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ON EXTENSION OF RESTRICTIONS OF BAIRE 1 VECTUOR-VALUED MAPS
Let (X,t) be a topological space and C({)the lattice of
continu;us real functions on X. The family
P (x) = {U CX 3 U= {xeXz f(x)?O} for some fé€ C(X)j
of cozero sets of C(X)creates a paving, viz. P(X) is closed
under finite intersections and countable unions, in particular
pe P()Q. XéP(X). A multifunction FiX=»Y, where Y denotes
an arbitrary topological space, will be called z-lower
semicontinuous / briefly z-1lsc / 1ff for each subset G open
in Y we have

F'(G)x- {xe X3 F(x)aG ¢ ﬂjéP (X) .
in other words, iff F is lower P(X)- measurable .
In case Y=R , F(x) := [f(x), g(}iLF is z-1sc iff f is z-usc
and g is z-1lsc in the meaning of[}]/ cf. alsot?Q]‘.[ié]/.
If card F(x)= 1 for all x€X , i.e. F(x)= {f(},then F 1s
z-1lsc if and only if f is continuous on X as a single~-valued
function., It may be proved, that the paving P(&)of cozero sets
of an arbitrary space X is (Jl;.. °O) - paracompact / see[:le_]
for the definition/. Thus, using [1é} we obtain the following
very general selection theorem:
THEOREM 1, Let X be topological space and(Y,lOl) - separable
Frechet space. Each z-lsc multifunction F:X->Y with closed and
convex values has continuous selector, i.e. continuous map
f€ C(X,Y) such that f(x)€F(x)for all x€ X.
In case where X is perfectly norma;,z-lower semicontinuity
reduces to lsc and theorem 1 reduces to celebrated Michael’s

selection theorem [}i]. In our theorem 1 the values of F
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may even belong to the family D(Y)defined in[}zl in particular
may be convex and finite-dimensional without being closed.
It is also possible to consider separable metric space with
suitable kind of generalized convexity /e.g. S=-contractibles
ones/ instead of Fréchet space Y and to replace C(X)in
the definition of P(}) by some others lattices of functions.
As an easy corollary we obtain the simple proof of theorem 2
from 12
THEOREM 2 (LiéDLot (X,d,q) be a Chaika measure metric space
/soo[ﬁ]or[lz_]for definition / with nonatomic measure m.
Then the following conditions are equivalent:
/i/ for each Baire 1 g:X-»Y there is approximately continuous
map f:X-»Y such that
/3588/ {xéx t f(x)= g(x)j:)A , ACX
/ii/ m(A) = 0O
For the history of theorem 2 see [19].[9],[}éy@] ,[?%].[12}
All of listed paper deal with scalar-valued functions.
To prove the theorem 2 it suffices to observe that the

multifunction defined by formula

g (x) , XEA
F(x) := cl ¢
onv g(A) otherwise

is z-1lsc and take as f .a.selector existing by virtue of
theorem 1.
Besides the topology of density we may consider in(x.d,q)

another topology Ta consisting of all subset UC X for

Y-
which U is open in the density topology and U = GU Z where

G is metricaly open and m(Z)a 0 ; see[}q] ,[}%] .

Theorem 1 leads to a simple solution of a problem 13-a from[{g;
Namely we obtain the following generalization of theorem 3 from[igk
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THEGREM 3 . Let X be the same as in theorem 2. The following
conditions are equivalent:
/i/ for each Baire 1 map g: X-=>Y there is Ta.a. - continuous

/= approximately continuous and m-a.e. continuous/ map
f: X-»Y such that the inclusdon /§§3/ holds
/ii/ m (el A) =0 .
Note that the method used in theorem 3 in 12 does not carry
over the present casaz(it essentially relly on the fact that
X is a subset of the one-dimensional lin§L
In Chaika space X on may also consider the r-modification of
the density topology / cf.[lﬁ]/. We obtain rather unsatisfactory
result:
THEOREM 4. In the framework of theorem 2 the following
conditions are equivalent:
/i/ for each Baire 1 map g: X=»Y there exists a r-continuous
map €: X Y such that /§35/ holds
/ii/ m (r-cl 4) = 0,
The sign r- cl stands here for the closure operator in the
r-modification of the density topology on X, while cl in
theorem 3 stands for the closure operator in the metrical
topology. It is an open question to prove or disprove the
unequivalence of the above conditions and the following:
/iii/ m(ﬁ)- O and A is nowhere dense.
The implication /iii/e»/ii/ is obvious.
From theorem 3 we deduce the following solution of problem
12—a posed in r_lg:
THEOREMS5 .There is a function f: R%>R ordinarily approximately
continuous and m,- a.e. continuous such that the set
D(f):={(x,y)6R2 : £ fails to be approximately continuous at vy

or fy fails to be approximately continuous at x‘}

is uncountable. 96



The characterization of the P(X)in case when
considered topology fails to have Lusin-Menshoff property
( e.g. for the density topology on the plane with respect
to the differentiation base of all rectanglee) is unknown to
the author. Thus the following Grande s conjecture from[?{] is
s*ill an open question:
CONJECTUREUﬁID. The following conditions are equivalent:
/i/ for each Baire 1 function g: Rz-—)»R there is fi RZ-’R
strongly approximately continuous and m,-a.e. continuous such
that /333/ holds
/ii/ ml([_cl Al x) =0 and m, ([cl A Y) = 0 for all(x,ykR>
For other facts on extension theorems see[Z].C3].[4]£7] ,[8],[14}7.
[15), [27] [29. Note that the methods used in[21],[3] to
reprove results of [}Q].[}]/ howewer almost identical with[@jb
relly heavilly on the fact that the range space has the total

order, and thus are not applicable in case of Fréchetc-space

valued mappings.
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