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 Abstract. Connections between strong 1-density (for plane

 sets) and one-dimensional I-density • are studied. Other results

 deal with separately I-approximately continuous functions. A to-

 pology associated with separately ' I-approximately continuous

 functions, similar to O'Malley's one is introduced and investi-

 gated. Among others it is shown that strong ^-approximate con-

 tinuity implies separate I-approximate continuity and that a sep-

 arately I-approximately continuous function is Baire 2 and need

 not be Baire 1. Finally, some properties of functions with I-ap-

 proximately continuous sections are studied.

 0. Introduction. In [16] a category analogue of a density

 point (called an I-density point) has been introduced. Prom that

 time several articles exploring this notion were published, main-

 ly inspired by known results on metric density, approximate con-

 tinuity and approximate differentiability. Our paper is a next

 one of that series.

 Throughout the paper N dençtes the set of all positive

 integers. The symmetric difference of sets A and B is denoted

 by A AB. For A c R or A C- R (vrhere R is the real line and
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 ir - the plane) the interior and the closure of A in. the natu-

 ral topology are designated by int A and Ā, respectively.
 2 . 2

 If A C R and if . f : R - R is an arbitrary function,

 then the sections of A and f are defined in the following

 way :

 Ax = {y.e R : (x,y) e A}, Ay = {X e R : (x,y) e A},

 fx(y) = f(x,y), fy(x) = f(x,y) for x,y e R.

 If (p) denotes a property of a real function of one

 variable, we say that a real function of two variables has pro-

 perty (p) separately if all sections fr and fy have this
 4 W

 property.

 Now let us recall basic facts about I-density (cf..[l6],

 [10], [151; for the wider survey see [17]). Other necessary in-

 formations will be given successively in the sequel. Let (X,S)

 be a measurable space and let I C. s be a proper o-ideal of

 sets. We say that some property holds I-almost everywhere (in

 abbr. I-a.e.) if the set of points which have not this proper-

 ty belongs to I. We say that a sequence S-niea-

 imi'Mble real functions defined on X converges with respect to

 1 to some S-measurable real function f defined on X if each

 subsequence {f of ^n^neN contains a subsequence
 m

 {f } which converges I-a.e. to f; we use then the de -

 mp
 I

 notation f - > f.
 n

 In this paper Ij (resp. I^) will denote the a-idcal
 2

 of sets of the first category in R (resp. R ) and Sj (resp.
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 S 2 ) will denote the o-algebra of all subsets of R (resp. R" )
 having the Baire property.

 Since we shall define below both linear and plane I -dens-

 ity, we shall use the denotations Ij- and I^-density to dis-
 tinguish these notions.

 We say that 0 is an Ij-density point of a set A 6 Sj

 if the sequence ^x(n»A)n[-l ll^neN of characteristi'c functions
 (where x n»A = {nx : x e A}) converges to with respect

 to I]. Next, xQ e R is called an Ij-density point of A e Sj

 if 0 is an Ij-density point of the set A - xQ = {x - xq : x ç A} .

 We say that xQ is an I j-'dispersion point of A e Sj if it is
 an Ij-density point of R ' A. Similarly, we define right- .and

 left-hand Ij-density and I j-dispersion points. The family of all

 sets Ać Sj such that each point of A is its Ij-density point
 (these sets will be named Ij-open) forms a topology (essentially

 stronger than the natural topology) called the I j -density topo-
 logy. Real functions continuous with respect to that topology are

 called I j -approximately continuous.

 Now let us pay some attention to I^-density (cf. [2]). Por
 2

 m,n G N and AC R we denote (m,n)/A ={(mx,ny) :(x,y)eA}. We

 say that (0,0) is a strong I^-density point of a set A e S2
 if for any increasing sequences ^kn^n£N 0Í> Pos^t^ve ^n~

 tegers the sequence (x 0}nCH nGN converges to ((k' k")-A)n[-l,l]¿ nGN
 n n

 2

 X 2 with respect to I^. Next, (x0>yQ) e R is called
 [-1,1]

 a strong I^-density point of A e if (0,0) is a strong I^-
 -density point of A - (xQ,y0) = {(x- xQ,y - yQ) : (x,y)eA). We

 say that (x0>yQ) is a strong ^-dispersion point of A e if
 2

 10 lo a strong I^-density point of R ' A. The family of all
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 sets A € such that each point of A is its strong ^-density
 g

 point forms a topology uAich ~>:ll be denoted by T, . Real function."
 l2

 continuous with respect to that topology are called strongly Ì

 -approximately continuous (compare [2], where also ordinary I

 -denoity points involving only sets of the form (n,n)-A are

 studied) .

