.

 Thus, by the converse to the Kuratowski-Ulam theorem ([l1!]) for

 any j G {-n+l,...,n) and h <= (0,l/pQ(i)) we have

 è n h'] n X [^r n h, ¿ n h] n U ff ī„. ¿ n n n n n n ¿

 Choose hļ^ G (0,min {l/n,l/pQ(-n+l ) , . . . ,l/pQ(n) } . Then (**) evid-

 ently holds. Proceeding inductively we' can easily get hA+i
 < h".- < h" for all n € N.

 n n+i- n

 Now, put t^ = tjļ = l/h^, n G N. Then {tjļ}
 are increasing sequences ci' ï-eal numbers tending to infinity. .The

 set U has the Baire property, so there is an open se't G such

 that U A G G 1 2 . Then, by. (**)¿ f0r any nGN and i'„j'G{-n+l,
 . . . ,n} , we have

 (•»•) • G) n - ^'n11 * "•

 Denote En = * G) n [-1,1]^ for n€N. Let {n } be an
 arbitrary increasing sequence of positive integers. For each SG N

 oo

 the set U E is open and, by (***), . dense in [-1,1]2.
 p=S np

 2
 Thus lim sup E is residual in [-1,1] . Since U AG 6 I«,

 P P

 2
 the same holds for lim sup ((t' ,t" ) • U) n [-1,1] . Conse-

 P P P

 quently, the sequence ix/y does not con-
 (It; ,t" ) • u) n t -1,1] 56,1

 P P

 verge I^-a.e. to 0. Thus, by Theorem 0.2, we get the asser-
 ti Ol).
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 Wo say that (0,0) is an upper strong ^-density point

 of A E if there exist increasing sequences ^n^neN» ^n^neN
 of real numbers tending to infinity such that

 <X((t¿,t»).A)n[-l,l]2)neN

 converges I«-u.e. to x o» The respective definition for
 [-1.1]

 an arbitrary point can be formulated by using the standard trans-

 lation trick.

 PROBLEMS. Mu¿t each point of U G T be its upper strong
 xy

 ^-density point? Is there, for any y e R and a separately Ij-

 -approximately continuous function f, a set E e Ij such that
 f is strongly I,, -approximately continuous at (x,y) for all

 x e R ' E? Note that the measure analogues of these questions are

 answered in affirmative (cf. [13], Th. 2 and 3).

 3. In this' section, we show that a separately Jj -approxi-
 mately continuous function is Baire 2 and need not be Baire 1

 (our result is analogous to that for separately approximately con-

 tinuous functions, cf. [3]).

 At first, recall some facts from [10].

 For x e R let P(x) be the family of all intervals [a,b]

 such that x e (a,b) and of all interval sets P of the form
 AO CO

 P = U [an,bn] u U [cn,dn] u {X} (where aR < bR < aR+1 < x
 n=l n= 1

 < á +1 <cn < dn for all n and lim afi = lim dn =; x) such
 n n

 that x' is an I j -density point of P.
 Let t be the family of all I j -open sets such that for
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 each nonempty U G t and each x G U there is P G P(x) con-

 tained in {x} U int U. Then x forms a topology which is The

 coarsest one for I j -approximately continuous functions.
 Por A C. R let A(A) denote the set of all x G R such

 that P n A ' {xQ} i 0 for each P G P(xQ).
 o

 Here we shall say that sets A,B CR' have property (ds)
 p

 if and only if for each set XCR , conditions A n .X = X, BnX

 = X imply X = 0.

 LEMMA 3.1. Let A,B C R2.

 (a) If A,B have property (ds) and C A, B^ C B,

 then AļjBļ have property (ds).

 (b) If A^,B have property (ds) for i = l,'2,...,n,
 n

 then U A. ,B have property (ds).
 i = l 1

 Proof. (a) Observe that A: n X = X, Bļ n X = X im-
 ply a n x = X, Bnx = x.

 n

 (b) Suppose that there is X t 0 such that U ĀT ñ X
 i = l 1

 = X, B n X = X. Then there are an open set G and a number

 le e {l,...,n} such .that 0 / C n K A, n X. Then we have

 Ak n G n x = Ak n G n x = G n x,

 B n G n x = b n G n x = G n x,

 which gives a contradiction.

 2
 Por a function f : R - R and a G R we denote
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 Eq = {(x,y) : f (x,y ) < a}, Ea = {(x,y) : f(x,y) > a}.

