L. Fehér Eötvös University, Budapest.

When does lim $f(\lambda_x) = 0$ for every x imply $f(x) \rightarrow 0$ at infinity?

The following problem is due to M. Laczkovich and L. Pósa. We have a continuous function f and we know that for every x > 0 f(nx) tends to zero as n tends to infinity. Prove that $\lim_{x \to 0} f(x) = 0.$

This observation leads to the following question. Which sequences have this property besides the sequence of all natural numbers?

Definition: A real sequence $\{\lambda_n\}$ is good if $\lambda_n \rightarrow \infty$ and, for any continuous f, $\lim_{n \to \infty} f(\lambda_n x) = 0$ for all x > 0 implies $\lim_{x \to \infty} f(x) = 0$.

In this paper we give a sufficient and some necessary conditions. First of all we give an equivalent reformulation of the problem.

<u>Proposition</u>: A sequence $\{\lambda_n\}$ is good iff $\lambda_n \rightarrow \infty$ and whenever $\{[\alpha_i, \beta_i]\}$ is a sequence of intervals tending to infinity then there exists an x such that $\lambda_n x \in \bigcup_{i=1}^{n} [\alpha_i, \beta_i]$ for infinitely many n.

The solution of the original problem is based on the fact that $\bigcup_{n=1}^{\infty} [nx,ny]$ contains a halfline for an arbitrary interval x,y. Similar argument shows that if $\lambda_{n=1}/\lambda_n$ then $\{\lambda_n\}$ is good.

With the help of the fact that if $\limsup \lambda_{n+1} = \infty$ then $\bigcup [\lambda_n x, \lambda_n y]$ does not contain a halfline for any interval [x, y]one can prove that if $\limsup \lambda_{n+1} / \lambda_n = \infty$ then $\{\lambda_n\}$ is not good. This observation is due to P. Erdős.

A little more complicated argument shows that if $\lim \lambda_n \lambda_n = c l$ then $\{\lambda_n\}$ is not good. We have found some sequences which are not good but do not satisfy any **of** the last two conditions. A stronger property for $\{\lambda_n\}$ can be completely characterized.

<u>Definition</u>: A sequence $\{\lambda_n\}$ is <u>very good</u> if $\lambda_n \to \infty$ and whenever f is a continuous function and [a,b] is an arbitrary interval such that $\lim_{n\to\infty} f(\lambda_n x) = 0$ for every $x \in [a,b]$, then $\lim_{x\to\infty} f(x) = 0$.

Proposition: is very good iff and lim = 1.

Further results concerning the characterization of good sequences were obtained recently by P. Erdős, M. Laczkovich and the author.