Pavel Kostyrko, Department of Mathematics, Komensky University, 842 15 Bratislava, Czechoslovakia

QUASICONTINUITY AND SOME CLASSES OF DARBOUX BAIRE 1 FUNCTIONS

Quasicontinuity is a generalization of the notion of continuity. It has been introduced in [Ke] and its basic properties are known (see e.g. [B1], [LŠ], [Ma], [Th]). We shall deal with real-valued functions defined on a real non-degenerate interval I_0 . Recall in this case the notion of quasicontinuity of a function at a point.

DEFINITION. A function f: $I_0 \rightarrow R$ (R - the real line) is said to be quasicontinuous at the point $x \in I_0$ if for each $\varepsilon > 0$ and $\delta > 0$ there exists a non-void open interval $I \subset (x - \delta, x + \delta)$ such that $|f(t) - f(x)| < \varepsilon$ holds for every $t \in I$. We denote by Q(f) the set of all such points of I_0 at which the function f is quasicontinuous.

Let f: $I_0 \rightarrow R$ be a function. Put $d_I(f,x) = \sup_{t \in I} \{|f(t) - f(x)|\}$, where $I \subset I_0$ is a non-void open interval and $i_{\delta}(f,x) = \inf_{I \subset (x - \delta, x + \delta)} \{d_I(f,x)\}$ for $\delta > 0$. Obviously $i_{\delta}(f,x) \ge i_{\gamma}(f,x)$ whenever $\delta < \gamma$ and we can define for each $x \in I_0$

$$q_{\mathbf{f}}(\mathbf{x}) = \lim_{\delta \to 0^+} \mathbf{i}_{\delta}(\mathbf{f}, \mathbf{x}) = \sup_{\delta \to 0} \{\mathbf{i}_{\delta}(\mathbf{f}, \mathbf{x})\}.$$

THEOREM 1. (a) A function f: $I_0 \rightarrow R$ is quasicontinuous at the point x if and only if $q_f(x) = 0$.

(b) If $f_n \rightarrow f$ uniformly, then also $q_{f_n} \rightarrow q_f$ uniformly.

(c) If $f_n \rightarrow f$ uniformly, then $\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} Q(f_n) < Q(f)$.

THEOREM 2. Let f: $I_0 \rightarrow R$ be a Lebesgue measurable function. Then $q_f: I_0 \rightarrow R \cup \{+\infty\}$ is Lebesgue measurable.

COROLLARY 1. The set of quasicontinuity points of a Lebesgue measurable function is a Lebesgue measurable.

Further we shall deal with classes of real functions defined on the unit real interval [0,1]. We denote by bA (bA, $b \mathcal{GB}_1$) the class of bounded approximately continuous (bounded derivatives, bounded Darboux Baire 1) functions. All these classes are complete metric spaces with the metric $d(f,g) = \sup_{x \in [0,1]} \{|f(x) - g(x)|\}$. There are known some properties which hold for most of the functions of these classes in the sense of the Baire category (see e.g. a survey article [CP]). In what follows λ stands for the Lebesgue measure on [0,1].

THEOREM 3. Let \mathcal{F} be a Banach space of functions, $b\mathcal{ACFC}$ $b\mathcal{DB}_1$, with the norm $\|f\| = \sup_{x \in [0,1]} \{|f(x)|\}$. Then the family

$$\mathcal{F}^* = \{ \mathbf{f} \in \mathcal{F} : \lambda(\mathbf{Q}(\mathbf{f})) = 0 \}$$

is a residual G_{δ} set in \mathcal{F} .

COROLLARY 2. The family of all b \mathcal{A} (b Δ) functions which are not quasicontinuous almost everywhere is a residual $G_{\hat{o}}$ set in b \mathcal{A} (b Δ).

The last statement improves some of known results (see [BP], [KŠ]).

REFERENCES

- [B1] Bledsoe W., Neighborly functions, Proc. Amer. Math. Soc. 3 (1952), 114-115.
- [BP] Bruckner A. M., Petruska G., Some typical results on bounded Baire 1 functions, Acta Math. Hung. 43(1984), 325-333.
- [CP] Ceder J. G., Pearson T. L., A survey of Darboux Baire 1 functions, Real Anal. Exchange Vol. 9 (1983-84), 179-194.
- [Ke] Kempisty S., Sur les functions quasicontinues, Fund. Math. XIX(1932), 184-197.
- [KS] Kostyrko P., Šalát T., On the structure of some function space, Real Anal. Exchange Vol. 10 (1984-85), 188-193.
- [LŠ] Lipiński J. S., Šalát T., On the points of quasicontinuity and cliquishness of functions, Czechoslovak Math. J. 21(96) (1971), 484-489.
- [Ma] Marcus S., Sur les fonctions quasicontinues au sens de S. Kempisty, Coll. Math. VIII(1961), 47-53.
- [Th] Thielman H. P., Types of functions, Amer. Math. Monthly 60 (1953), 156-161.

