THE DIFFERENTIABILITY STRUCTURE OF TYPICAL FUNCTIONS IN C [0,1] L.Zajíček, Prague

<u>1.Introduction.</u> Let C denote the set of continuous real valued functions defined on [0,1] furnished with the metric of uniform convergence. When we say a typical $f \in C$ has a certain property P, we shall mean that the set of $f \in C$ with this property is residual in C. The sentences " a.a. (= almost all) $f \in C$ have the property P " and " P is a typical property of $f \in C$ " have the same meaning.

The following theorem show relations connecting the Dini derivates of a.a. $f \in C$ at all points $x \in (0, 1)$.

<u>Theorem BMJ.</u> A typical $f \in C$ has the following properties. (i) ([1],[6]) At every $x \in (0,1)$, max $(|D^{+}f(x)|, |D_{+}f(x)|) = \infty$ and max $(|D^{-}f(x)|, |D_{-}f(x)|) = \infty$. (ii) ([3]) At every $x \in (0,1)$, $[D_{-}f(x), D^{-}f(x)] \cup [D_{+}f(x), D^{+}f(x)] =$ $= [-\infty, \infty]$.

A natural problem (cf. [2], Remark 2) arises, wheather there are some further relations of this sort.

The well-known Saks' result [8] says that a.a. $f \in C$ have a right-sided derivative ∞ in a non-denumerable set of points.

Garg([2], Theorem 1, (iii)) observed that, for any $r \in \mathbb{R}$, the case $D^{+}f(x) = \infty$, $D_{-}f(x) = -\infty$, $D_{+}f(x) = D^{-}f(x) = r$ occurs for a.a. $f \in C$ on a dense set.

The problem mentioned above was solved in negative approximately six years ago by D.Preiss.

<u>Theorem P</u> (Preiss, unpublished.) Let D^+ , D_+ , D^- , D_- be extended real numbers for which max $(|D^+|,|P_+|) = \max(|D^-|,|P_-|) = \infty$ and $[D_-,D^-] \cup [D_+,D^+] = [-\infty,\infty]$. Then for a.a. $f \in C$ there exists a C-dense set $A \subset (0,1)$ such that

 $D^{+}f(x) = D^{+}$, $D_{+}f(x) = D_{+}$, $D^{-}f(x) = D^{-}$, $D_{-}f(x) = D_{-}$ for all $x \in A$.

An improvement of Theorem P (Theorem 2) is given below.

- 6. Z. Grande, Une caracterisation des ensembles des points de discontinuite des fonctions linéairement-continues, Proc.
 Amer. Math. Soc. 52 (1975), 257-262.
- 7. _____, Sur la propriété de Baire des fonctions de deux variables, Bull. Acad. Polon. Sci, Ser. Sci. Math. Astronom. Phys. 25 (1977), 349-354.
- S. Kempisty, Sur les fonctions quasicontinues, Fund. Math.
 19 (1932), 184-197.
- 9. K. Kuratowski, Topologie I, PWN, Warszawa 1985.
- E. Łazarow, The coarsest topology for I-approximately continuous functions, Comment. Math. Univ. Carolinae, 27 (1986), 695-704.
- 11. _____, On the Baire class of I-approximate derivatives, Proc. Amer. Math. Soc. /to appear/.
- 12. S. Marcus, Sur les fonctions quasicontinues au sens Kempisty, Colloq. Math. 8 (1961), 45-53.
- 13. R.J. O'Malley, Separate approximate continuity and strong approximate continuity, Colloq. Math. 50 (1985), 129-132.
- 14. J.C. Oxtoby, Measure and category, Springer Verlag, New York 1971.
- 15. W. Poreda, E. Wagner-Bojakowska, The topology of I-approximately continuous functions, Radovi Matematički 2 (1986), 263-277.
- 16. W. Poreda, E. Wagner-Bojakowska, W. Wilczynski, A category analogue of the density topology, Fund. Math. 125 (1985), 167-173.
- 17. W. Wilczyński, A category analogue of the density topology, approximate continuity and the approximate derivative, Real

120

Anal. Exchange 10 (1984-85), 241-265.

18. _____, Separate I-approximate continuity implies the Baire property, Acta Silesian Technical University (Gliwice) 48 (1986), 227-230.

Institute of Mathematics Łódź University ul. Stefana Banacha 22

90-238 Łódź, PÒLAND