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 Dif £ erentiable Restrictions of Real Functions

 We review some of the known theorems about differentiable and

 monotonie restrictions of continuous and arbitrary real functions

 and present some new results of this type. We adopt the

 convention that differentiable functions are assumed to have

 finite valued derivatives, and when we mean differentiability

 in the extended sense (allowing f'(x) = +c© or -«»)» we put

 quotation marks on "differentiability".

 The first result of the type we are conisdering would be the

 following .

 Theorem 1: For every continuous f : [0,1] -> R, there exists a

 perfect subset P of [0,1] such that f|P is differentiable.

 We don't know when this result was first discovered, but it

 certainly follows from Lebesgue's Theorem together with the

 monotonicity results of Minakshisundaram [13], Padmavally [15],

 Marcus [12], and Garg [7], The set P in the conclusion of

 Theorem 1 cannot be made to have positive measure because of the

 existence of nowhere approximately differentiable continuous

 functions (see the paper of Jarnik [9] or [3, Ch. 16]).

 In order to improve the conclusion of Theorem 1 (i.e.

 to obtain that f|P is C* or twice differentiable or better), it
 is clear that one needs similar theorems for functions with
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 domains arbitrary perfect sets other than [0,1], A theorem of

 this type for monotonie restrictions was established by Filipczak

 i n 1 966 [ 6 ] .

 Theorem 2: If P is a perfect subset of [0,1], then for every

 continuous f : P -> R, there exists a perfect subset Q of P such

 that f I Q is monotonie.

 Then, a "dif f erentiable" restriction result was established

 by Bruckner, Ceder, and Weiss in 1969 [ 4 ] .

 Theorem 3: If P is a perfect subset of [0,1], then for every

 continuous f : P - > R, there exists a perfect subset Q of P such

 that f I Q is "dif f erentiable" and monotonie.

 Morayne gave a simplied proof of Theorem 3 inx[14].

 Theorem 1 was drastically improved by Laczkovich in 1984 [11],

 and a second remarkable result was obtained by Agronsky, Bruckner,

 Laczkovich, and Preiss in 1985 [1].

 Theorem 4: If P is a perfect subset of [0,1] and P is of

 positive measure, then there exists a perfect subset Q of P such

 that

 1) f|Q is C<r (relative to Q) [11], and

 2) f I Q extendable to a C1 g : [0,1] -> R [1],
 and 3) f | Q is monotonie.

 Of course, once you get f | Q dif f erentiable , it follows that

 f can be extended to a dif f erentiable g : [0,1] -> R, because

 every dif f erentiable function with domain a perfect set is so

 extendable (see [10] or [16]). However, functions with

 perfect domains are not necessarily extendable to

 functions g : [0,1] -> R. In order to obtain 2) of Theorem 4, it
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 is necessary to show that the conditions of the "Whitney Extension

 Theorem" [17] are satisfied.

 The following is an improvement of Theorem 3 which is in the

 spirit of 2) of Theorem 4. We say that a function f with domain a

 perfect set P is "C*" (with quotation marks) if f is
 "dif f erentiable" and the extended real valued function f' is

 continuous .

 Theorem 5: If P is a perfect subset of [0,1], then for

 every continuous f : P -> R, there exists a perfect subset Q of P

 such that f I Q is monotonie and extendable to a "C*"

 g : [0,1] -> R.

 The proof of Theorem 5 calls upon a variation of the Whitney

 Extension Theorem for "C*" extensions.

 It follows from the following theorem that the function

 f I Q of conclusion 2) of Theorem 4 cannot necessarily be extended

 to a function g : [0,1] -> R which is twice dif f erentiable or even

 to a g : [0,1] -> which is "twice dif f erentiable" (i.e. g is

 dif f erentiable and g' is "dif f erentiable") .

 Theorem 6 [1]: For every € > 0, there exists a perfect subset P

 of [0,1] of measure at least 1-ć and a continuous f : P -> R such

 that a) { X £ P : f(x)-g(x)} is finite for every twice dif f erentiable

 g : [0,1] -> R, and

 b) (x£.P : f(x)sg(x)} has at most finitely many limit points

 for every "twice dif f erentiable" g : [0,1] -> R.

 Actually, only a) was proved in [1], but it takes only a

 little more argument to prove b). As a matter of contrast, the

 following theorem holds.
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 Theorem 7: If A is a subset of [0fl] of positive outer measure,

 then for every f : A -> Rt there exists an infinite closed

 subset B of A such that f | B is extendable to a monotonie "twice

 dif f erentiable" g : [0,1] -> R.

 Since this is a theorem about arbitrary functions, it is a

 variant of Blumberg's Theorem.

 In 1969 Ceder [5] proved the following "differentiability"

 variant of Blumberg's Theorem.

 Theorem 8: If A is an uncountable subset of [0,1], then for

 every f : A -> R, there exists a bilaterally dense in itself

 subset B of A such that f | B is "dif f erentiable" and monotonie.

 It should be noted that the monotonicity of f|Q in the

 conclusions of Theorems 3-5 can be obtained after all the other

 desired properties have been established by just applying

 Filipczak's Theorem 2. Monotonicity of £ | B in the proof of

 Theorem 6 must be obtained essentially simultaneously with

 "differentiability" because there is no theorem analogous to

 Filipczak's Theorem for functions with a bilaterally dense in

 itself domain. In fact, there was an error in Ceder's original

 proof concerning the monotonicity of f|B, but clarification was

 given in [2] and [8],

 The following is the "Blumberg variant" of Theorem 5 and

 represents an improvement in Theorem 6.

 Theorem 9: If A is an uncountable subset of [0,1], then for

 every f : A -> R, there exists a bilaterally dense in itself

 subset B of A such that f | B is monotonie and extendable to a

 "C1" g : [0,1] -> R.
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 The following theorem is the "Blumberg variant" of 2) and 3)

 of Theorem 4.

 Theorem 10: If A is a subset of [0,1] of positive outer measure,

 then for every f : A -> R, there exists a bilaterally dense in

 itself subset B of A such that f | B is monotonie and extendable to

 a C1 g : [0,1] -> R.
 Open Problem: We have as yet been unable to determine if the

 set B of Theorem 8 can be chosen so that f|B is C09 (relative to

 B).
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