<u>Remark 1.</u> Theorem BMJ was proved by standard methods (some explicitely defined subsets of C was shown to be nowhere dense). The original proof of the Saks' result is more sofisticated. In the first part of the proof Saks proved that the set of non--Besicovitch functions is of the second category in every sphere of C and in the second part (which is due to Banach) he proved that this set is analytic and consequently has the property of Baire. It is now well-known that the second part of the Saks' proof is superfluous. In fact, the first part of the Saks proof can be considered as the construction of a winning strategy for the second player in the Banach-Mazur game (for the set of non--Besicovitch functions) in the metric space C. The existence of such a strategy is equivalent with the residuality of the set of non-Besicovitch functions in C (cf. [7]).

<u>Remark 2.</u> Preiss' proof of Theorem P and proofs of results stated in the second part of the present article use Banach-Mazur game method. On the other hand, an interesting Gargś observation ([2], Remark 1) shows that the Saks' result can be obtained from a Jarníkš result on knot points of typical continuous functions (proved by standard methods) and from a proposition which deals with general continuous functions (e.g. Proposition 3 or Proposition 2 of [10]). This Gargs idea led Preiss to some other interesting observations :

(P1) Every $f \in C$ has an unilateral approximate derivative (finite or infinite) on a ζ -dense set (cf. [9]).

(P2) Every function of Besicovitch type has a finite approximate derivative on a set which has a positive measure in each subinterval of (0,1).

(P3) Almost all trajectories of the one-dimensional Brownian motion are not of Besicovitch type.

A point $x \in (0,1)$ is said to be a knot point of a $f \in C$ if $D^{+}f(x) = D^{-}f(x) = \infty$ and $D_{+}f(x) = D_{-}f(x) = -\infty$. V.Jarník [3] proved that for a.a. $f \in C$ the set N_{f} of points which are not knot points of f has measure zero (and consequently is also of the first category, as was shown by Garg in [2]). G.Petruska (an oral communication) has proved that we can assert in the above statement that N_f is σ' -bilateraly strengly porous. It is proved independently in [12] that N_f is σ -porous in a stronger sense (σ' -[g]- totally porous). Theorem 1 below is a further (and in the view of Theorem 2 possibly the best) improvement of these results.

<u>Definition 1.</u> (cf.[5]) Let $x \in \mathbb{R}$, $y \in \overline{\mathbb{R}}$, $d \ge 0$. We shall say that y is a derived number of $f: \mathbb{R} \to \mathbb{R}$ at x with a density d (lower density d, upper density d, right lower density d, symmetrical upper density d, ...) if there exist a set $E \subset \mathbb{R}$ such that the density (lower density, upper density,...) of E at x equals to d and

 $\lim_{t \to x, t \in E} (f(t) - f(x))(t-x)^{-1} = y.$

If y is a derived number of f at x with a right (left) upper density 1, we say that y is a right (left) essential derived number of f at x (cf.[11]). We shall say that x is an essential knot point of f if each extended real number $y \in \overline{R}$ is a bilateral (i.e. simultaneously right and left) essential derived number of f at x.

A $y \in \overline{R}$ is said to be a preponderant derivative (right preponderant derivative) if y is a derived number of f at x with a lower density (rigt lower density) d > 1/2.

The following Jarníks results seem to be not commonly known(except (i)).

<u>Theorem J.</u> The following properties of $f \in C$ are typical : (i)([11]) Almost all $x \in (0,1)$ are essential knot points of f. (ii)([4]) For each point $x \in (0,1)$ at least one from numbers $\infty, -\infty$ is a right essential derived number and at least one from numbers $\infty, -\infty$ is a left essential derived number of f.

(iii)([4]) At each point $x \in (0,1)$ both numbers $\infty, -\infty$ are derived numbers of f at x with a symmetrical upper density $d \ge 1/2$.