 LEMMA 3.2. If f : R2 - R ,is separately ^-approxima-

 tely continuous, then for any rļ>r2 € R» ri < r2>- there exist
 disjoint sets H , K of type Gc such that E

 r^2 , ri 2 00

 C H and E 2 CK.
 12 12

 Proof*. Let a, ß e R and a < ß For any n,k e N,

 h > 0, i e {l,...,n>, j e {l,...,k> let

 Anhi = «x'»> e Ea ; (x> " [y - h> y + Hh^ <= V'

 Bnkhij = «x'y> e eB : <x>

 « [y + fl-1>^'Ì-:1h,y+<i-^kt'1h] ep»>.

 Observe that

 OD 00 CO

 Ea = U O U Anhi*
 n=l h€(0,¿) i=l

 Indeed, consider an arbitrary (xQ,yo) e Efl. Then there exists a
 closed set F C E (see the definition of t) such that y„ is
 a o

 an I « -density point of F . Then, by Lemma 0.1, there exist
 xo

 nQ G N and 6 > 0 such that for each h e (0,6) there exits
 i0 e {l,...,n0>, i0 = i0(h), such that

 i - 1 i

 (X.) » [y0 + -
 no no
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 Choose 1 G N such that for s nQl we have > 1/6. For

 each h G (0,1/r^) put iļ = iQ(h)l. Then (*0>y0) G 'Sijhi^
 So, we have shown that

 <o n

 (*0,y0> s u n u Vi
 n=l h<=(0,±) i=l

 and nov; the desired equation -is clear. In a similar way, we can

 prove that for each n e N

 û n n u Bnkhir
 k*i he(0,¿) i=i j=i

 i i
 Consider fixed n € N, k e N, he (0, min {- ,* ) ,

 i <£ {l,...,n}, j € {l,...,k}. We shall prove that ARhi, Bńkhij
 have property (ds). Suppose to the contrary that there is X i 0

 auch that

 Anhi n X = X and Bnkhij n x = x-

 Choose a rectangle [a,b] x [c,d] such that d - c < h/nk and

 the set - ([a,b] x [c,d]) n X is nonempty. Put

 .. . c+d . (i-l)k + j- lt . 1 u
 .. yo . F" .

 Since d - c < h /nk, we easily observe that

 (•) y0 e ly ♦ (i ' J y ♦ <1 ' ff ł .1 h)

 for each y € [c,d].
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 2
 Por (x,y) e R let pr(x,y) = x and denote

 P = pr (X.,), PA = pr (Anhi n Xa),

 PB = Pr <Bnknij n Xl>-

 Then P is closed since is compact. By the property that

 for any continuous mapping the image of a dense subset of the

 domain, is dense in the image of the domain, ^>^3 are dense in
 P. Next, observe that

 PA " <yo> C Ea> PB " <yo> C eS-

 Indeed, to show the first inclúsion, consider any x e Then

 (x,y) 6 Anh^ n Xļ for some y. Then y e [c,d], so, by (*),
 we deduce that

 yo e ty + h* y + n hl*

 Hence (x,y) e An^ implies that (x,yQ) e E^. Thus we have
 shown that P^ x {yQ} C E . Similarly, one can prove that
 PB « <y0> c E».

 The function f is I .-approximately continuous and
 yo

 therefore Baire 1 (see [16]), so the restriction f |P has a
 yo

 point of continuity xq e P. Since P = P^, there is a se-

 quence {xn)neN C PA which tends to xQ. Since (*n»y0) 6 PA
 x {y^} w CE, therefore f(x .y } Sa, n e N, and thus w O CX xl o

 f(x0,y0) * <*• Analogously, from P = Pß and Pß * {yQ} C E3

 it follows that f(x0»y0) * P* We have obtained a contradiction.

 Thus, Anhi, Bnkhij. have property (ds).
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 Now, for any n,k. € N let

 n

 Cn ^ , U Anhi
 hS(0,- ) i=l

 and

 n le

 Dnk ^ ļ ^ ^ Bnkhi j * he(0,ì) ļ i=l j=l
 then

 n

 Cn C n U Anhi
 h<=(0,min{-jr-} ) i=l

 Xl ¡X

 and

 n k

 Dnk ^ ^11 O U Bnkhij *
 he(0,min{^,k) ) i=l j=l

 By the previous part of the proof and Lemma 1 (to), the sets

 k

 Anhi ' ^ Bnkhi j
 j=l

 have property (ds) for i = l,2,...,n. Hext, by Lemma 3.1 (b),

 the sets ,, n ,, K

 ^nhi* O Bnkhij
 i=l j=l

 have property (ds), and, finally, by Lemma 3.1 (a), the sets

 Cn,Dnk have that property.

