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QUASICONTINUITY AND SOME CLASSES OF DARBOUX BAIRE 1 FUNCTIONS

Quasicontinuity is a generalization of the notion of conti-
nuity. It has been introduced in [Ke] and its basic properties
are known (see e.g. [B1],[138], (Ma], [Th]). We shall deal with
real-valued functions defined on a real non-degenerate interval
Io. Recall in this case the notion of quasicontinuity of a func-

tion at a point.

DEFINITION. A function f: I5—R (R - the real line) is said
to be quasicontinuous at the point x& IO if for each € > O and
§ > 0 there exists a non-void open interval IC(x = O ,x +0)
such that |f(t) - £(x)} < € holds for every t¢I. We denote by
Q(f) the set of all such points of I0 at which the function f is

quasicontinuous.

Let £: Iy=»R be a function. Put d;(f,x) = sup, . {1£(¢) -

£(x)]}, where I<I, is a non-void open interval and i ;(f,x) =
[

Infre(yx - 5,x + 7)iar(e,x)} for o > 0. Obviously i (f,x) 2

i ,.7 (f,x) whenever 0 < 7 and we can define for each xe& Io
qf(x)~= limg , o, 15 (f,x) = sups_ o iiz (£,x)}.

THEOREM 1. (a) A function f: I;=R is quasicontinuous at
the point x if and onmly if qp(x) = O.
(b) If £ >f uniformly, then also gy — qp uniformly.
n
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(¢) If £ —f uniformly, then 191 U alr,)cat.

THEOREM 2. Let f: Io——»R be a Lebesgue measurable function.

Then qp: Ig—RU{+co0}l is Lebesgue measurable.

COROLLARY 1. The set of quasicontinuity points of a Lebes-

gue measurable function is a Lebesgue measurable.

Further we shall deal with classes of real functions defi-
ned on the unit real interval [0,17]. We denote by bl (bA
b¥B,) the class of bounded approximately continuous (bounded
derivatives, bounded Darboux Baire 1) functions. All these class-
es are complete metric spaces with the metric d(f,gl)} = Supxe[O,l]
{I£(x) - g(x)|}. There are known some properties which hold for
most of the functions of these classes in the sense of the Baire
category (see e.g. a survey article [CP]). In what follows A

stands for the Lebesgue measure on [0,1].

THEOREM 3. Let F be a Banach space of functions, bAc Fc
bﬂ@i, with the norm |ff = SUPy ¢ [0,1] {1£¢x)l . Then the family

F¥={re¥: AQ()) =0}
is a residual Gs set in F .

COROLLARY 2. The family of all bQ& (bA) functions which
are not quasicontinuous almost everywhere is a residual G; set

)
in b4 (bA).

The last statement improves some of known results (see
r], [X8D).
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Remark 1, Theorem BMJ was proved by standard methods (some
explicitely defined subsets of C was shown to be nowhere den-
se ). The original proof of the Saks’result is more sofisticated.
In the first part of the proof Saks proved that the set of non-
~Besiecovitch functions is of the second category in every sphere
of C and in the second part (which is due to Banaeh) he proved
that this set is amalytic and consequently has the property of
Baire. It is now well-known that the second part of the Saks’
proof 1is superfluous., In fact, the first part of the Saks proof
can be considered as the construction of a winming strategy for
the second player in the Banach-Magur game (for the set of non-
~Besicovitch functions) in the metric space C . The existence
of such a strategy is equivalent with the residuality of the
set of non-Besicovitch funetions in C (ef. [7]).

Remark 2, Preiss’ proof of Theorem P and proofs of results
stated in the second part of the present article use Banach-Ma-
zur game method. On the other hand, an interesting Gargs obaer-
vation([2] , Remark 1) shows that the Saks'result can be obtain-
ed from a Jarniks result on knot points of typieal continuous
functiona(proved by standard methods) and from a proposition
which deals with general continuous functions(e.g. Proposition 3
or Proposition 2 of [10]). This Gargs idea led Preiss to some
other interesting observations :

(P1) EBvery f€C has an unilateral approximate derivative
(finite or infinite)on a ( -dense set (cf. [9]).