(iv)([5])At each point $x \in (0,1)$ there exists a side (s) (right or left) such that at least two from three numbers $-\infty, 0, \infty$

are derived numbers of f at x with (s) - side upper density $d \ge 1/4$.

Corollary 1. A typical $f \in C$

- (i) has not a preponderant derivative,
- (iii) has not both one-sided approximate derivative at each point $x \in (0,1)$.

2.New results.] By a "figure" we shall mean a nonempty set of the form $\mathbf{F} = [\mathbf{a}_1, \mathbf{b}_1] \cup \cdots \cup [\mathbf{a}_n, \mathbf{b}_n]$, where $0 \neq \mathbf{a}_1 < \mathbf{b}_1 < \mathbf{a}_2 < \mathbf{b}_2 < \cdots < \mathbf{b}_n \neq 1$. The "norm" of the figure F is defined as $n(\mathbf{F}) = \max(\mathbf{a}_1, \mathbf{b}_1 - \mathbf{a}_1, \mathbf{a}_2 - \mathbf{b}_1, \cdots, \mathbf{b}_n - \mathbf{a}_n, 1 - \mathbf{b}_n)$.

Definition 2. Let \mathscr{N} be a \mathscr{C} -ideal of subsets of [0,1]. We define a \mathscr{N} -game, an infinite game between two players (F--player and \mathscr{E} -player), as follows. In the first step the \mathscr{E} -player choose an $\mathscr{E}_1 > 0$. In the second step the F-player choose a figure F_1 such that $n(F_1) \stackrel{\ell}{=} \mathscr{E}_1$. Generally, in the (2n-1)th step the \mathscr{E} -player choose an $\mathscr{E}_n > 0$ and in the (2n)th step the F-player choose a figure F_n such that $n(F_n) \stackrel{\ell}{=} \mathscr{E}_n$. If lim inf $F_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} F_n \in \mathscr{N}$, then the F-player wins. If lim inf $F_n \notin \mathscr{N}$, then the \mathscr{E} -player wins. Remark 3.

- A. If \mathcal{N} is the system of all \mathcal{C} -bilaterally strongly porous sets (or the system of all \mathcal{C} -[g]- totally porous sets [12]), then the F-player has a winning strategy in the \mathcal{N} -game.
- B. If \mathcal{M} is a \mathcal{C} -finite Borel measure on [0,1] and \mathcal{N} is the system of all \mathcal{M} -null sets, then the F-player has a winning strategy as well.
- C. Let *N* be the system of all *G* -superporous sets. (A set S⊂ R is superporous iff S ∪ P is a porous set whenever P is porous. Superporous sets a precisely discrete sets

in the deep \mathcal{J} -density topology - the weak topology induced by the family of all functions which are continuous with respect to the Wilczyński's \mathcal{J} -density topology.) Then the \mathcal{E} -player has a winning strategy in the \mathcal{N} -game.

<u>Theorem 1.</u> Let the F-player has a winning strategy in a \mathcal{N} -game. Then for a.a. $f \in C$ the set of points $x \in (0,1)$ which are not essential knot points of f belongs to \mathcal{N} .

<u>Remark 4.</u> Also a sharper version of Theorem 1 is true : instead of essential knot points we can consider [g]-knot points. This sharper version improves the main result of [12].

<u>Theorem 2.</u> Let the \mathcal{E} -player has a winning strategy in a \mathcal{N} -game. Then for a.a. f \in C the following statement holds: If D⁺, D₊, D⁻, D₋ are extended real numbers for which

 $\max \left(|D^+|_{p} D_{p_{+}}| \right) = \max \left(|D^-|_{p} D_{p_{+}}| \right) = \infty \quad \text{and} \quad \left[D_{p_{+}} D_{p_{+}}^{-} \right] \cup \left[D_{p_{+}} D_{p_{+}}^{+} \right] =$ = $\left[-\infty, \infty \right]$, then there exists a set $P \subset (0,1)$, $P \notin \mathcal{N}$ such that $D^+ f(x) = D^+$, $D_{p_{+}} f(x) = D_{p_{+}}$, $D^- f(x) = D^-$, $D_{p_{+}} f(x) = D_{p_{+}}$ for all $x \in P$.

<u>Theorem 3.</u> If we write $\overline{D}_{ap}^{+}f(x)$, $\underline{D}_{ap}^{+}f(x)$, $\overline{D}_{ap}^{-}f(x)$, $\underline{D}_{ap}^{-}f(x)$, instead of $D^{+}f(x)$, $D_{+}f(x)$, $D^{-}f(x)$, $D_{-}f(x)$ in Theorem BMJ and Theorem P, we obtain new correct theorems.