 Observe that the above definition of a strong ^-density

 point .reads as follows: (0,0) is a strong ^-density point of

 A 6 S'2 if and only if for any increasing sequences ^n^ncN'
 {k^n^N positive integers and for any increasing sequence
 ^nm^meN oi> P°sitive integers there exists a subsequence {n^ }

 P

 such that the sequence {x 0) cm converges
 ((kn ,kn J'AM-l,!]2 P

 m in
 PP

 to x o 1,,-almost Z everywhere. As we shall see one of sub - [-1,1]¿ o Z
 sequences can be eliminated.

 THEOREM 0.1. (0,0) is a strong I^-density point of AGS^

 if and only if for any increasing sequences ^kn^n€N

 positive integers there exists an increasing sequence ^np}p0¿
 positive integers such that the sequence (x 0)

 ((k' ,k" )«A)n[-l,l] ptN
 P P

 converges to x o I. -almost everywhere.
 [-1,1]¿ o 2

 Proof. Suppose that (0,0) is a strong I^-density
 point of A 6 ¿2 . Taking {n }n£N as we obtain the
 thesis .

 Suppose now that the last condition is fulfilled. Since it

 holds for any then it also holds for {k^ }m£N and
 m
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 ^raeN which means that (0,0) is a strong I^-density point
 m

 of A.

 THEOREM 0.2. (0,0) is a strong Ig-density point of A es2

 if and only if for any increasing sequences ^n^nGN
 real numbers tending to infinity there exists an increasing se-

 quence {np)pgN P°śitive integers such that the sequence
 ÍX converges to x ? I „-almost
 ((fcn ,t:n )*A)n["1'11 [-1,13

 -P P

 everywhere.

 Proof. It follows immediately from Lemma 1 in [2].

 In the sequel we shall make use of the above facts. We shall

 also need the following characterization of a right-hand I j -dens-
 ity point for closed sets (see [11]):

 LEMMA 0.1. A point xQ is a right-hand I j -density point
 of a closed set PCR if and only if for each n e N there

 exist k e N and 6 > 0 such that for any h 6 (0,6) and

 i e {l,...,n} there exists j e {l,...,k} such that

 tx 1 o ♦ (i-l)-* n*k I j-1 . h, * Xn o ♦ "-"V n»k j-h] C F. 1 o n*k * Xn o n»k

 1. In this section we continue investigations of [2] con-

 cerning plane I^-density points and related kinds of continuity.
 We shall study, among others, thé interrelations between so-cal-

 led special and deep strong I^-density points. The notions of
 special (deep) Ij- and I^-density points were considered in [15]
 and [2], respectively. They play an essential role in the char-

 acterization of coarsest topologies for Ij- and ^-approximate-
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 ly continuous functions. The coarsest topology for strongly I^-

 - approximately continuous functions has not been yet characterized.

 Let us start with some definitions. A point (x0>y0) is

 called a special strong I^-density point of A 6 ^ if there
 2 - 2

 exists an open set B C r such that B R ' A and (x0>yo)

 is a strong I^-dispersion point of B, A point (x0>y0) is- cal-

 led. a deep strong I^-density point of A e if there exists
 2 2

 an open set B C R such that B P R ' A and (xQ,y0) is a

 strong I^-dispersion point of B. Obviously, if (x0>y0)

 a deep strong I^-density point of A 6 S^> then it is a special
 Is

 strong I „-density point of A. Let T, = {G U P : G is open,
 2 * 2

 P is nowhere dense and each point of G u P is its strong I^-
 -density point}. Obviously, P is a part of the frontier of G.

 Is 'l o
 It is easily observed that T, forms a topology and that T7"
 «, 2 2

 c TI .
 2

 THEOREM 1.1. Each strongly I ^-approximately continuous
 2 Is

 function f : R •* R is continuous with respect to T .
 J2

 Proof. The proof is analogous as in the one -dimension-

 al case ( see page 172 in [1 6 ], part of the prooď of Th. 8).

