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 The idea of set porosity was introduced by E. P. Do lien ko [3ļ as a way of describing
 the "thinness" of a set. Since then, many papers have been published which show that
 porous and er-porous sets are actually the typical set encountered in many situations; e.g.,
 see 11}, [2], [4ļ and '6j. This paper contains another such result. We show that, in a sense,
 the typical compact subset of R is porous. To be more precise, it is shown that if the
 compact subsets of R are given the Hausdorff metric, then the porous sets are a dense G¿
 subset of this complete metric space.

 First, we introduce some notation and definitions. If S C R and xtA, then the
 rxght-hand porosity of A at x is defined to be

 '(A,x,h)
 hmsup

 /i- o+ h

 where '(A,x,h) is the length of the longest interval contained in (x,x + h) (1 Ac. A set
 is right porous if it has positive right-hand porosity at each of its points and it is right a-
 porous if its porosity is not less than a at each of its points. A set is strongly right porous
 i its right-hand porosity is 1 at each of its points. The left-hand and bilateral versions of
 these ideas are defined similarly. A set is o-porous if it is the countable union of porous
 sets.

 Let C be the collection of all compact subsets of R. For A, BeC , let

 p% = inf{e > 0 : B C (J fî(x,e)},
 zeA

 where B(x,e) = {y : 'x - y| < e}. The Hausdorff distance between A and B is

 p{A, B) = max{pß,p$}.

 It can be shown (Í5-) that K - (C,p) is a complete metric space and that if C is restricted
 to the closed subsets of any compact subset of R, then the corresponding K is compact.

 We denote

 P*(a) = {FeK : F is right a - porous}.

 The meanings of P~(a ) and P(a ) are analogous. From the definitions, it is easy to see
 that ifO<a</0< 1, then

 P+(a) 3 P"-{ß) D P"-(l) D-P(l) and P+(ß) = fļ P+(A).
 '<ß

 Similar relations hold for P~(oc) and P{a).
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 Theorem 1. P+(l) is a dense G¿ subset of K.

 The main idea in the proof of this theorem is that in the complete metric space, K,

 Pni*}) = {FeC ł. VxeF, 3 re(x,x -+- 1 In) and

 a closed interval I C (x,x -r r) ' F such that 'I'/r > r¡}.

 is an open set for each rje( 0, 1) and each neN. Using this, i3+(a) can be built by using
 OO OO

 = n n^+(«- 1/m^
 n= 1 m- 1

 and
 OO

 P+( 1) = f| P+(l-l/n).
 n= 1

 Then, an easy consequence of this is the following theorem.

 Theorem 2. The strongly porous sets form a dense Gg subset of K. and therefore are
 resjdual in K.

 Since every strongly porous set is a-porous, the following corollary is a trivial conse-
 quence of Theorem 2.

 Corollary 1. The a-porous sets are residual in K.

 This leads at one to the following corollaries.

 Corollary 2. The measure zero compact sets are typical.

 Corollary 3. The first category compact sets are typical.

 A logical question to ask at this point is whether some of the known theorems about
 porous sets can be attained as a consequence of Theorems 1 or 2. Since the level sets of a
 continuous function with a compact domain are in K, likely candidates are the following
 theorems.

 Theorem TI. (B. S. Thomson :6¡) If f is a nowhere constant continuous function, then
 the typical level set of f is in P( l).

 ( A level set of / is defined as /-l o /(x)).

 Theorem T2. (B. S. Thomson l6l) The typical continuous function has every level set in
 P( 1).

 These theorems can be rephrased in light of Theorems 1 and 2 as follows.

 Theorem Tl*. If f : ¡a, 61 - ► R is a nowhere constant continuous function, then the
 typical level set of f is typical.

 Theorem T2*. Every level set of the typical continuous function defined on a compact
 interval is typical.

 We have been unable to do this, however, ^o, the following question remains open.
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 Question. Is Theorem Tl or Theorem T2 a consequence of Theorem 2?

 In relation to this, it is possible to prove that the mapping

 A : x«[a,6] - ► f~l o f(x)tK

 is continuous on a residual subset of (a, 6]. However, it is easy to find examples of functions
 / where this mapping is badly discontinuous, or nowhere constant and continuous at an x
 where A(x) is not strongly porous.
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