Theorem 4. A typical $f \in C$ has the following properties:

- (i) For all $x \in (0, 1)$, there exists a bilateral essential number of f at x.
- (ii) There exists a C-dense set PC(0,1) such that ∞ is a derived number of f at x with a lower density $d \ge 1/2$ for each $x \in P$.
- (iii) There exists a \hat{C} -dense set $Q \subset (0,1)$ such that $\begin{array}{c} | \underline{i}\underline{m} \quad ap \ \left| (f(\underline{t}) - f(\underline{x}))(\underline{t} - \underline{x})^{-1} \right| = \infty \quad \text{for each} \quad \underline{x} \in Q \\ t \rightarrow x \end{array}$

Theorem J and Theorem 4_i (i) imply the following

<u>Corollary 2.</u> A typical $f \in C$ has both one-sided preponderant derivatives at no point $x \in (0,1)$. into sets of measure zero. Also, the class of all bounded functions defined on S has the d.pr. w.r.t. every commuting system of maps.

As for classes of real functions, we have the following immediate corollary.

THEOREM 9. Let \mathcal{F} be a translation-invariant normed space of $\mathbb{R} \to \mathbb{R}$ functions. Suppose that there is a translation-invariant vector topology \mathcal{T} on \mathcal{F} such that $\{f \in \mathcal{F} : ||f|| \leq 1\}$ is \mathcal{C} -compact, and whenever $f_n \in \mathcal{F}$ and $||f_n|| \to 0$ then $f_n \to 0$ in \mathcal{T} . Then \mathcal{F} has the d.pr. (w.r.t. translations).

Making use of this condition, one can prove that each of the following classes has the d.pr. $b-BV^{1} = \{f: \mathbb{R} \rightarrow \mathbb{R} : f \text{ is bounded and } \sup_{X} V(f; [x, x+1]) < \infty\}$ $b-Lip = \{f: \mathbb{R} \rightarrow \mathbb{R} : f \text{ is bounded and Lipschitz}\}$ $b-Lip^{k} = \{f: \mathbb{R} \rightarrow \mathbb{R} : f \text{ is bounded, } f^{(k-1)} \text{ exists}$ $everywhere and is Lipschitz\}.$

We remark that the d.pr. of the class $BC(\mathbb{R})$ does not follow from Theorem 9. It was proved by V. Totik, that there does not exist a vector topology on $BC(\mathbb{R})$ satisfying the conditions of Theorem 9.

5. We conclude with the following problem:

Is every bounded, continuous solution of a homogeneous difference equation (3) $\sum_{i=1}^{n} c_i f(x+a_i) = 0$

necessarily uniformly continuous?

(We remark that if we replace (3) by the more general convolution equation $\mu_*f=0$ then the answer is negative; see [3]. We also point out the connection of this problem

with the investigations of S. Bochner and others concerning continuous solutions of difference equations; see [2].)

If the answer to this problem is affirmative, it provides a simple proof of our Theorem 1. We note first that (1) is a homogeneous difference equation. Now, if $f \in BC(\mathbb{R})$ is uniformly continuous and satisfies (1) then an elementary construction gives a continuous (a_1, \ldots, a_n) -decomposition of f via the Arzela-Ascoli lemma. Another approach is the following. Any solution of (3) is mean-periodic, and any bounded and uniformly continuous mean periodic function is uniformly almost periodic (see [3], p.43). Then we also can find an (a_1, \ldots, a_n) -decomposition of f using the Fourier series of f (see [1]).

REFERENCES

[1]	A .	s.	Besicovit	ch:	Almost	periodic	functions.
			Dover, 19	54.			

- [2] S. Bochner, Über gewisse Differential- und allgemeine Gleichungen, deren Lösungen fastperiodisch sind, Math. Ann. 103(1930),588-597.
- [3] J.-P. Kahane: Lectures on mean periodic functions. Tata Institute, Bombay, 1959.
- [4] M. Laczkovich and Sz.Gy. Révész, Periodic decompositions of continuous functions, submitted.
- [5] M. Laczkovich and Sz.Gy. Révész, Decompositions into periodic functions belonging to a given Banach space, submitted.
- [6] M. Wierdl, Continuous functions that can be represented as the sum of finitely many periodic functions, Mat. Lapok 32(1981-84),107-113 (in Hungarian)