 THEOREM 1.2. If f : R^ - R is strongly 1 2 -approximate-

 ly continuous, then for every interval (z^jZg) each point of

 the set f ((z^jZg)) is its special strong I^-density point.

 Proof. See [2], Theorem 9.

 Now we proceed to detailed study of special(deep) strong

 ^-density points.
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 LEMMA 1.1. If AG ^jS» then R^ ' A = U ?2> whore

 G2 is open and P2 is nowhere dense.

 Proof. Observe that if A = G± u P^ then the sets
 2 2 •

 G2 - înt (R ' A) and P2 = (R ' A) ' G2 fulfil all • requirements ,

 moreover, P^ and P2 are complementary parts of the frontier

 of G^ (see also [2 3, Lemma 3).

 REMARK 1.1. In the denotation of the above lemma, the de-

 finitions of special or deep strong I^-density points for sets
 1.S

 in Tj can be stated in the following form: A point (x0,yQ)
 Is

 is a special (deep) strong I „-density point of A e Tt if there

 exists an open set B such that fî Z> Pg (BD Pg, re-spectively )

 and (x0,y0) is a strong I^-dispersion point of B.

 LEMMA 1.2. If (0,0) is a special (deep) strong i^-dens-
 1. S

 ity point of A e T- , then (in the denotation of the previous
 l2

 lemma) for each pair. ikń^n€Nł ^kn^n€N increasinS sequences of

 positive integers there exists an increasing sequence ^np^peN
 of positive integers such that for each rectangle (a' ,b ')* (a",b" )

 £ [-1,1 ]2 there exists a rectangle (c', d') x (c" ,d" ) C ( a ' ,b' )
 x (a" ,b" ) and a natural number r such that

 00

 U ( (k^ ,kļļ )-P2) n ((c', d') x (c",dM )) = 0.
 p=r p p

 Proof. Suppose that this condition does not hold. So

 there exist two increasing sequences {'kn )n6N> of positive

 integers such that for each increasing sequence tap there
 existe a rectangle (a', b') x (a",b") C- [-1,1] such that for each
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 rectangle (c', d') x (c'1, d") C (a',b') x (a",b") and for each re N
 oo

 we have U ((k^ ,k" )»P2) n ( (c ' ,d • ) x (c" ,d" ) ) i 0. Obviously,
 p=r p p

 vie can suppose that the rectangle 'a', b') x (a",b" ) is included

 in one quarter of the plane. Assume, for def initeness , that a' >0

 and a" > 0. It follows that for each r e N the set
 oo

 LJ ((k' ,k" )*P2) is dense in (a',b') x (a",b") for all se- p=r np np

 quences (np}p£N* ® an^ open set such that B
 (B D ?2> resp.) then it is easy to see that for every positive

 oo

 integer r the set U (k' ,k" )«B is dense in> this rectangle.
 n n^

 P-r p p
 ?

 Hence lim sup ((k^ ,k" )«B) n [-1,1] is residual in (a1, b')
 p P P

 x (a",b") and, by virtue of Remark 1.1, (0,0) is not a special

 .(deep, resp.) strong ^-density point of A.

 In the sequel we shall need the following fact for linear

 sets :

 LEMMA 1.3» If is not an I j -dispersion point of an
 open set A C R, then there exists an interval set DCA (it

 oo

 is a set of the form Li (a ,b ), where intervals (a ,b ) are
 ^ n n n n

 pairwise disjoint, and a sequence monotone and con-

 verges to xQ ) such that xQ is not a dispersion point of D.

 Proof. For simplicity assume that xQ = 0 and that 0
 is not a right I j -dispersion point of A. So there exists an
 increasing sequence Positive integers such that for

 oach subsequence {nm } N the set lim sup ((nm -A) n [0,1]) is
 P P P

 not of the first category.
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 1 1
 Let A = A n ( - t"3"> - ) for each n. Choose a set B n n+l n n n

