K. Simon, NME Matematikai Intézet, Miskolc-Egyetemvaros 3515, Hungary

TYPICAL CONTINUOUS FUNCTIONS ARE NOT ITERATES

Let C_O^1 denote the set of continuous functions mapping [O,1] into itself endowed with the sup norm. P. D. Humke and M. Laczkovich have investigated the structure of the set $W_2 = \{f \circ f : f \in C_O^1\}$. They proved that W_2 is not everywhere dense in C_O^1 and does not contain balls.

In this presentation we shall see that W_2 is of the first category in C_0^1 . Moreover, for $k \ge 2$, if W_k denotes the set of k^{th} iterates of the functions in C_0^1 , then W_k is shown to be of first category in C_0^1 as well. The proof is based on the theorem stated below. First some notation needs to be adopted.

Let $Fix(f) = \{x : f(x) = x\}$ and let $f^n(x) = f(f^{n-1}(x))$. We set $E_{\alpha}^f = \{x : f(x) = \alpha\}$ and let RE_f denote the set of relative extrema of f. We define

 $T_{1} = \{f \in C_{O}^{1} : Fix(f) \cap RE_{f} = \emptyset\},\$ $T_{2} = \{f \in C_{O}^{1} : f \text{ is not locally increasing or decreasing at any } x \in [0,1]\},\$ $T_{3} = \{f \in C_{O}^{1} : Card(E_{\alpha}^{f} \cap RE_{f}) \le 1 \text{ for every } \alpha\}, \text{ and}\$ $T = T_{1} \cap T_{2} T_{3}.$

It is easy to see that T is a residual subset in C_{Ω}^{1} . We then prove the following:

Theorem. For every $\varphi \in C_O^1$ and $k \ge 2$, $\varphi^k \notin T$.