(PZ) Every function of Besicovitch type has a finite approxi-
mate derivative on a set which has a positive measure in each
subinterval of (0,1) .

(P3) Almost all trajectories of the one-dimensional Brownian
motion are not of Besicovitch type.

A point x¢&(0,1) 18 said to be a knot point of a fcC
if D'f(x)= D"f(x)= oo and D f(x)= D_f(x) = -co . V.Jarnik
[3] proved that for a.a. fe&C the set N, of points which
are not knot points of f has measure zero (and consequently
is also of the first category , as was shown by Garg 1n.[2]).
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G.Petruska (an oral comuunication) has proved that we ean ass-
ert in the above statement that N, 1s ¢ -bilateraly stren-
gly porous. It is proved independently in [12] that N, is

& =porous in a stronger sense (6’ -[8]- totally porous ) . Theorem
1 below is a further (and in the view of Theorem 2 possidbly
the beat) improvement of these results,

Definition 1. (cf.[5])Let x&R , yeR , d = O . We shall
say that y is a derived number of f: R>OR at x with a
density d (lover density d , upper density d , right lower
density d , symmetrical upper density d , ...) if there ex-
ist a set ECR such that the density (lower density,upper
density,...)of E at x equals to d and

lim (£(t) - £(x) (t-x YU ay.
tox,teE

If y 4is a derived number of f at x with a right (left)
upper density 1 , we say that y is a right (left) essential
derived number of f at x (ef.[11]). We shall say that x
is an essential knot point of f 1if each extended real number

yei is a bilateral (i.e. simul taneously right and left)
essential derived number of f at x ,

A ye'ﬁ' is said to be a preponderant derivative (right

preponderant derivative) if y 1is a derived number of f at
x with a lower density ( rigt lower density) d > 1/2 .

The following Jarniks results seem to be not commonly
known (except (1)).

Theorem J. The following properties of f&C are typical :
(1)([11]) Almost all x€ (0,1) are essential knot points of
(11) ([4]) Por each point x€ (0,1) at least one from numbers

o0 ,-0c0 1is a right essential derived number and at least one
from numbers c6,-c® is a left essential derived number of f .
(111)([4]) At each point x € (0,1) both numbers oo ,-oo are
derived numbers of £ at x with a symmetrical upper density

d= 1/2 .
(1v)([5])At each point x¢€(0,1) there exists a side (s) (right
or left) such that at least two from three numbers -00,0,00
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are derived numbers of f at x with (s) - side upper densi-
ty d 2 1/4 .

Corollary 1. A typical f&C
(1) has not a preponderant derivative ,
(1) has not a finite approximate(preponderant)one-sided
derivative ,
(iii) has not both one-sided approximate derivative
at each point x¢ (0,1) o

|2.New results.l By a "figure" we shall mean a nonempty set
of the form F = [a,,b,JU ...y [a,sb] , where
0= a1<b1<‘a2<b2<... <bn £ 1 . The "norm" of the figure F
is defined as n(F) = max (a1, b1-a1, a2~b1 pecey bn'an’ 1-bn).

Definition 2. Let v/ be a & -ideal of subsets of 0,1) .
We define a ‘/V-game » an infinite game between two players (F-
-player and ¢ -player), as follows. In the first step the
£ -player choose an E1 >0 . In the second step the F-player
choose a figure F, such thst n(F1)§ E1 o Generally, in the
(2n-1)th step the ¢ -player choose an ¢ >0 and in the (2n)th
<

step the F-player choogg a figure F  such that n(Fn‘) = én .
If lim inf F_ = kL.J1 nﬂk ¥ e, then the P-player
wins. If 1lim inf F ¢ ,/V , then the ( =player wins.

Remark 3.
A. It A" is the system of all & -bilaterally strongly porous

sets(br the system of all & -[g]- totally porous sets [1ZD,
then the P-player has a winning strategy in the uﬁi-gane.

B. If M is a & -finite Borel measure on [0,1] and /' is the
system of alltﬁ(-null sets, then the F-player has a winning
strategy as well.

