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 STABILITY OF CHAOTIC AND NON-CHAOTIC MAPS OF THE INTERVAL

 In the sequel we consider only continuous maps I- ->I where

 I is a compact real interval. A map f is called g-chaotic for

 some t, >0 if there is a non-empty perfect set S such that for

 any x, y e S, x y, and any periodic point p of f (p 6 Per(f)),

 (1) lim sup jf^ix) - fn(y) ] ^ £
 n 4 - > oo

 (2) lim inf jf^x) - f^y) ) = 0
 n - > oo

 (3) lim sup |fn(x) - fn(p) 1 ^
 n - > oo

 where fn denotes the n-th iterate of f. In this case, S is
 called an £ -scrambled set for f . We recall that this concept is

 equivalent to the original concept of chaos by Li and Yorke

 (see D-])«
 Any continuous map f which is not chaotic, has the follow-

 ing property (see [5]): For any x £ I and any £ >0 there is a

 p Ê Per(f) with lim sup |fn(x) - f^íp) | £-. In other words, any
 n - > oo

 map f is either chaotic or has every trajectory approximable by

 cycles. In practice, the second type of behavior cannot be distin-

 guished from asymptotical periodicity of the trajectories and the

 corresponding maps can serve as predictible deterministic mathe-

 matical models of certain real processes.

 In modelling the problem of stability is very important: The
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 prooer map f is usually replaced by its approximation g and

 the Drobiem is to find conditions under which both f and g give

 models with similar properties (provided ļļf - gļļis small). We
 present here some results of this type.

 Definition 1. (See [4].) A. non-chaotic map f is stable if
 for any % >0, any map g sufficiently near to f has every tra-

 jectory £-approximable by cycles (i.e., for any x there is some

 p 6 Per(g) with lim supļgn(x) - gn(p) ) < i ) .
 n - s> ao

 Definition 2. An E-chaotic map is stable if for any

 with 0 any map g sufficiently near to f is g'-chaotic.

 Theorem 1. (See Í4].) A non-chaotic map f is stable iff the
 following two conditions are satisfied:

 (i) Per(f) is nowhere dense;

 (ii) for any infinite if-limit set L^(x) there is a sequence
 of closed periodic intervals such that the minimal period of

 T_ is 2n and
 n co g

 MX) 1 = r' 'J 1 n=l i=l n

 This generalizes earlier results [ô J and [ 9 J » Note that for

 any map f with zero topological entropy (i.e., for any f with-

 out cycles of period ^ 2n, n = 0, 1, 2, ... ; in particular, for

 any non-chaotic map) and any infinite L^.(x) there is a sequence

 [ln] of periodic intervals of the above described type with

 L.(x) 1 c i) U f^iJ n 1 ni n

 (see [5 J) but the converse inclusion can be false.
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 Using this we can prove

 Theorem 2. In the space of maps with zero topological en-

 tropy with the uniform metric, the stable non-chaotic maps form a
 dense subset.

 As a consequence we get

 Theorem 3. The non-chaotic maps are generically stable.

 Concerning stability of chaotic maps, the situation is more

 complicated but also here a characterization is possible. Every

 chaotic map f with zero topological entropy is by Theorem 2

 non-stable (a simple example is given in [33^* 0n the other hand,

 if f has a positive topological entropy then there are disjoint

 closed intervals Iq, CI and a positive integer m such that

 i^Iq) n D l0 1/3^
 (f has a horseshoe) . In this case, f is g -chaotic where £ =

 = dist (Iq, Iļ)/2 (see [lj) and any g sufficiently near to f is
 I -chaotic, too» It can be proved that the unstable chaotic maps

 are the maps with only small horseshoes and with restrictions

 that represent maps of zero topological entropy with large chaos.

 A more precise description of stable chaotic maps is based on the

 following result.

 Theorem 4. Let for some x ^ y, (1) and (2) be satisfied. Then

 f is € -chaotic if f has zero topological entropy (see £2]) and
 is ?/2-chaotic otherwise (see [6j).

 As a consequence we get (see also a related paper
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 Theorem 5. (See [ój.) The chaotic maps are genericelly stable.
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