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 QUASICONTINUITY AMD SOME CLASSES OF DARBOUX BAIRE 1 FUNCTIONS

 Quasi continuity is a generalization of the notion of conti-

 nuity« It has been introduced in t^Ke] and its basic properties

 are known (see e.g. [Bl3,[Lš3, [Maļ, [Thļ). We shall deal with
 real-valued functions defined on a real non-degenerate interval

 I0. Recall in this case the notion of quasi continuity of a func-
 tion at a point.

 DEFINITION. A function f: Iq-»R (R - the real line) is said

 to be quasi continuous at the point x£Iq if for each t > 0 and
 ó •> 0 there exists a non-void open interval IC(x - S: ,x + S)

 such that Jf(t) - f (x) 1 £ holds for every tél. We denote by

 Q(f ) the set of all such points of Iq at which the function f is
 quasi continuous .

 Let f: Iq-»R be a function. Put dj(f,x) = suPt£l 0^"^ ~
 f(x)l} , where I^-Tq is a non-void open interval and i $ (f,x) =

 inflc(x _ ç + -){dj(f,x)i for o "> 0. Obviously i j (f ,x) >

 i ,^(f,x) whenever o <• and we can define for each xéIQ

 qf(x) = lim- ^ 0+ i r (f ,x) = sup - ^ Q $i s (f ,x)} .

 THEOREM 1. (a) A function f: Iq-*R is quasi continuous at

 the point x if and only if q^(x) = 0.
 (b) If f_--»f uniformly, then also q^ q^. uniformly.
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 (c) If fn-*f n uniformly, then » ' U Q(f_)C.Q(f). n k=l n=k "

 THEOREM 2. Let f: Iq-*R be a Lebesgue measurable function.

 Then q^.: Iq-»Ru£+°o$ is Lebesgue measurable.

 COROLLARY 1. The set of quasicontinuity points of a Lebes-

 gue measurable function is a Lebesgue measurable.

 Further we shall deal with classes of real functions defi-

 ned on the unit real interval £0,11. We denote by b<X (bA ,

 b<S5(0^) the class of bounded approximately continuous (bounded
 derivatives, bounded Darboux Baire l) functions. All these class-

 es are complete metric spaces with the metric d(f,g) = suPxč£q jQ
 ļ|f(x) - g(x)|}. There are known some properties which hold for
 most of the functions of these classes in the sense of the Baire

 category (see e.g. a survey article CCP]). In what follows X

 stands for the Lebesgue measure on [0,lļ.

 THEOREM 3. Let ? be a Banach space of functions, bkc?*c

 b^ćS^, with the norm II f if = suPx<£[p,l] • Then the family

 X(Q(f)) = OJ

 is a residual set in

 COROLLARY 2. The family of all bit (bA) functions which

 are not quasicontinuous almost everywhere is a residual G¿ set
 in bčl (bA).

 The last statement improves some of known results (see

 [BP], [KŠ]).
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 Remark 1 . Theorem BHJ was proved by standard methods (some
 explicitei? defined subsets of C was shown to be nowhere den-

 se). The original proof of the Saks' result is more sofisticated.
 In the first part of the proof Saks proved that the set of non-

 ^Besieovitch functions is of the second category in every sphere
 of C and in the second part (which is due to Banach) he proved
 that this set is analytic and consequently has the property of
 Baire. It is now well-known that the second part of the Saks^
 proof is superfluous* In fact, the first part of the Saks proof

 cem be considered as the construction of a winning strategy for
 the second player in the Banach-Mazur game (for the set of non-
 -Besicovitch functions) in the metric space C • The existence
 of such a strategy is equivalent with the residuality of the

 set of non-Besicovitch functions in C (cf. [7]) •
 Remark 2. Preiss' proof of Theorem P and proofs of results

 stated in the second part of the present article use Banach-Ma-

 aur game method. On the other hand, an interesting Gargs obser-

 vation ([2 ] , Remark 1) shows that the Saks* result can be obtain-
 ed from a Jarník ś result on knot points of typical continuous
 functions (proved by standard methods ) and from a proposition
 which deals with general continuous functions (e.g. Proposition 3
 or Proposition 2 of £.103) • terga idea led Preiss to some
 other interesting observations :