 which is a finite union of open intervals and has the property

 that for each x 6 A there exists x' € B such that
 n n

 a>

 lx - X' I < -Ļ. Put D = LJ B . Obviously D is an interval
 n2 n=l n

 set. We shall show that 0 is not an I j -dispersion point of

 D. Let {nm } be an arbitrary subsequence of the above men-
 P

 tioned -sequence inm^meN" Because lim sup ((nm *A) n [0,1]) has
 P P

 the Baire property and is not of the first category, there exists

 a subinterval [a,b] C (0,1] in which this set is residual. We

 shall show that also lim sup ((n «D) n [0,1]) is residual in
 P mp

 [a,b]. Indeed, observe that for each r e N the open set
 oo

 W (n .A) is dense in [a,b]. Now we shall show that also
 „ m
 „ P-r p

 (W

 U (n -D) is dense in [a,b] for each r e N, which is enough
 p=r p

 because the last set is also open. First observe that for each

 ļ

 point x e (nm *A ) n [0,1] = nm • (A n [0,- - ]) the distance
 p p mp

 from x to (nm -D ) n [0,1] is less than - - (from the de-
 P mp

 finition of D). Let r e N and let x e [a,b] be an arbitr-

 ary number. We can find a sequence tending to x and
 co

 such that xk e U (n^ -A) n [0,1]. Let nm > n^ be
 PP

 such positive integer that x^ e nm *A. Obviously n - >
 pk pk
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 For each k e N there exists a number x' e n »D such that
 m

 Pk
 co

 lx, - X/ 1 < - - - . Hence x.' also converges to x, * so U (n • D) k k n . k * m
 m p=r p

 pk

 is dense in [a,b ] .

 LEMMA 1.4. Under the assumption of Lemma 1.3 there exists
 oo

 also a "closed" interval set DCA (D = L/ ^an'^n^ suc^ that
 n=l

 xQ is -not an I j -dispersion point of D.

 Proof. Essentially the same proof works.

 LEMMA 1.5. If (x0,y0) is a deep strong I density point

 of AG then xQ is a deep Ij-density point of the 'linear

 set P?° and yQ is a deep I j -density point of Ax
 o

 Proof. We shall prove the first part for (xo,yQ)^= (0,0 ) .
 2

 Suppose that if it is not the case. Let B D R N> a be an open

 set such that (0,0) is a strong ^-dispersion point of B.
 o y

 Suppose that 0 is not a deep I j -density point of A (A 0 for

 yQ = 0). Then 0 is not an I j -dispersion point of B°, say,
 from the right. Using Lemma 1.4 we can construct a "closed" in-

 00

 terval set D = U [a.,b.]G B° Then there exists a sequence
 j=l J J

 00

 {h.}.^M of positive numbers such that U.([a.,b.] * [-h.,h.])C B,
 J JcN j _ ^ J 'J J J

 From the fact that 0 is not a right I j -dispersion point

 of D it follows that there exists an increasing sequence ^
 of positive integers such that for each subsequence {'k' } the

 P

 set lim sup (k' *D) is not of the first category. Now take k!ļ P np
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 sufficiently big to assure that h. • kV ž 1 for all j such that
 J J

 that • b j ž 2"*1. Next take k£ * k!ļ sufficiently big to as-
 sure that h. -kp ^ M for all j such that kX ^ • b. ž 2~2. J ^ ^ J

 Generally, put kļļ ¿ kn-i sufficiently big to assure that

 hj • k*2 * 1 for all j such that k¿ • b^ i 2~n (only finite
 number of j' s fulfils this inequality). Now it is not difficult

 to observe that for each subsequence ínp^pgN we ^av.e

 lim sup ((k¿ ,-kļļ ).B) n [-1,1}2 ;>
 P P P

 co

 lim sup ((k' ,k" ) • ( U [a. ,b . ] * [-h,,h.])
 p P P j=i 3 J J J

 n [-1,1]2 = (lim sup (k' -D)) X [-1,1]
 P P

 and the last set is not of the first category as a plane set - a

 contradiction with the choice of B.