 For n,k € N let Unk,Vnk be disjoint sets of type G.

 such that CnC Unk, Dnk C Vjļk (see [9], Chapter I, § 12, III,
 00 co

 1°, p. Ó5) .' Let Wao = u n U nK Then Waß is of type G. . n=l k=l nK 00
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 co ri)

 Now. we observe that E C. w „ and C. O ti v . Indeed,
 aB „ 3=1 p=l SP

 for any n,k G N víc have C CU. ri/C Lhe re l'ore C C O U , n ri/C n ici ^
 for each n e N and thus

 "» o.

 Ea = U C C U H U .
 n=l n n=l k=l nK

 Since
 ot> »•>

 e& = Ù d c U v
 P=1 sp P=1 sp

 for each s e N, therefore

 co o>

 e® c n u v„.
 s = l p=l sp

 Now, ' it follows that W . A = 0 since ' aß .

 » eo o» «

 W.nE^cUHu.nn U v
 n=l k=l n s = l p=l sp

 00 ® 00

 c u ( n Wnk nK n U v np ) n=l k=l nK p=i np
 00 0» 00

 = u u ( n u nK k n v np ) n=l p=l k=l nK k np
 oo oo

 CU U ( u„„ n v„i = 0.
 n=i p=l np np

 In a similar way we can show that there exists a set V of type

 Ct such that V . p and V fl n E' = 0. 6a aß . aß fl a

 Now, we are able to get the assertion. Let € ^ an(*
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 rļ < r0. Choose any such that r± < r^ < r^ < r 2< Vie
 know that there exist sets VJ^ ^ r of type such that

 i* r

 ECW .E^nw = 0, E 2 C V , E nv = 0.
 rl rlr3 rlr3 r4r2 r4 r4r2

 Let Kr,r2 = Wrir3> »r^ = ^2* Then 'v2 ** sets
 r?

 of type Gk such that E CK, E c H and
 õ r1 rir2 12

 Kr r n Hr rl r = Wr rl r n V- C (r2 N e '' n (R N Er, > 12 r rl r 2 rl r 3 2

 2
 = R ' (E U E ) = 0.

 r4

 2

 THEOREM 3.1. If f : R - R is separately Ij - approxi-
 mately continuous then is Baire 2.

 Proof. The function f will be proved to he. Ģaire 2
 c

 if we show that Eß and E are of type G6o for every c. Let
 sets K,H with the respective indices have the meaning as in Lem-

 ma 3.2. We then have

 oo oo

 E = U H J ļ , EC = U K J .
 n=i c-n,c-n+1 n=l c+n+l,c+n

 Hence E„ and E are of type G.. and the theorem is oroved. c 6a

 LEMMA 3.3. Let x çÉ A (F) where P is a closed subset
 i

 of R. Then there exists an I j -approximately continuous function

 g : R - [0,1] such that s(xQ) = 1 and {x : g(x) i 0}np'{xQ}
 = 0.
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 Proof. Since . xä £ Mf), there is a set P 6 P (x )
 o o

 such that P H F ' {x } = 0. Assume that
 o

 00 oo

 P = U [a , b ] u U [c ,d ] u {x }
 n=l n n n=l 0

 where a^ < b < a ... < xa < d ... < c < d^ for all n and n n n+i ... o n+l ... n n
 oo oo

 lim an = lim bn = x . Let <50 = U <a¿,b¿) u U (c¿,d¿) be
 n n n= 1 n=l

 such that a' n < a n < b n < b n • < a n+l • . < x o < d» n+l A < c n « < c n < d» n n n n n n+l o n+l A n n n

 dn and GQ n F ' {xQ} = 0. Let G = int (R ' GQ). Put
 s

 1 if x = XÄ
 o

 g(x) = ^
 I

 '^p(x,G) + p(x,P) °*

 Then g is I j -approximately continuous, S(x0) = 1 and

 {x : g(x) i 0} n P ' {x0> = (R'G) u {xo} n P ' {xo}

 = Gq n F ' { XQ } = 0.

 In the case when P = [a,b] and xQ e >[a,b], we chooso

 Gq = (a',b') such that a' < a < b < b' and Gq n F'{xo} = Ů.
 The rest is the same as above.

 THEOREM 3.2. There exists a separately I j -approximately
 p

 continuous function f : R - R which is not Baire 1.

 Proof. Let C be the perfect nowhere dense set con-

 structed in [1]. Denote by D = {xn : n e N} the set of all end-
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 points of components of [0,l] ' C. By the construction, xn

 vi A(C) for all n. We shall define a separately Tj - approxi-
 2

 mately continuous function f : R -► R such that f(x,x) = 1 for

 X 6 D and f(x,x) = 0 for x G C ' D; it follows -from the

 well-known Baire* s criterion that f is not Baire 1.