 (Pi) Every f£Q has an unilateral approximate derivative
 (finite or infinite)on a C -dense set (cf. [93).
 (P2) Every function of Besicovitch type has a finite approxi-

 mate derivative on a set which has a positive measure in each

 subinterval of (0,1) .
 (P3) Almost all trajectories of the one-dimensional Brownian

 motion are not of Besicovitch type*

 ▲ point X €.(0,1) is said to be a knot point of a f eC
 if D+f(x)« D~f (x) * oo and D+f(x)» D_f(x) ■ -oo . V. Jarník
 [ proved that for a. a. feC the set of points which

 are not knot points of f has measure zero (and consequently
 is also of the first category , as was shown by Garg in £23).
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 G. Pet ruska (an oral communication.) has proved that we can ass-
 ert in the above statement that is ď -bilateral y stron-
 gly porous. It is proved independently in £12] that is
 ćf -porous in a stronger sense (ď -£g] - totally porous ) . Theorem
 1 below is a further (and in the view of Theorem 2 possibly
 the best) Improvement of these results»

 Definition 1 . (cf. [5]) Let z£R , yêï » d ■ O . We shall
 say that y is a derived number of f : R-*R at x with a

 density d (lower density d , upper density d , right lower
 density d , symmetrical upper density d , • • . ) if there ex-
 ist a set EcR such that the density (lower density, upper
 density, . . . ) of £ at x equals to d and

 lim (f(t)- f(x))(t-x)~1 - y .
 t->x,té E

 If y is a derived number of f at x with a right ( left)
 upper density 1 , we say that y is a right (left) essential
 derived number of f at x Ve shall say that x
 is an essential knot point of f if each extended real number

 y èR is a bilateral (i.e. simultaneously right and left ^
 essential derived number of f at x .

 A yćR is said to be a preponderant derivative (right
 preponderant derivative) if y is a derived number of f at
 x with a lower density ( rigt lower density) d > 1/2 .

 The following Jarniks results seem to be not commonly

 known(except (i)) .
 Theorem J. The following properties of té. C are typical :

 (i)([ll]) Almost all x€(o,l) are essential knot points of f.
 (ii)([4])Por each point x£(o,l) at least one from numbers
 oct-oo is a right essential derived number and at least one

 from numbers - co is a left essential derived number of f .

 (iii)(£4])At each point x€(0,l) both numbers are
 derived numbers of f at x with a symmetrical upper density

 d ■ 1/2 .

 (iv)([£J)At each point xć(o,l) there exists a side (s) (right
 or left) such that at least two from three numbers -oofO,oO
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 are derived numbers of f at x with (s) - side upper densi-
 ty d £ 1/4 .

 Corollary 1 . A typical t€C

 (i) has not a preponderant derivative ,
 (ii) has not a finite approximate (preponderant) one-sided

 derivative ,

 (iii) has not both one-sided approximate derivative
 at each point x£(0,l) •

 [2¿NewiBresult£u By a "figure" we shall mean a nonempty set
 of the form F - Cai»k-iJu • • • U Lan'knļ * where

 0 * a1 < bļ a2 < b2 < . . . < bn « 1 . The "norm" of the figure P

 is defined as n (F) ■ max (a1t bļ-a^, ag-bļ , ..., ^n-an»
 Definition 2. Let JT be a Ś -ideal of subsets of (p»l3 .

 We define a J'f -game , an infinite game between two players ( F-
 -player and ¿-player]) , as follows. In the first step the
 ¿-player choose an £'j>0 • In the second step the F-player
 choose a figure such th9t n^)» • Generally, in the
 (2n-1)th step the ¿-player choose an £n>0 and in the (2n)th

 step the F-player choose a figure Fn such that n(Fn) = £n •
 If lim inf F_ n » [J /H 'y, ê Jf f then the F-player n k«1 n-k

 wins. If lim inf Fn ^ Jif , then the ¿-player wins.
 Remark 3.

 A. If / is the system of all <S" -bilaterally strongly porous
 sets (or the system of all (S' -Lá>3~ totally porous sets £121),
 then the P- player has a winning strategy in the JP -game.

 B. If /-Í is a 6* -finite Borrel measure on [0,lļ and -Jí is the
 system of all ¿4. -null sets, then the F- player has a winning
 strategy as well.