C. Let " be the system of all ¢ =superporous sets. ( A set
ScR is superporous iff S (U P is a porous set whenever
P is porous. Superporous sets a precisely discrete sets
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in the deep J -density topology - the weak topology induced by
the family of all functions which are continuous with respect

to the Wilceynski’s 7] -density topology.) Then the ¢ -player

has a winning strategy in the ./f/lgame.

Theorem 1. Let the F-player has a winning strategy in
a ./V-gane. Then for a.a. f&C the set of points xe(0,1)
which are not essential knot points of f belongs to 7 .

Remark 4. Also a sharper version of Theorem 1 is true
instead of essential knot points we can consider [g]-knot points.
This sharper version improves the main result of [12] .

L1

Theorem 2. Let the § -player has a winning strategy in
a ./V‘-ga.ne. Then for a.a. f&C the following statement holds:
If D+,D*,D°,D_ are extended real numbers for which

max ([D*D,|) = max([D hpp_l)=oc and [D_,07] U [D,,D] =
=[~e0, oc], then there exists a set Pc(0,1) , P¢ /” such that
p'f(x) = D*, D f(x)= D, , D"f(x)= D”, D_f(x)= D_ for
all xg¢P.
Theorem 3. If we write ‘ﬁ:pf(x) , p;pf(x). 'ﬁ;pr(x). Dopf ()
instead of D*f(x), D f(x), D"f(x), D_f(x) in Theorem BMJ
and Theorem P , we obtain new correct theorems.

Theorem 4. A typical f&€C has the following properties:
() Por all x€(0,1) , there exists a bilateral essential

number of f at x .,
(11) There exists a  ~dense set pc(0,1) such that eoc is
a derived number of f at x with a lower density
d = 1/2 for each x€P .
(111) There exists a C-dense set Qc(0,1) such that
I%i>ap '(I(t)-f(x))(t-x)°1l = o for each x€Q .
—->x

Theorem J and Theorem 4,(i) imply the following

Corollary 2, A typical f€C has both one-sided preponde-
rant derivatives at no point xé& (0,1) .
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into sets of measure zero. Also, the class of all bounded
functions defined on S has the d.pr. w.r.t. every
commuting system of maps.

As fdr classes of real functions, we have the following

immediate corollary.

THEOREM 9. Let ¥ be a translation-invariant normed

space of R—>R functions. Suppose that there is a

translation-invariant vector topclogy 7  on & such that
(te¥ : || £\ €1} is C -compact, and whenever f €¥F
and Ilfnlt—avo then f —» O in C . Then & has the

~d.pr. (w.r.t. translations).

Making use of this condition, one can prove that each
of the following classes has the d.pr.
1 f is bounded and sup V(f;[x,x+1])<°°}
X

b-BV" = {f:R—> R

b-Lip = {f:R-> R

b-Lip"= {f:R— R

f 1s bounded and Lipschitz}

f is bounded, f(k-l) exists

everywhere and is Lipschitz}.

We remark that the d.pr. of the class BC(R) does
not follow from Theorem 9. It was proved by V. Totik, that
there does not exist a vector topology on BC(R) satis-
fying the conditions of Theorem 9.

5. We conclude with the following problem:

Is every bounded, continuous solution of a homogeneous

difference equation
n

(3) E:cif(x+ai) =0
i=1

necessarily uniformly continuous?

(We remark that if we replace (3) by the more general
convolution equation u4«f=0 then the answer is negative;

see [3]. We also point out the connection of this problem
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with the investigations of S. Bochner and others con-
cerning continuous solutions of difference equations;
see [2].)

If the answer to this problem is affirmative, it
provides a simple proof of our Theorem 1. We note first
that (1) is a homogeneous difference equation. wa, if
f € BC(R) is uniformly continuous and satisfies (1)
then an elementary construction gives a continuous
(al,...,an)-decomposition of f via the Arzela-Ascoli
lemma. Another approach is the following. Any solution
of (3) is mean-periodic, and any bounded and uniformly
continuous mean periodic function is uniformly almost
periodic (see [}], p.43). Then we also can find an
(al,...,an)-decomposition of f using the Fourier
series of f (see [1]).
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