 THEOREM 1.3. If A E (0,0) is a strong I ^ -density

 point of A, 0 is a deep Ij-density point of A0 and AQ,
 and, moreover, for each pair of increasing sequences ^n^neN'

 ^n^n£N positive integers there exists an increasing se-
 quence oi> positive integers such that for each rectangle

 (a1, b') * (a",b") C [-1,1]2 there exists a rectangle (c', d')
 x (c",d") C (a', b') * (a",b") and a positive integer r such

 00

 that U ((k' ,k" )*P2) H ((c' ,d' ) x (c",d"))= 0 (where Pp
 p=r p p

 is the set associated with A as described in Lemma 1.1), then

 (0,0) is a deep strong ^-density .point of A.
 2

 Proof. We shall construct an open set B 2 R 'A such

 that (0,0) is a strong I ^-dispersion point of B.
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 Let ®(-x)'®(y) be °Pen sets such that ^(x) ^ ^ ^°'
 P R ' Aq and 0 is an I j -dispersion point of and

 B, . . Put B. 1 = B. . X R '2 B0 = R X B, . . It is not difficult (y) . . 1 (*) . '2 (y) .

 to see that (0,0) is a strong I 2~dispersion point of both B^

 and B2-
 2

 Now let us represent R ' A in the form G d Pj, using
 Lemma 1.1. Put P = ' {(x,y) : x.y = 0}. Let

 B, = ^ (x - ixi2,x + lxi2) X (y - ly 1 2 >y + lyi2).
 3 (x,y. )eP

 We shall show that (0,0) is a strong ^-dispersion point of By
 Let ^ń^neNł ^n^neN ar>bitrary increasing sequences of posi-
 tive integers. From the assumption it follows that thore exists

 an increasing sequence positive integers . such that
 2

 for each rectangle (a', b') x (a",b") C [-1,1] there exists a

 rectangle (c', d') *'(c",d") C(a',b') x (a",b") and a posi-
 oo

 tive integer r such that 'J ( (k' ,k" ).P) n((c',ď) x(c",d" ))
 p=r p p

 = 0 (since PC P 2 )• Observe that for each. (x,y) e (c',ď)
 x (c",d" ) there exists r (depending on (x,y ) ) such that

 oo

 (x,y) č U (k' ,k" J'B,. It means that ((c',ď) x (c",d" ))
 p=r p p

 fi lim sup ((k' ,k" ) .B, ) = 0, hence lim sup ((k' ,k" ) • B, )
 P P P P np np 5

 2
 n [-1,1] is nowhere dense. Observe also that (0,0) is a

 p

 strong I^-dispersion point of G, since G C R ' A.

 Finally, put B = u B^ u B^ u G. We have obviously
 2

 B3 11 ' A and (0,0) is a strong I ^-dispersion point of B,
 as required.
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 THEOREM l.Jł. Suppose that f : R2 -► R is strongly Ï

 -approximately continuous. Then f is separately I j -approxi-
 mately continuous.

 Proof. We shall prove I j -approximate continuity of
 f° at X = 0 (for remaining points the proof is the same). Sup-

 pose that f° is not I j -approximately continuous at 0. It
 meano that there exists e >0 such that 0 is not an I «-dis-

 O I

 persion point of the set C = {x : if(x,0) - f(0,0)l i eQ}. Since
 f is Baire 1 (see [2], th. 8')» C has the Baire property, so

 C = G à P, where G is open and P is of the first category.

 Obviously 0 is not an I j-dispersion point of G. Using Lem-
 ao

 ma 1.3 we construct an interval set B = LJ (a ,b ) C. G such
 n=l n n

 that 0 is not an I j -dispersion point of B (assume from the
 right ) .

 It means that there exists an increasing sequence

 of positive integers such that for each subsequence' {nm the
 P

 set lim sup ((n *B) n [0,1]) is not of the first category.
 P P

 1 1n
 If for each n e N {x . ...,x •} C (a .b„) is ^an increas- n 'n n' n

 1 Ti
 ing ° sequence of numbers such that x - a_< - -a . b - x ° nnnn nn

 < H'an and xn " "ì"* for 1 e BÜ C Un.b„>
 is any neighbourhood of x^ for n e N and 1 e {l,...,ln) and

 D.Ů li b' then for each r e N
 n

 n=l 1=1

 OO CO

 (U (n -B) ' U (n .D)) n [0,1]
 p=r p p=r p
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 Theorem J implies easily the following

 Corollary 3> Por a. a. f€C the following holds :

 If for X 6. (0, 1) both [Pãp*(*). ^äpf(x£I ^ * 8111(1
 j^D^pf(x), D^pf(x)J f R , then each y€R is a derived number
 of f at X with an upper one-sided density d ■ 1/4 •

 Theorem 4; (iii) shows that a typical f£C has at some
 points no finite derived number with a positive upper density.
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