 By Lemma 3.3 (applied with F = C) there is an I j -appro-

 ximately continuous function g^ : R - [0,1] such that

 = 1 and C ' {x1} does not intersect the set

 F1 = {X : g1(x) i 0}.

 By the definition of A, we have A(F^) CP^P^, so x^ F^ im-

 plies X 2 £ A(P^). Consequently, we easily get x ^ U F^ ) .

 By Lemma 3.4 again (applied with F = C U F^ ) there is an Ij-

 -approximately continuous function g^ : R ^ [0,1] such that
 Co(x2) = 1 and ^ u Fļ) ' {X2> does not intersect the set

 F2 = {x : gg (x ) i 0}. Next, we proceed by induction.
 2

 Finally, observe that the function f defined on R by

 00

 f (x,y ) = E' gn(x)g n n (y) n=l n n

 fulfils the assertion.

 4.- In the proof of Theorem 3.1 we do not use the fact,

 shown in [18], that each separately I j -approximately continuous
 function has the Baire property. It makes a contrast with the

 paper [3 ] of Davies who while proving that a separately approxi-

 mately continuous function is Baire 2 Uses his own result that

 this function is measurable. Now, we shall describe further pro-

 perties of functions with I j -approximately continuous sections,
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 which strengthen the above mentioned theorem of [l8i.

 Let X and Y be topological spaces. A mapping f : X * Y
 I

 iv. called quasicontinuous at a point x € X if for each neigh-

 bourhood U of X and each neighbourhood V of f(x) there

 exists an open nonempty set UQ C U such that f(U0) C U (cf.
 l8], [12]). If f is quacicontinuouG at each point of X, it is

 called quasicontinuous.

 Prom the definition we get

 LEMMA 4.1. A mapping f : X * Y is quasicontinuous at a

 point x if and only if for any neighbourhoods u,V of x, f(x),
 - 1

 respectively, f (V) n U has the nonempty interior.

 Further, we shall consider quasicontinuity only in the cases'
 2

 when X = R or R and Y = R, and the natural topologies in

 X,Y are considered.

 In [16] (the proof of Th. 8) the following property is ob-

 served

 LEMMA 4.2. If f : R -► R is I j -approximately continuous,
 then for any interval (a,b) there is an open set G included

 in f_1((a,b)) and dense in f_1((a,b)).

 From Lemmas 4.1 and 4.2 we easily deduce

 THEOREM 4.1. If f : R -► R is I j -approximately continu-

 ous, then it is quasicontinuous.

 2

 COROLLARY 4.1. If f : R "*■ R is separately I j -approxi-

 mately continuous then it is quasicontinuous.
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 Proof. The assertion follows from Proposition 4.3 and

 the fact that each separately quasicontinuous function is quasi-

 continuous (see [8]).

 COROLLARY 4.2. If f : R2 ~ R has all sections fx I?-
 -approximately .continuous and all sections f^ with the Baire

 property, then f has the Baire property.

 Proof. Grande showed in [7 ] that if f : R2 -► R has

 all sections f quasicontinuous and all sections f^ with the
 A

 Baire property, then f has the Baire property. So, Theorem 4.1

 yields the assertion.

 REMARK 4.1.

 (a) Each quasicontinuous function has the Baire property

 (even its set of discontinuity points is of the first category) but

 the converse is false (see [12]).

 (b ) Comparing Theorem 3.3 and Corollary 4.4, let us re-

 call that any implication between quasicontinuity and being a

 Baire 2 function does not hold (see [12]).

 (c) The measure analogue of Thëorem 4.1 is false. Indeed,

 since the density topology is completely regular ( [ 5 ] ) > there

 exists an approximately continuous function g : R- ~ [0,1] such

 that g('/2) = 0 and g(x) = 1 for each rational x. Let

 U = g 1( [0,1/2)), V = R. Then, by Lemma 4'. 1, g is not quasi-
 p

 continuous. If we put f(x,y) = g(x) for x,y 6 R , we ob-

 serve that the measure analogue of Corollary 4.1 is false.

 (d) By assuming Continuum Hypothesis it is proved in [4]
 2

 that there exists a function f : R - R with approximately con-
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 tinuous sections f and measurable sections fy which is not

 measurable. So, then the measure analogue of Corollary 4.2 be-

 comes false.

 PROBLEMS. Dy Corollary 4.1 and Remark 4.1 (a) the set of

 discontinuity points of a separately I j -continuous function is of
 the first category. It would be interesting tp obtain an exact

 characterization of this set. Grande in [6] proved that there is
 2

 a separately approximately continuous function f : [0,1] - K

 whose set of discontinuity points contains the diagonal. Is this

 possible for separately I j -approximately continuous functions?
 (Note that this is impossible for separately continuous functions;

 cf [6]).
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