 Co Let J'P be the system of all <Ś -superporous sets. ( A set
 SCR is superporous iff SUP is a porous set whenever
 P is porous. Superporous sets a precisely discrete sets
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 in the deep 'J -density topology - the weak topology Induced by
 the family of all functions which are continuous with respect

 to the Wilcsynski's Ci -density topology,) Then the £ -player
 has a winning strategy in the JÍ- game.

 Theorem 1 . let the F-player has a winning strategy in

 a i/F -game. Then for a.a. f£.C the set of points x^ (0, 1 )
 which are not essential knot points of f belongs to ví" .

 Remark 4. Also a sharper version of Theorem 1 is true :

 instead of essential knot points we can consider [gj-knot points.
 This sharper version improves the main result of [121 •

 Theorem 2. Let the £ -player has a winning strategy in

 a Jf -game. Then for a.a. f €C the following statement holds:
 If D+fD are extended real numbers for which

 max (/B+/,|D+/) - max(ļD"ļļDj) ■ ©o and [D_»D"J (J [r+fD+/ -
 = £- oc, o ©J, then there exists a set Pc (0*1) , P Ļ such that

 D+f(x) « D+, D+f (ix) » D+ , D"f(x)» D", D_f(x)« for
 all xeP.

 Theorem 3. If we write D^pf(x) , D*pf (x) , D~pf(»t P~pf (x)
 instead of D+f(x), L^f(x), D*"f(x), D_f (x) in Theorem BMJ
 and Theorem P , we obtain new correct theorems.

 Theorem 4. A typical f£C has the following properties:

 (i) Por all x€(0,l) , there exists a bilateral essential
 number of f at x .

 (ii) There exists a C -dense set PC(0,1) such that <^c ļs
 a d«rived number of f at x with a lower density

 d ■ 1/2 for each xčP .

 (iii) There exists a C -dense set Qc(Otl) such that
 li* ap Í (f (t)-f(x))(t-x)~1 I - ©o for each xČQ .
 t - > x

 Theorem J and Theorem 4 , (i) imply the following

 Corollary 2. A typical f 6 C has both one-sided preponde-

 rant derivatives at no point x^(0,l) .
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 into sets of measure zero. Also, the class of all bounded

 functions defined on S has the d.pr. w.r.t. every

 commuting system of maps .

 As for classes of real functions, we have the following

 immediate corollary.

 THEOREM 9. Let Y be a translation-invariant norme d
 space of fR- » IR functions . Suppose that there is a

 t r an s 1 a ti on- in var i an t vector topology "Z" on ^ such that
 {f 6 7 : )J f N ^ 1} i£ IT -compact , and whenever f £ 'S-*
 and II •» f I) - > O then f - *• 0 in T ■ Then f has the
 d.gr. (w.r_. t. trans lat ions ) .

 Making use of this condition, one can prove that each

 of the following classes has the d.pr.

 b-BV^" = {f:IR->łR : f is bounded and sup V (f ; [x ,x+lļ )<oo }
 X

 b-Lip = {f:lR-* IR : f is bounded and Lipschitz}
 k (k-li

 b-Lip = {f:R->(R : f is bounded, f exists

 everywhere and is Lipschitz} .

 We remark that the d.pr. of the class BC (|R) does

 not follow from Theorem 9. It was proved by V. Totik, that

 there does not exist a vector topology on BC (IR) satis-

 fying the conditions of Theorem 9.

 5. We conclude with the following problem:

 Is every bounded, continuous solution of a homogeneous

 difference equation
 n

 (3) Cjf (x+a^) = 0
 i=l

 necessarily uniformly continuous?

 (We remark that if we replace (3) by the more general

 convolution equation y*f=0 then the answer is negative;

 see H. We also point out the connection of this problem
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 with the investigations of S. Bochner and others con-

 cerning continuous solutions of difference equations;

 see [ 2 ] . )
 If the answer to this problem is affirmative, it

 provides a simple proof of our Theorem 1. We note first

 that (1) is a homogeneous difference equation. Now, if

 f € BC(R) is uniformly continuous and satisfies (1)

 then an elementary construction gives a continuous

 (a^ , ... ,an) -decomposition of f via the Arzela-Ascoli
 lemma. Another approach is the following. Any solution

 of (3) is mean-periodic, and any bounded and uniformly

 continuous mean periodic function is uniformly almost

 periodic (see , p. 43). Then we also can find an

 (a^ ,... ,an) -decomposition of f using the Fourier
 series of f (see M>-
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